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Physically based 
modelling



• Overview

• Particle systems

• Numerical solution of ODEs

• Constraints

• Collisions

Outline



• Animation is hard!

• Secondary motion is important but difficult 
to keyframe: clothes, hair, etc.

Motivation

James O’Brien, Jessica Hodgins, Victor Zordan [2000] Alias | Wavefront cloth simulator (based on work by
David Baraff and Andy Witkin [1998])



• Physical phenomena are too complicated to 
animate by hand; e.g., water, fire

Motivation (2)

Duc Nguyen, Ron Fedkiw, and Henrik Jensen [2002] Doug Enright, Steve Marschner, and Ron Fedkiw [2002]



• Interaction is also important

• Haptics (force-feedback)

• Interactive simulation

Motivation (3)

Doug James, Dinesh Pai [2001] Doug James, Dinesh Pai [2002]



• It’s cool!

Motivation (4)

Gary Yngve, James O’Brien, Jessica Hodgins [2000] James O’Brien, Jessica Hodgins [1999]



• Physically realistic motion simulated “for free”

• High-level control

• Constraints

• Forces

• Low-level details can be calculated

Physics to the rescue!



• Scientific computation

• Global error must be bounded

• Can be really slow (e.g., the Quake 
Project)

• Graphics

• Viewer’s tolerance dominates

• Numerical accuracy less important

• Speed more important (especially 
for real-time!)

• Cross-fertilization

• Scientific visualization

• Physically based modelling

Scientific computing vs. graphics



The basics: particle 
systems



• A collection of point masses, driven by forces

• Simplest possible physical model, but it can do a lot!

• Rendering is important

What is a particle system?

Karl Sims, Particle Dreams [1988]

Genesis effect from Star Trek II: 
Wrath of Khan [William Reeves, 
1983]



We’ll start out with a single point mass in the plane.  It 
has:

One measly particle

m
Position,
Mass,

Velocity,

x =

[
x1

x2

]

v =
dx

dt
=

[
dx1/dt
dx2/dt

]
x

Suppose velocity is dictated by some vector-valued 
function, v = f(x, t)

f(x, t)



This is a first-order ordinary differential equation,

Solving the ODE
dx

dt
= f(x, t)

We need to specify an initial value for x,
x(t0) = x0

The solution is a curve that is tangent to f at 
every point. 

How do we find it?
x0

x(t)



Euler’s method
Recall the Taylor expansion of a function,

x(t + ∆t) = x(t) + (∆t)
dx

dt
+

1

2
(∆t)2

d2x

dt2
+ · · ·

We can approximate this with just the first term,

dx

dt
= f(x, t)

Recall that in our case, 

Hence,

x(t + ∆t) = x(t) + (∆t)
dx

dt
+ O(∆t2)

x(t + ∆t) ≈ x(t) + (∆t)f(x, t)

This is known as “Euler’s method.”



What does this look like?

Euler’s method (2)

{x0 = x(t0) f(x
0 , t0 )

(∆t)f(x
0 , t0 ) x1

f(x
1,
t 1)



Of course, this is only an approximation.

Error is O(∆t2), so we can get a more accurate answer 
by reducing the timestep (within limits).
This can be expensive, though.

Euler’s method: error



We could get also better accuracy by using more 
terms from the Taylor expansion,

This means taking more derivatives, though (and who 
wants to do that?)

Higher-order methods

x(t + ∆t) = x(t) + (∆t)
dx

dt
+

1

2
(∆t)2

d2x

dt2
+ · · ·



We can look at it another way; given xt, we find xt+∆t by

In the Euler method, we are approximating the integral 
with the lower sum,

Higher-order methods (2)

∫ t+∆t

t
f(x(τ ), τ ) dτ ≈ ∆tf(xt, t)

xt+∆t = xt +

∫ t+∆t

τ=t

dx

dt
dτ = xt +

∫ t+∆t

τ=t
f(x(τ ), τ ) dτ



A more accurate method is to use the midpoint of the 
interval,

Of course, we don’t yet know what xt+∆t/2 is, so we 
approximate it with (what else?) the Euler method,

Higher-order methods (3)

∫ t+∆t

τ=t
f(x(τ ), τ ) dτ ≈ (∆t)f

(
xt+∆t/2, t +

∆t

2

)

xt+∆t/2 ≈ xt +
∆t

2
f(xt, t)



The resulting method is

This is known as the “midpoint method.”  The error is 
O(∆t3), but it requires two evaluations of the function 
f.

In general, methods of this class are known as “Runge-
Kutta” methods.

Higher-order methods (4)

xt+∆t = xt + (∆t)f(xt+∆t/2, t + ∆t/2)

xt+∆t/2 = xt + ∆t
2 f(xt, t)



How does this compare to the Euler method?

Higher-order methods (5)

Single full Euler step
(One function evaluation)

Two half Euler steps
(Two function evaluations)

Midpoint Runge-Kutta step
(Two function evaluations)

xt

xt+∆t

xt+∆t/2

xt+∆t

xt

xt+∆t/2

xt+∆t

xt

(∆
t)
f(
x t,

t)

∆
t

2
f(
x t,

t)

∆t

2
f(xt+∆t/2, t + ∆t/2)

(∆t)f(xt+∆t/2, t + ∆t/2)



Error isn’t the only thing we need to worry about, 
though.  Consider the following (in 1D)

The analytic solution is 

What happens when we use Euler’s method?

Euler’s method: stiffness

dx

dt
= −kx, k " 1

x(t) = Ce−kt

Barely stable Unstable



The solution is a class of methods called implicit 
methods, but these are beyond the scope of the course.

See for example David Baraff and Andy Witkin’s notes 
at:

Euler’s method: stiffness (2)

http://www.pixar.com/companyinfo/research/pbm2001/



In general, particles are governed by Newton’s law,

What is the problem here?

Newton’s law

f = ma = m
d2x

dt2

Our solution?  Introduce a new variable, v:[
dx
dt = v
dv
dt = f

m

]



If concatenate position and velocity, we get a 6-vector 
in “phase space,”

With this, we rewrite Newton’s law as

which we already know how to solve.

State space formulation

[
x
v

]

d

dt

[
x
v

]
=

[
v

f/m

]



Conveniently, we can easily extend this to a system of 
n particles,

Our ODE is just the obvious extension,

State space formulation (2)



x1

v1

x2

v2
...

xn

vn



d

dt



x1

v1

x2

v2
...

xn

vn


=



v1

f1/m1

v2

f2/m2
...

vn

fn/mn





We can treat the ODE solver as a black box; this lets 
us use different solvers if we choose.

We need to provide to the solver

• Dimensionality of the system (6n for n particles)

• Initial state

• Starting and ending times

• How to calculate derivatives of the state variables 
(we will supply a function callback)

Implementation



Implementation (2)

ODE solver

Particle
system

InitializeState()
while( simulating )

odesolve( 6n, t, t+∆t, 
  state, derivEval );
renderParticles();

State
x1

v1

x2

v2
...

xn

vn
getState()
setState()
derivEval()
dimension()

Main loop:

odeSolve()



Working with particle 
systems



We have the machinery now to deal with big systems 
of particles; it’s time to make them do something 
useful.

First, we’ll need some forces...

Particle system design



Forces: gravity

fg = mg



Opposes velocity.

Forces: viscous drag

fdrag

fdrag = −kdragv

v



Things start to get interesting when we connect 
particles together...

Forces: spring forces

Recall Hook’s law,

where
fspring=−ks(||d||−s) d

||d||

d = p− q
s is the rest length of the spring
ks is the spring constant

q p

s

d



In general, we will need to add a damping force to get 
stable, realistic motion.  It should

• Depend on velocity

• Act in the same direction of the spring force

• Be proportional to the projection of the velocity 
vector onto the distance vector

Our force looks like

where

Damped spring

fspring=−(ks(||d||−s)+kd
ḋ·d
||d||) d

||d||

q p

s

d

ḋ =
dd

dt
=

dp

dt
− dq

dt



We can connect a bunch of masses with springs to 
model things like rope (1D), cloth (2D), jello (3D), etc.

Spring-mass systems

Models like these tend to be pretty jiggly unless we make 
the springs really stiff (and then stability is a problem)



For realistic-looking cloth, we’ll need shear springs and 
bend springs, so it doesn’t collapse on itself.

Cloth

Bend spring Stretch springShear spring

More sophisticated models are available (active area 
of research).



Example of spring-mass cloth.  Note that this took 10 
hours to calculate.

Cloth (2)

Robert Bridson, Ron Fedkiw, John Anderson [2002]



• Creation

• Number created

• Initial position and velocity

• Shape, size, color

• Lifetime

• Randomness

• Deletion

• Rendering

• Alpha blending can be quite effective (especially 
for fire)

• Material properties may change with age

Other variables



• Clouds

• Smoke

• Fire

• Crowds

• Fish?  Snakes?  You bet!

Other particle systems

Gavin Miller, Her Majesty’s Secret Serpent 
[1989]

Xiaoyuan Tu, Go Fish [1993]



Constraints



Often, our particle system will consist of not only 
forces but constraints as well.

e.g., suppose we have a rigid pendulum constrained to 
lie on a circle about the origin.

In practice, these will come up for example in collision 
handling.

Constraints: definitions



In general, we can rewrite our ODE as

Here, the g function represents the constraints that 
must be satisfied.

This is known as an ODE on a manifold, and is a special 
case of a class of problems known as Differential 
Algebraic Equations (DAEs).  Unlike ODEs, these are 
often ill-posed and can be very difficult to solve.

Constraints: definitions (2)
d2x

dt2
= f(x, t)

g(x) = 0



The best solution is often to try reducing the 
dimensionality of the problem.  In our circle example:

Notice that the particle here has only 1 degree of 
freedom.  If we can express the ODE in terms of θ, the 
constraint will be satisfied “for free.”

Constraints: reducing dimensionality



Another common method is to try and penalize the 
particle if it disobeys the constraint, e.g., with a force.  
This is a simple form of the general method known as 
“stabilization.”

Constraints: stabilization

fstab

See the Baraff and Witkin notes for all the gory 
details.



Another idea is to solve the ODE as usual, but at the 
end of the timestep project x onto the constraint 
manifold.  This is a form of poststabilization.

In this case this is easy, but in general it might involve a 
nonlinear optimization.

Constraints: poststabilization



Collisions



We start with the simple case of a particle bouncing 
off a wall.

How do we detect when the particle has crossed the 
plane?

Collisions: detection



First decompose velocity into tangent and normal 
components:

Multiply normal velocity by a restitution coefficient, 
which determines how much energy is preserved.

Collisions: response

vT

vN

v

vT v′

−krestitutionvN



• Totally elastic collision (krestitution = 1)

• Totally inelastic collision (krestitution = 0)

• May need to introduce a friction force to oppose 
vT

Collisions: response (2)



In general, we will need to compute collisions between 
arbitrary pairs of triangles,

If we have a lot of triangles, this is slow, but we can 
accelerate it with bounding box hierarchies.

Triangle collisions

point-face collision edge-edge collision



• Particle systems

• Numerical solution of differential equations

• Constraints

• Collisions

Summary


