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ABSTRACT
We present distributed regression, an efficient and general
framework for in-network modeling of sensor data. In this
framework, the nodes of the sensor network collaborate to
optimally fit a global function to each of their local measure-
ments. The algorithm is based upon kernel linear regression,
where the model takes the form of a weighted sum of lo-
cal basis functions; this provides an expressive yet tractable
class of models for sensor network data. Rather than trans-
mitting data to one another or outside the network, nodes
communicate constraints on the model parameters, drasti-
cally reducing the communication required. After the al-
gorithm is run, each node can answer queries for its local
region, or the nodes can efficiently transmit the parameters
of the model to a user outside the network. We present an
evaluation of the algorithm based upon data from a 48-node
sensor network deployment at the Intel Research - Berke-
ley Lab, demonstrating that our distributed algorithm con-
verges to the optimal solution at a fast rate and is very
robust to packet losses.
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Networks]: Distributed systems—Distributed applications

General Terms
Algorithms

Keywords
regression, wireless sensor networks, machine learning, dis-
tributed algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’04,April 26–27, 2004, Berkeley, California, USA.
Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00.

1. INTRODUCTION
Networks of small, low-power devices that can sense, actu-
ate, and communicate information about their environment
are proving a useful tool for many tasks in science and indus-
try. In recent years, developments in hardware and low-level
software have led to viable, multi-hundred node networks
being deployed for remote monitoring of environmental and
climatological data (Mic03; MPS+02).

Such monitoring systems are typically used in one of two
modes of operation: either the data from the sensors is ex-
tracted from the network and analyzed off-line (MPS+02);
or the information obtained from the sensors is aggregated
using simple local operations that compute, for example, av-
erages, maxima, or histograms (Mad03; IEGH02). The re-
duction of communication through aggregation is attractive
since extraction of complete data sets can be very expensive,
requiring large amounts of communication that drains the
limited energy of these devices.1 Unfortunately, although
aggregation conserves energy, it can lose much of the orig-
inal structure in the data, providing only coarse statistics
that smooth over interesting local variations.

In this paper, we propose

Figure 1: Sensor node used

in deployment.

a method for extracting much
more complete information
about the shape and struc-
ture of sensor data than most
aggregation schemes provide
while still using much less com-
munication than methods that
retrieve every reading from
every sensor. To do this, we leverage the fact that mea-
surements from multiple sensors in the same space are often
highly correlated. Thus, the effective dimensionality of the
data may be significantly lower than the total number of sen-
sor measurements. A few previous published sensor network
querying algorithms have exploited this type of structure,
but these methods only address very specific tasks, such as
computing contour levels of sensor values (NM03).

We present a general framework for answering complex
queries in a sensor network. This framework can accurately
represent the structure of the original data while signifi-
cantly decreasing the communication requirements, by pro-
jecting the readings into a lower dimensionality representa-
tion. Specifically, we use linear regression, where the data
is approximated by a weighted linear combination of basis
functions, to perform this projection. We model local corre-
lation in the data using kernel linear regression, where the
support of a kernel function determines the set of measure-
1Communication is widely viewed as the dominating
power cost in many sensor networks applications (PK00;
HSW+00); (Mad03) claims that, for some data collection
tasks, 94% of energy in motes is spent on some aspect of
communication.
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ments that are used to estimate each basis function coeffi-
cient. The coefficients of these basis functions and locations
of kernels then provide a compact, structured model of the
measurements.

We describe a simple and efficient distributed message
passing algorithm for performing regression within a sensor
network. Our algorithm maintains the resulting representa-
tion in a distributed fashion, and is able to extract this rep-
resentation from the network at a minimal communication
cost. Our approach overlays a junction tree—a data struc-
ture commonly used for probabilistic inference in graphical
models (CDLS99)—on top of the routing tree often used for
data collection in sensor nets. By passing a pair of messages
between adjacent nodes in this tree, we optimize the basis
function coefficients to minimize the reconstruction error.

The primary contributions of this work are as follows:

• we describe kernel-based regression and argue that it
is well suited to predicting the behavior of the spatio-
temporally correlated data common in sensor nets;

• we show that a solution to the kernel regression prob-
lem, based upon Gaussian elimination, can be formu-
lated as a communication-efficient distributed message
passing algorithm that can be practically implemented
in a sensor network;

• we show that tree-based communication topologies com-
mon in sensor networks are capable of effectively sup-
porting this message passing algorithm; and,

• we present an evaluation of our approach using an
implementation in TinyOS on the TOSSIM simula-
tor (LLW+03), demonstrating the compactness and
accuracy of the models generated by our distributed
regression algorithm, and the fast convergence rate,
and high robustness to packet losses.

2. REGRESSION IN SENSOR NETS
A sensor network is composed by a set of n nodes (N1, . . . , Nn)
that communicate over a wireless network. Figure 5 illus-
trates a simple example of a sensor network that we deployed
in the Intel Research Lab in Berkeley, using the sensor nodes,
or motes, shown in Figure 1. This deployment, based on
TinyDB (Mad03), periodically collects a set of environmen-
tal attributes, such as light, temperature, and humidity, as
well as network connectivity and routing topology.

2.1 Regression models
Each node in the network generates large amounts of data;
for example, in the deployment used to generate data for
this paper, each sensor produces a reading every 30 seconds,
or 120 readings an hour. This sample rate directly affects
the expected lifetime of the network: at this rate, we antici-
pate a network lifetime of about one month. Switching to a
slower rate, where each sensor transmits, for example, every
10 minutes, would increase the life to more than 18 months,
but, in general, lowering the sampling rate may cause us
to miss high frequency events. Thus, approaches that re-
duce communication, while still retaining the structure in
the data, will substantially extend network lifetime.

An alternative to extracting all of the measurements is to
build a model of this data in the network and transmit only
the model coefficients. For example, instead of extracting
the humidity measurement from node Ni every 30 seconds,

we can fit a degree-three polynomial to the last 100 measure-
ments: f(t) = w0 +w1t+w2t

2 +w3t
3. Then we only need to

extract 4 parameters from the network: w1, w2, w3 and w4.
More generally, given a set of basis functions (e.g., 1, t, t2,
and t3), we would like to continuously fit their parameters
and thereby reduce the dimensionality of the data.

This modeling process can be achieved using regression.
In regression, a sensor measures a function f(t) at some time
t (e.g., humidity). Over time, it collects a set of data points
(f(t1), . . . , f(tm)). We are given a set of basis functions H =
(h1, . . . , hk), and we would like to fit these basis functions to
the measurements, that is, to find basis function coefficients
w = (w1, . . . , wk)ᵀ such that:

f̂(t) =
∑

i

wihi(t) ≈ f(t).

By choosing the number of coefficients to be far smaller
than the number of measurements (k � m), the coefficient
vector w becomes a compressed representation of the mea-
surements.

To formalize this notion of approximation, we must define
an error metric. We focus our presentation on root mean
squared error (RMS). That is, we would like to pick the
parameters w∗ that minimize the RMS:

w∗ = arg min
w

√√√√ 1

m

m∑
j=1

(
f(tj)− f̂(tj)

)2

,

= arg min
w

√√√√ 1

m

m∑
j=1

(
f(tj)−

∑
i

wihi(tj)

)2

. (1)

We can perform such optimization using linear regres-
sion (GV89). To present the algorithm, we need to define
a basis matrix H with one column for each basis function
and one row for each measurement. Similarly, we define a
measurement vector f with one row for each measurement:

H =


h1(t1) h2(t1) · · · hk(t1)
h1(t2) h2(t2) · · · hk(t2)

...
...

...
h1(tm) hi(tm) · · · hk(tm)

, f =


f(t1)
f(t2)

...
f(tm)

 .

Note that H is a m×k matrix, and f is a m×1 vector. using
this notation, we can restate our optimization problem (1) in
matrix notation as: w∗ = arg minw ‖Hw − f‖. Setting the
gradient of this quadratic objective to zero gives the optimal
coefficients:

w∗ = (HᵀH)
−1

Hᵀf . (2)
It is instructive to understand each term in the right hand

side of this equation:

A = HᵀH =


〈h1 • h1〉 〈h1 • h2〉 · · · 〈h1 • hk〉
〈h2 • h1〉 〈h2 • h2〉 · · · 〈h2 • hk〉

...
...

...
〈hk • h1〉 〈hk • h2〉 · · · 〈hk • hk〉

 ,

b = Hᵀf =


〈h1 • f〉
〈h2 • f〉

...
〈hk • f〉

 ,

where we denote dot products by 〈f • g〉 =
∑m

i=1 f(ti)g(ti).
The first term A is the dot-product matrix, where each ele-
ment denotes the dot product between two basis functions.
The second term b is the projected measurement vector,
where each element is simply the projection of the measure-
ment vector into the space of a particular basis function.



Thus, given the measurement vector and the basis func-
tions, we can compute the optimal regression weights with
simple matrix operations. Typically, one computes the dot-
product matrix A and the projected measurement vector b,
and obtains the optimal weights by solving the linear system
Aw = b, using, for example, Gaussian elimination (GV89).

In a sequential process, such as the measurement of tem-
perature over time, we may want to fit a regression model
using a sliding window. That is, we fit the coefficients of
our basis functions with respect to the measurements per-
formed in the last T minutes. Suppose that we have com-
puted the matrix A and the vector b for measurements at
times t1, . . . , tm−1, and we observe a new measurement at
time tm. If we define

A(tm) =

 h1(tm)h1(tm) · · · h1(tm)hk(tm)
...

...
...

hk(tm)h1(tm) · · · hk(tm)hk(tm)

 , and

b(tm) =

 h1(tm)f(tm)
...

hk(tm)f(tm)


,

we can incrementally update A and b simply by:

A← A + A(tm) b← b + b(tm) (3)

Similarly, if measurement t1 falls outside our time window,
we can remove the influence of f(t1) by:

A← A−A(t1) b← b− b(t1) (4)

Thus, we can incrementally update A and b as we receive
new measurements. The basis function coefficients can be
computed at any time by solving the linear system Aw = b.

2.2 Modeling spatial data
In addition to significant amount of redundancy in read-
ings from a sensor over time, there is redundancy between
measurements performed by different nodes. In our deploy-
ment, sensors that are close to each other measure similar
temperatures. Thus, rather than reducing the dimensional-
ity of the data by building a regression model for each sensor
in isolation, we can also model spatial correlations, further
compressing the data.

More formally, we can view the measurements f as a func-
tion of time and of the location of the node. For exam-
ple, in a 2D deployment our measurements function will be
f(x, y, t). This formalism generalizes to 3D deployments, or
other more complex parameters of the nodes, such as orien-
tation. In general, we denote the measurement function by
f(x, t), where x is a vector (e.g., x = (x, y, z)). We can now
define basis functions over both spatial parameters (e.g., the
nodes’ location) and time. In general, we have a set of basis
functions H as before, where each basis h(x, t) is now a func-
tion of x and t. The same regression framework presented
in the previous section can be used to compute the optimal
weights w∗ of this new basis set. If the position of a sen-
sor changes over time, we can use incremental update rules,
analogous to the ones in Equations (3) and (4), to adjust
the influence of this sensor in the parameter estimate.

2.3 Kernel regression in sensor nets
The framework described thus far is a powerful tool for mod-
eling the data that is generated by sensor networks. We
would like to develop a distributed implementation of the
regression optimization that avoids uploading all of the data
from the network. However, without further assumptions on

the dot-product matrix A, a distributed solution to the lin-
ear system Aw = b is expensive. As we will demonstrate
in the following sections, an efficient, distributed solution is
possible when the matrix A is sparse. We will now present a
refinement of the regression method, kernel (linear) regres-
sion (MN83), that can yield a sparse matrix A while still
preserving the essential structure of sensor network data.

We can view the environment in which our sensor network
is deployed as consisting of overlapping regions, where mea-
surements within a region have qualitatively similar behav-
iors. In our lab deployment in Figure 5, we found that tem-
perature measurements tend to be highly correlated within
each area of the lab. For example, when the sun shines
through the windows, the motes near these windows tend to
be hot, and the ones next to them are a little cooler, while
the motes on the other end of the lab may or may not be cold
depending on variations across the lab. Thus, we would like
to define basis functions that model the phenomena within
each region, appropriately smoothing the overlaps between
regions and attenuating the influence of sensors over distant
regions.

We can formalize this notion of regions using kernel func-
tions. Each region j is defined by a non-negative function
Kj(x) that maps each location x to a non-negative number.
The region is defined by the support of Kj , i.e., the set of
locations x where Kj(x) > 0. Kernel functions are other-
wise arbitrary; often kernel functions are chosen to decrease
smoothly to zero at the boundary of the region to guarantee

smoothness of the final regression function f̂ .
Using these kernel functions, we can define the normalized

kernel weight κj(x) of kernel j at location x,

κj(x) =
Kj(x)∑l

v=1 Kv(x)
,

representing the degree to which the location x is associated
with region j, normalized by the sum of the value of all l
at x. If we now associate with each region j a set of basis
functions Hj , we can use the normalized kernel weights to
combine the weighted basis functions of each region:

f̂(x, t) =

l∑
j=1

κj(x)
∑

h
j
i∈Hj

wj
i h

j
i (x, t) ,

=

l∑
j=1

∑
h

j
i∈Hj

wj
i

[
κj(x)hj

i (x, t)
]
. (5)

If Kj has no support at location x, then the estimate at
x will not be influenced by the weighted basis functions of
region j; if x is in the support of several kernels, then the
estimate is the weighted average of the basis functions of
these kernels, where the weights are dictated by the kernel
value.

Kernel regression is really a special case of linear regres-
sion, since we can view each

[
κj(x)hj

i (x, t)
]

in Equation (5)
as a “basis function.” This view allows us to use the same
regression framework presented in Section 2.1 to compute
jointly the optimal weights of the basis functions associated
with each kernel. Figure 2 summarizes the kernel regression
framework.

We began this section by motivating kernel regression by
the need for a sparse dot-product matrix A. In the kernel
regression case, each entry in A is given by 〈κjh

j
i • κuhu

v 〉.
If kernels Kj and Ku do not have any support in common,
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Figure 2: The kernel regression framework: (a) a data set;

(b) two overlapping regions defined by simple block kernel

functions K1 and K2; (c) the normalized kernel weights κ1

and κ2; (d) the two sets of basis functions H1 and H2; (e) the

weighted combination of basis functions in each region; (f)

the kernel regression estimate, which is chosen to minimize

the mean squared error of all the data.

i.e., their regions do not overlap, then this dot-product is
0. Therefore, if each kernel only overlaps with a few other
kernels, then the matrix A will be very sparse. Furthermore,
each entry in the projected measurement vector b takes the
form 〈κjh

j
i • f〉. Since κj is equal to 0 outside of region j,

this entry can be computed using only the measurements
obtained in the region j. The sparsity in A and the locality
in the entries of b are the key properties that will allow us to
design an efficient and distributed algorithm for computing
the globally optimal basis function coefficients.

3. DISTRIBUTED REGRESSION
ALGORITHM

This section describes our network model, query dissemina-
tion procedure, and distributed regression algorithm.

3.1 Network model and query dissemination
Nodes in a sensor net can usually communicate with a small
set of other nodes. Often in these networks, messages are
transmitted along a (spanning) routing tree in the network
graph. We use Ei to denote the neighbors of Ni in this
routing tree. To simplify the presentation, we now focus on
networks with a lossless, fixed routing tree. We discuss un-
reliable communication in Section 3.5. If we are performing
spatial queries, we further assume that each node has access
to its location (just as it would any other parameter used in
the query). If the location of the nodes is not known a pri-
orior the nodes’ locations change over time, we assume that
the positions are obtained by a sensor net localization algo-
rithm (e.g., (PMBT01)). We use xi to denote the location
(or other required parameter value) of node Ni.

A regression query specifies a set of kernels K, and, for
each kernel Kj , a set of basis functions Hj whose parame-
ters we would like to obtain. For example, if we are using
simple kernels with rectangular support regions and poly-
nomial basis functions, then the user must specify, for each
kernel, the corners of the rectangles and the degree of the
polynomial basis that will be associated with this kernel.

We assume that the kernels are disseminated through the
network along with the query, using query dissemination
techniques, such as those used in TinyDB (Mad03) or di-
rected diffusion (IGE00). After this dissemination phase,
each node Ni will have access to a list Ki of kernels that have
non-zero value at location xi. Note that if a node’s location
changes, then this node must have access to the kernels that
have support at this new location. This information can
be obtained from nearby sensors using an extension of the

query dissemination procedure.
Once the query has been disseminated, if node Ni needs

to compute the value of our kernel regression function at its
location, Ni only needs access to the coefficients of the basis
functions associated with the kernels in Ki:

f̂(xi, t) =

l∑
j=1

κj(xi)
∑

h
j
u∈Hj

wj
uhj

u(xi, t),

=
∑

Kj∈Ki

κj(xi)
∑

h
j
u∈Hj

wj
uhj

u(xi, t),

as the term κj(xi) is equal to 0 for any kernel that is not
in Ki. We use Ci to denote the index of the basis function
coefficients wj

u such that Kj ∈ Ki, that is, the set of basis
function coefficients that node Ni must access in order to
compute our regression function at xi.

3.2 A Gaussian elimination step in kernel
distributed regression

Our distributed regression algorithm builds on a distributed
application of Gaussian elimination (GV89) to solve the
linear system Aw = b for kernel regression described in
Section 2.3. We begin by showing a simple example with
two nodes and three kernels (each with one basis function),
where K1 = {K1, K2} and K2 = {K2, K3}, C1 = {1, 2} and
C2 = {2, 3}. In this simple case, we have a simple (sparse)
linear system with 3 equations and 3 unknowns: a

(1)
11 a

(1)
12 0

a
(1)
21 a

(1)
22 + a

(2)
22 a

(2)
23

0 a
(2)
32 a

(2)
33

( w1

w2

w3

)
=

 b
(1)
1

b
(1)
2 + b

(2)
2

b
(2)
3

 ,

where

b
(u)
i =

∑m
k=1 [κi(xu, tk)hi(xu, tk)] f(xu, tk),

a
(u)
ij =

∑m
k=1 [κi(xu, tk)hi(xu, tk)] [κj(xu, tk)hj(xu, tk)] .

Note, for example, that a
(1)
13 = 0 as node N1 is not in the

support region of kernel K3, i.e., κ
(1)
3 . In Gaussian elim-

ination, we turn a full matrix into a triangular matrix by
subtracting equality constraints from each other appropri-
ately. For example, we can multiply the first constraint by

a
(1)
21 /a

(1)
11 and then subtract this constraint from the second

one, obtaining:
a
(1)
11 a

(1)
12 0

0 a
(1)
22 + a

(2)
22 −

a
(1)
21

a
(1)
11

a
(1)
12 a

(2)
23

0 a
(2)
32 a

(2)
33


(

w1

w2

w3

)

=


b
(1)
1

b
(1)
2 + b

(2)
2 −

a
(1)
21

a
(1)
11

b
(1)
1

b
(2)
3

 ,

The lower two rows now becomes a linear system with 2
equations and 2 unknowns that does not depend on w1. If we
solve this linear system, we obtain the values of the weights
w2 and w3. At this point, w2 can be substituted into the
first constraint, yielding the value of of w1.

This simple example illustrates our algorithm. Nodes
N1 and N2 will maintain a distributed representation of

the A matrix and of the b vector:
(
A(1),b(1)

)
in N1 and(

A(2),b(2)
)

in N2, such that: A = A(1) + A(2), and b =



b(1) + b(2), where,

A(1) =

 a
(1)
11 a

(1)
12 0

a
(1)
21 a

(1)
22 0

0 0 0

 , b(1) =

 b
(1)
1

b
(1)
2
0

 ,

and similarly for node N2. Now, if we want to repeat
the Gaussian elimination step described above, node N1 can
compute the terms(

a
(1)
22 − (a

(1)
21 /a

(1)
11 )a

(1)
12

)
and

(
b
(1)
2 − (a

(1)
21 /a

(1)
11 )b

(1)
1

)
locally from the A(1) matrix and b(1) vector. These terms

can then be sent to N2 as a message
(
A(12),b(12)

)
. Once

N2 receives this message, it can compute the value of the
weights w(C2) = (w2, w3)

ᵀ by solving a local linear system
with two equations and two unknowns:(

A(2) + A(12)
)
w(C2) = b(2) + b(12) .

Similarly, if node N2 sends N1 an analogous message with
the matrix A(21) and vector b(21), then node N1 can com-
pute the optimal value of the weights in C1 by solving the

local linear system
(
A(1) + A(21)

)
w(C1) = b(1) + b(21).

(Note that, whereas in standard Gaussian elimination we
would have a back-substitution step, these symmetric mes-
sages avoid back-substitution; this symmetry simplifies our
algorithm in the presence of communication failures.)

Now suppose we have a larger linear system with similar
structure. Each A(i) and b(i) will have zero entries for all
rows and columns whose indices are not in Ci. Let the
intersection between the two clusters be denoted by S =
C1 ∩C2, and the remainder variables be V1 = C1 \ S and
V2 = C2 \ S. Using this notation, we can write our linear
system as: A

(1)

(V1,V1) A
(1)

(V1,S) 0

A
(1)

(S,V1) A
(1)

(S,S) + A
(2)

(S,S) A
(2)

(S,V2)

0 A
(2)

(V2,S) A
(2)

(V2,V2)

w

=

 b
(1)

(V1)

b
(1)

(S) + b
(2)

(S)

b
(2)

(V2)

 ,

where the notation A(S,V) indicates the rows and columns
of A corresponding to the weights S and V, respectively.
Similarly, b(S) denotes the rows of b corresponding to the
weights in S. We can generalize the Gaussian elimination
step described above to eliminate the weights in V1 from
all rows in S simultaneously. The message from N1 to N2

is now composed of a matrix A(12) and a vector b(12), over
the shared variables S:

A(12) =
(

A
(1)

(S,S) −A
(1)

(S,V1)

(
A

(1)

(V1,V1)

)−1

A
(1)

(V1,S)

)
,

b(12) =
(

b
(1)

(S) −A
(1)

(S,V1)

(
A

(1)

(V1,V1)

)−1

b
(1)

(V1)

)
,

(6)

where A(12) is a square matrix and b(12) is a vector whose
sizes are a function of the number of weights in S. Once N2

receives this message, it computes the optimal value of the
variables in C2 by solving a simple, completely local, linear
system.

3.3 Regression messages
Our complete algorithm, shown in Figure 3, is a general-
ization of this two node example. Each node Ni maintains

DistributedRegression(i),
On event: Initialize():

T ← size of time window.
MsgInterval ← timer interval to send messages.
ε ← precision.
Ei ← neighbors of Ni in the routing tree.
Ci ← cluster of variables in node Ni.
A(i) ← 0, b(i) ← 0, w(i) ← 0.

For each j ∈ Ei:
Cj ← cluster of variables in node Nj .

A(ij) ← 0, b(ij) ← 0.

A(ji) ← 0, b(ji) ← 0.

On event: NewData(t,v):

//at time t the sensor measured value v.

For each element auv of A(i), where Ku ∈ Ki and Kv ∈ Ki:
auv ← auv + κu(xi)hu(xi, t)κv(xi)hv(xi, t).

For each element bu of b(i), where Ku ∈ Ki:
bu ← bu + κu(xi)hu(xi, t) v.

Start event DeleteData(t,v) at time t + T .

On event: DeleteData(t,v):

//delete measurement of v from time t.

For each element auv of A(i), where Ku ∈ Ki and Kv ∈ Ki:
auv ← auv − κu(xi)hu(xi, t)κv(xi)hv(xi, t).

For each element bu of b(i), where Ku ∈ Ki:
bu ← bu − κu(xi)hu(xi, t) v.

On event: ReceivedMessage(j,Ā(ji),b̄(ji)):

A(ji) ← Ā(ji), and b(ji) ← b̄(ji).

On event: SolveLocalLinearSystem():

w(i) ←
(
A(i) +

∑
j∈Ei

A(ji)
)−1 (

b(i) +
∑

j∈Ei
b(ji)

)
.

Every MsgInterval:

//procedure to send messages.

For each j ∈ Ei:

Ā← A(i) +
∑

k∈Ei\j A(ki), b̄← b(i) +
∑

k∈Ei\j b(ki).

S← Ci ∩Cj , V ← Ci \ S.

Ā(ij) ← Ā(S,S) − Ā(S,V)
(
Ā(V,V)

)−1 Ā(V,S).

b̄(ij) ← b̄(S) − Ā(S,V)
(
Ā(V,V)

)−1 b̄(V).

If
∥∥∥Ā(ij) −A(ij)

∥∥∥
∞

> ε or
∥∥∥b̄(ij) − b(ij)

∥∥∥
∞

> ε:

A(ij) ← Ā(ij), b(ij) ← b̄(ij).

Send message
(

i, A(ij), b(ij)
)

to node Nj .

Figure 3: Distributed regression algorithm.

a matrix A(i) and a vector b(i) that summarize the effect
of this node’s measurements in the dot-product matrix and
the projected measurement vector, respectively, where the
complete matrix and vector are given by:

A =
∑n

i=1 A(i) , b =
∑n

i=1 b(i).

When the node observes a new value, its local matrix and
vector are updated using the incremental rule described in
Section 2.1, and an event is scheduled to delete this value
when it falls outside the time window.

Messages between two neighboring nodes Ni and Nj are
composed of a square matrix and a vector with an entry
for each variable that these two nodes share, Ci ∩ Cj , as
in the simple case above. These messages are computed
with the generalized Gaussian elimination step. However,
we now have more than two nodes, and when a node com-
putes a message to a neighbor in the routing tree, it must
take into account messages it has received from other neigh-
boring nodes. The structure of these recursive messages
follows a nonserial dynamic programming decomposition of
the dot-product matrix (BB72). Intuitively, when a node Ni



sends messages to a neighbor, it simply adds the messages of
the other neighbors to its A(i) matrix and b(i) vector, and
computes a message as in the simple case in Equation (6).
(We omit further details due to lack of space, referring the
reader to (PL03; BB72; GV89)).

The complexity of this algorithm depends on the size of
the cluster Ci of each node. Let c be the size of the largest
cluster in the network. The messages between any two nodes
are, in the worst, of size c2 + c, i.e., a matrix and a vector
of size no larger than the number of weights in each node.
It is important to note that the size of the message does
not depend on the number of measurements performed by
the node. For a network with n nodes, using an appropriate
implementation, the sum of all messages required to propa-
gate the regression information throughout the network is,
in the worst case, 2n(c2 + c). That is, we must make two
passes through the network to ensure that the effect of the
measurements of each node are propagated to every other
node. If we would like to upload the basis function coeffi-
cients to a base station, we need, in the worst case, a total
of dk additional communication, where d is the depth of the
routing tree, as the coefficient of each basis function has to
be propagated to the base station.

In our algorithm, each node stores the last message it
sent to each neighbor. Using this information, the node can
decide not to send a message again, if it has not changed
significantly since the last message was sent. If the links
have bit-rate constraints, then it may be possible to apply
standard theoretical results on the effect of bit-precision on
Gaussian elimination (GV89) to evaluate the error intro-
duced by a lower precision representation of the messages.

At any point in running of our algorithm, the node can
decide to solve its local linear system to obtain a preliminary
estimate of the value of its weights.

3.4 Distributed construction of junction trees
The message passing algorithm presented above is guaran-
teed to compute the optimal weights for each basis function,
but only when the tree of clusters has the running intersec-
tion property (CDLS99):

Definition 1. A cluster tree satisfies the running inter-
section property if for each pair of clusters Ci and Ck, every
cluster Cj on the (unique) path between Ci and Ck contains
Ci ∩Ck. If this property is satisfied, then we call the tree a
junction tree.

In the distributed regression algorithm presented above, two
neighbors Ni and Nk in the routing tree communicate in-
formation only about the basis functions that they have in
common, i.e., the ones in Ci∩Ck. However, Ni and Nk must
communicate this information even if they are not neigh-
bors in the routing tree. The running intersection prop-
erty guarantees that all nodes on the path between Ni and
Nk are representing and communicating information about
Ci ∩Ck; this ensures that Ni and Nk can pool their infor-
mation about the basis functions they share, even if they
are not neighbors in the routing tree. When the running
intersection property holds, then the correctness of the dis-
tributed regression algorithm follows by induction on the
structure of the junction tree (PL03).

To ensure the correctness of the distributed regression al-
gorithm, it is therefore necessary to enforce the running in-
tersection property (if it does not already hold). This can
be accomplished by a simple message passing algorithm in

DistributedRunningIntersection(Ni),
On event: Initialize():
Ki ← kernels that have non-zero support at xi.
Ei ← neighbors of Ni in the routing tree.
Ci ←

⋃
Kj∈Ki

⋃
h

j
u∈Hj

{
wj

u

}
.

For each j ∈ Ei:
Mji ← ∅, MsgSentj ← false.

If |Ei| = 1:
Start event SendMessages().

On event: ReceivedMessage(j,Mji):

Mji ←Mji.
Start event SendMessages().

If ∀k ∈ Ei : Mki 6= ∅:
Start event DoneRunningIntersection().

On event: SendMessages():

For each j ∈ Ei:

If MsgSentj = false and ∀k ∈ Ei \ j : Mki 6= ∅:
Send message

(
i, Mij = Ci ∪

⋃
k∈Ei\j Mki

)
to

node Nj .
MsgSentj = true.

On event: DoneRunningIntersection():

Ci ← Ci

For each j ∈ Ei:

For each k ∈ Ei \ j:
Ci ← Ci ∪ (Mji ∩Mki).

//Now local cluster of Ni satisfies the running intersection property.

Figure 4: Distributed algorithm to enforce the running in-

tersection property.

which each pair of nodes in the routing tree communicate
information regarding the initial clusters, and then nodes
add basis function coefficients to their clusters in such a
way that the running intersection property holds. We can
regard this algorithm as a deployment-time computation (it
must be done only once for a fixed set of kernels and basis
functions) that determines the minimal amount of informa-
tion nodes must communicate in order to reach the globally
optimal solution.

The running intersection property can be enforced by a
message passing algorithm, where each node Ni is initial-
ized with Ci, the basis functions coefficients for the kernels
that have support at xi. Each node Ni then sends to its
neighbors Nj a variables message Mij that is the union of
all variables that appear in the initial clusters C in every
node in the subtree rooted at Ni (besides Nj). Thus, node
Ni can guarantee that the running intersection property is
satisfied if, when any variable appears in the subtree of one
neighbor Nj and in the subtree of another neighbor Nk,
then this variable appears in the final cluster Ci of node Ni.
Our algorithm recursively computes the variables messages
starting from the leaves of the tree. When node Ni has re-
ceived messages from all neighbors, it is ready to compute
its cluster Ci. Figure 4 presents the complete distributed
algorithm for finding clusters that satisfy the running in-
tersection property. This algorithm is specified in terms of
tasks, messages and responses to events, allowing us to im-
plement it as an asynchronous distributed algorithm.

It is important to note that the complexity of our algo-
rithm depends on the size of the final clusters Ci. Different
routing trees will yield different clusters. The algorithm we
present in (PG03) attempts to optimize the routing tree in
order to minimize the communication requirements of a wide
range of optimization algorithms, including the one in this
paper.



3.5 Extension to unreliable networks
For simplicity of exposition we have focused on networks
with reliable communication, but this is often an unrealis-
tic assumption. Wireless transmission is lossy and network
nodes can fail. Fortunately, the distributed regression algo-
rithm can be made robust to such failures. In this section
we sketch out the necessary extensions; for further details
see (PG03).

We can view the distributed regression algorithm as con-
sisting of three layers: the routing layer, which builds a
spanning tree such that adjacent nodes have high quality
communication links; the junction tree layer, which sends
variable messages between nodes adjacent in the routing tree
to enforce the running intersection property; and the regres-
sion layer, which sends messages about the basis function
coefficients to optimize the regression estimate.

Routing trees are fundamental to communication in unre-
liable ad hoc networks, and there are several algorithms to
choose from (HSW+00). We require a routing layer which
can notify the junction tree and regression layers when the
topology of the routing tree changes. When this happens,
the junction tree layer can recompute and retransmit the
variables messages to restore the running intersection prop-
erty on the new routing tree. After this is accomplished,
the regression layer can retransmit its messages to reopti-
mize the model. The junction tree and regression layers can
be made robust to lossy communication by using acknowl-
edgements for messages. In this setting, we can be assured
that if the routing layer can find a good routing tree, then
the algorithm will eventually converge to the correct result.

An alternative approach would be to fix a junction tree,
viewed as an overlayed communication pattern on the net-
work, and use multihop communication on a routing tree to
achieve this communication pattern, removing the need for
regenerating the junction tree when the underlying routing
tree changes. Unfortunately, such point-to-point multihop
communication is often very hard to implement on a real
(unreliable) sensor network. By aligning our junction tree
with the underlying routing tree, we can simply rely on lo-
cal communication to optimize the coefficients of our basis
functions.

Interestingly, our algorithm is very robust to packet losses
and network failures. For example, if the network is seg-
mented into two parts, each part will optimize its coeffi-
cients from the values of the measurements in that part of
the network. When the connection returns, these estimates
are quickly fused into a globally optimal solution.

4. EVALUATION AND APPLICATIONS
In this section, we look at the performance of the distributed
regression algorithm presented above, showing that it pro-
vides a compact way, low-error way to represent sensor fields.
We also look at several applications of our approach, show-
ing that it can be used to answer a wide range of queries.

4.1 Evaluation of basic algorithm
To evaluate our distributed regression algorithm, we imple-
mented it in TOSSIM (LLW+03), a whole program simula-
tor for TinyOS. Aside from the issues associated with net-
work loss discussed above, we expect that this implementa-
tion will run directly on motes. This simulator allows us to
model a variety of network topologies and kernel functions,
and to measure the communication costs of our algorithms
in a realistic setting. In the experiments below, we used this

Figure 5: A map of the Intel - Berkeley lab deployment,

with the placement of 47 sensors show in dark circles. The 5

rectangles indicate the support regions of the kernels used in

the model.
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Figure 6: Quadratic regression (thick black curves) on data

obtained from several sensors over a two day period. Fits are

shown for several different sliding windows, with a sliding

window size of 200 minutes.

simulator to collect measurements on the communication
requirements of our algorithm.

In our initial evaluation, we ran our algorithm on a dataset
of 2-minute samples of light, temperature, and humidity col-
lected from our lab deployment of 48 sensors. Figure 5 shows
a map of this deployment, with the placement of sensors in-
dicated by small dark circles. The data measured in the lab
is quite complex: the sun affects different areas of the lab
at different times of the day, and the measurements have
high spatial correlation, but include local variations due to
the proximity to windows and air conditioning vents. We be-
lieve that the temporal and spatial properties of this dataset
will also be present in many other sensor nets deployments.

By hand, we mapped 5 kernels on to this space, represent-
ing the 5 black regions shown in Figure 5. In this mapping,
every sensor is in at least one kernel, while some sensors lie
in two or three kernels. Intuitively, this represents the cor-
relation across space – readings from the same area of space
tend to be highly correlated, while readings from adjacent
areas mix along their common edges. To give a sense of how
regression performs, Figure 6 illustrates regression with a
quadratic model over the data from several sensors over a
two day period.

One application of regression is generating 3-dimensional
and contour plots of a space, giving a picture of how tem-
perature varies and changes over space and time. Figure 7
illustrates the results of our regression algorithm at differ-
ent points in time, illustrating the large variations of the
temperature in the lab. Figure 8 shows a contour plot of
the temperature across our lab at 10 AM on October 28th –
notice that the temperature varies from about 20 ◦C in the
lower left corner to 29 ◦C in the upper right.

We also measured the error of the model constructed by
running our distributed regression algorithm, varying two
parameters: the number of basis functions, k and the size of
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Figure 7: Kernel regression model obtained from temperature data collected at the Intel Research, Berkeley lab, using 5

kernel regions, with 3 basis function per region, at different times of the day (the circles represent the actual temperature at

the sensor locations): (a) at night, locations near windows are colder; (b) in the morning, the East side of the lab faces the sun,

significantly increasing the temperature; and (c) in the early evening, the temperature is uniformly warm.
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Figure 8: A contour plot generated by running kernel-based

quadratic regression on the data collected at 10 AM on Oc-

tober 28th in the Intel Research, Berkeley lab. The labels

represent the actual temperatures measured at the sensor

locations. Note that this rich contour was obtained from a

regression model with only 15 parameters.

the sliding window, T . We measured the root-mean-squared

(RMS) between the model, f̂(x, y, t), and the value at every
point in the data set, D(x, y, t).

To measure the ability of regression to predict the value at
locations in the sensor field where there are no readings, we
also experimented with subsampling of the data set D to a
dataset with 1/8th of the of the original data, and measured
the RMS of regression applied to this dataset versus D.

The results of these error measurements for different basis
sets with varying time windows and subsampling are shown
in Figure 9. We experimented with three different basis
function sets per kernel: either (1) linear-space, quadratic-

time (e.g., f̂(x, y, t) = c1(x)+ c2(y)+ c3(t
2)+ c4(t)+ c5), (2)

linear-space, linear-time, or (3) linear-space, constant-time.
We also measured the RMS of simply computing the average
value of the readings in each kernel over the time window
T . Note that regression performs quite well compared to
averaging, and that, as expected, increasing the number of
basis functions increases the quality of the fit. Surprisingly,
regression using the reduced data set (with 1/8 the points)
performs as well as regression with the entire data set; this
is likely due to low variations in temperature within an 8
reading (16 minute) window.

Since average error over an entire data set does not cap-
ture the worst case performance of these approaches, we also
plotted the error of these schemes at different times of day,
using a time window size of two hours. The results of this
experiment are shown in Figure 10. Notice that the linear
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Figure 9: The RMS error of regression with varying time

windows and numbers of basis functions per kernel for the

data set collected from the Intel - Berkeley Lab, compared

against simple averaging in each kernel.
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Figure 10: The error of different regression models for the

lab data set at different times of day, using a time window

size of 2 hours.

and quadratic fit perform much better during times when
the temperature changes dramatically (e.g., when the sun
rises and sets – see Figure 6 for a plot of the temperature
reading from several sensors), but that all schemes perform
well at times of low variance (e.g., at night). This suggests
that an adaptive scheme, where different numbers of basis
functions are used depending on signal variability may be
beneficial; such an exploration is left for future work.

We also measured the communication costs for our lab
deployment (using 3 coefficients per kernel) and found that,
in TOSSIM, the total number of bytes sent by all sensors
was 5808 bytes versus 875 bytes to extract a single reading
from every sensor. After this 5800 bytes of communication,



each node can predict the behavior of the sensor field in its
local area, which, as we describe in Section 5 can be very
important. Furthermore, although the total communication
is relatively high for our small lab network, the total bytes
sent by the root of the network was just 123 bytes for our
algorithm versus 329 bytes when extracting all readings. In
the next section, we study the scaling of our algorithm as
the network size increases, noting that the cost of distributed
regression grows quite slowly with network size, unlike the
cost of extracting all readings.

4.2 Convergence rate and robustness to losses
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Figure 11: Convergence curves of the initialization phase of

the distributed implementation of our algorithm for a model

with 5 kernels and 3 basis functions per kernel on temperature

measurements made at noon.
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Figure 12: Convergence curves of the steady-state phase of

the distributed implementation of our algorithm for a model

with 5 kernels and 3 basis functions per kernel on temper-

ature measurements made at 6pm, where the initialization

was done at noon. The outer graph is in the same scale as

Figure 11, while the inner graph shows a more detailed scale.

The rate of convergence of our algorithm and its robust-
ness lost messages is best understood by analyzing the asyn-
chronous version of the algorithm shown in Figure 3, which
we implemented in TinyOS and evaluated it with TOSSIM.
When the nodes first start running, the message matrices
are initialized to zero, and the approximation error should
be high. As messages are received, the node can update the
values of these matrices, and the estimates improve as the
information is propagated throughout the network. This ef-
fect is seen clearly in Figure 11 that shows the RMS error in
the model for the temperatures at noon, using 5 kernels with
linear basis over space and no basis functions over time. The
coefficients of the basis functions for a region are extracted
from one representative in that region. In each epoch, every
node sends a message to each of its neighbors in the routing
tree. The graph shows that after only 7 epochs the results

reach the optimal value, having the same RMS error as off-
line regression. This result is quite significant, given that
our routing tree has nodes that are 20 hops away from each
other. We can also see that the method is very robust to
lost messages. Figure 11 also shows that even when packets
are lost with 50% (independent) probability, the algorithm
converges very fast to the optimal solution.

These results focus in the initialization phase. However,
at steady-state, we already have a converged estimate taken
earlier in time, and we only need to improve this estimate to
take into account the new values observed. Figure 12 shows
similar convergence results for a setting where the nodes
start from the converged values for the temperature mea-
surements at noon and substitute the measurements with
those taken at 6pm. We first note that, as expected, the
RMS error starts from a significantly lower value than in the
initialization phase. Furthermore, the convergence is faster
for both the reliable and the lossy communication cases.
These results suggest that, at steady-state, we can achieve
the same error levels at lower communication rate than sug-
gested by the worst-case complexity of the algorithm.

4.3 Scaling the network
To study the scaling of our algorithm, we varied the number
of motes in the network, keeping the number of motes per
kernel constant (at 20 – the approximate value in our lab
deployment) and using 4 coefficients per kernel (e.g., linear-
space, linear-time). As in our lab deployment, we assume
each sensor is in no more than two kernels. We compared the
cost of running our distributed regression algorithm and ex-
tracting all of the basis function coefficients from every ker-
nel to the cost of extracting a complete set of readings from
all nodes. We studied the maximum number of messages
sent by any node in the network. In both the distributed
regression and data extraction cases, the node where the
data is extracted (i.e., the root) sends the most messages.
We chose to study maximum communication because this
dictates the maximum sample rate of the network as well as
the time until failure of the root. The number of messages
sent at the root is also independent of network topology,
allowing us to avoid having to make (likely unrealistic) as-
sumptions about the topology and node distribution in a
large, synthetic network.

Figure 13 shows the results of this scaling experiment,
plotting the number of bytes sent at the root node for net-
work sizes up to 1000 nodes. The three lines represent the
cost of extracting all data at every second to the cost of
extracting all data every 5 seconds and the cost of run-
ning our distributed regression algorithm every 5 seconds
(although the regression is still run on data collected ev-
ery second). Figure 13 also shows the maximum number
of bytes that a current generation Mica2 mote can send in
a second, based on the typical performance of its ChipCon
CC1000 radio running TinyOS – about 20, 36 byte mes-
sages per second. Notice that distributed regression places
a substantially lower communications burden on the root,
allowing the performance to scale to much larger networks
or higher update rates before the root link is saturated.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we discussed the application of kernel-based
regression for modeling sensor fields. We showed that, us-
ing our a distributed regression algorithm based on junction
trees, it is possible to compute the coefficients of kernel-
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based regression models efficiently within a sensor network.
Our experimental results demonstrate that the approach is
capable of accurately summarizing and predicting values of
sensor fields using small amounts of communication, and
that this algorithm scales well to large sensor networks of
hundreds of sensors. We also show, on a simulated dis-
tributed implementation, that our algorithm converges to
the globally optimal solution at a fast rate, and that our
approach is very robust to packet losses.

Besides the enabling a range of basic aggregation and sum-
marization techniques, such as building contour plots, there
are a number of sophisticated in-network applications of our
algorithm that we believe are important future directions of
this work. We conclude by summarizing a few of these that
have we believe have significant practical implications for
sensor networks:

Adaptive Sampling. Rather than delivering samples
at a continuous rate, as most sensor-network query systems
propose (Mad03; YG03), our approach allows nodes to lo-
cally suppress messages that are very near to the value pre-
dicted by the regression model. Since, after running the
junction tree algorithm each node has a local image of the
basis functions to which it contributes (i.e., where its kernel
weight is non-zero), this can be done at no additional com-
munications cost. Specifically, a node can measure the RMS
and choose to incrementally update its basis coefficients only
when the RMS varies by some query-specific threshold.

Outlier and faulty sensor detection. Our distributed
regression algorithm also allows sensors to determine if a
particular reading is an outlier using only their local ba-
sis functions. The mechanism for doing this is similar to
that used in adapting sample rates: when a new reading
substantially affects the coefficients of the basis functions,
or lies far from the value that the regression predicts, it is
an outlier. In addition to adapting the model, however, it
may be useful to tag such readings as outliers and trans-
mit them (independently of the model) to the user. These
outliers typically indicate that the sensor is misbehaving or
that something interesting has happened (e.g., the sensor
became hot because a fire started nearby) – both cases of
which the user should be aware.

Autonomy, redundancy, and compression. After
distributed regression, each node has the coefficients of the
kernels to which it belongs; this knowledge is not (neces-
sarily) centralized. This allows the user to connect to any
node and quickly have questions answered about the sen-
sor field around that point. For a small cost, the regression
coefficients of the entire network can be collected at that
point, allowing any query to answered from any point in

the network. Furthermore, because the coefficients of each
kernel are distributed to all of the nodes in the kernel, the
failure of one or more nodes does not affect the ability of
the network to answer these queries. Finally, regression co-
efficients provide a compact summary of readings at a given
point in time; by storing historical regression coefficients, the
network can answer queries about the distant past. These
properties compare well with other in-network storage ap-
proaches(RKY+02), which store all data (limiting the extent
of history that can be realistically kept) and do not provide
redundancy without the addition of explicit and difficult to
implement replication.

Adaptive data modeling. We have assumed that the
location of kernels and the set of basis functions are given by
the user. Figure 10 suggests that, when the temperature is
changing rapidly, we may need more basis functions, while
at night, a simple model is sufficient to represent the data.
Once the local coefficients are obtained, the nodes in a region
may be able use this model locally to estimate the advantage
of adding or removing basis functions or kernels. Such pro-
cedure could allow us to adapt the model (and the required
communication) as environmental conditions change.
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