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A Simple Parallel Cartesian Tree Algorithm and its Application
to Parallel Suffix Tree Construction

JULIAN SHUN and GUY E. BLELLOCH, Carnegie Mellon University

We present a simple linear work and space, and polylogarithmic time parallel algorithm for generating mul-
tiway Cartesian trees. We show that bottom-up traversals of the multiway Cartesian tree on the interleaved
suffix array and longest common prefix array of a string can be used to answer certain string queries. By
adding downward pointers in the tree (e.g. using a hash table), we can also generate suffix trees from suffix
arrays on arbitrary alphabets in the same bounds. In conjunction with parallel suffix array algorithms, such
as the skew algorithm, this gives a rather simple linear work parallel, O(nε) time (0 < ε < 1), algorithm
for generating suffix trees over an integer alphabet � ⊆ {1, . . . , n}, where n is the length of the input string.
It also gives a linear work parallel algorithm requiring O(log2 n) time with high probability for constant-
sized alphabets. More generally, given a sorted sequence of strings and the longest common prefix lengths
between adjacent elements, the algorithm will generate a patricia tree (compacted trie) over the strings.
Of independent interest, we describe a work-efficient parallel algorithm for solving the all nearest smaller
values problem using Cartesian trees, which is much simpler than the work-efficient parallel algorithm
described in previous work.

We also present experimental results comparing the performance of the algorithm to existing sequen-
tial implementations and a second parallel algorithm that we implement. We present comparisons for the
Cartesian tree algorithm on its own and for constructing a suffix tree. The results show that on a variety
of strings our algorithm is competitive with the sequential version on a single processor and achieves
good speedup on multiple processors. We present experiments for three applications that require only the
Cartesian tree, and also for searching using the suffix tree.
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1. INTRODUCTION

A Cartesian tree on a sequence of elements taken from a total order is a binary tree
that satisfies two properties: (1) heap order on values, i.e. a node has an equal or lesser
value than any of its descendants, and (2) an in-order traversal of the tree defines the
sequence order.
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8:2 J. Shun and G. E. Blelloch

Given the suffix array (an array of pointers to the lexicographically sorted suffixes)
of a string and lengths of the longest common prefixes (LCP) between adjacent en-
tries, a Cartesian tree on the interleaved suffix array and LCPs can be used to answer
queries related to the string. By adding downward pointers (e.g. using a hash table),
this gives a suffix tree for binary alphabets. The approach can be generalized to arbi-
trary alphabets by using multiway Cartesian trees (Cartesian trees where connected
components of equal value are contracted into single nodes) without much difficulty.

For a string s of length n over a character set � ⊆ {1, . . . , n}1 the suffix tree data
structure stores all the suffixes of s in a patricia tree (a trie in which maximal branch-
free paths are contracted into a single edge). In addition to supporting searches in s for
any string t ∈ �∗ in O(|t|) expected time,2 suffix trees efficiently support many other
operations on strings, such as finding the longest common substring, maximal repeats,
longest repeated substrings, and the longest palindrome, among many others [Gusfield
1997]. As such, it is one of the most important data structures for string processing.
For example, it is used in several bioinformatic applications, such as REPuter [Kurtz
and Schleiermacher 1999], MUMmer [Delcher et al. 2002], OASIS [Meek et al. 2003]
and Trellis+ [Phoophakdee and Zaki 2007, 2008]. Both suffix trees and a linear time
algorithm for constructing them were introduced by Weiner [1973] (although he
used the term position tree). Since then various similar constructions have been de-
scribed [McCreight 1976; Ukkonen 1995] and there have been many implementations
of these algorithms. Although originally designed for fixed-sized alphabets with deter-
ministic linear time, Weiner’s algorithm can work on an alphabet {1, . . . , n}, henceforth
[ n], in linear expected time simply by using hashing to access the children of a node.

The algorithms of Weiner and its derivatives are all incremental and inherently se-
quential. The first parallel algorithm for suffix trees was given by Apostolico et al.
[1988] and was based on a quite different doubling approach. For a parameter 0 <

ε ≤ 1 the algorithm runs in O(1
ε

log n) time, O(n
ε

log n) work, and O(n1+ε) space on
the CRCW PRAM for arbitrary alphabets. Although reasonably simple, this algorithm
is likely not practical since it is not work efficient and uses super-linear memory (by
a polynomial factor). The parallel construction of suffix trees was later improved to
linear work and polynomial space by Sahinalp and Vishkin [1994], with an algorithm
taking O(log2 n) time on the CRCW PRAM (they note that linear space can be obtained
by using hashing and randomization), and linear work and linear space by Hariharan
[1994], with an algorithm taking O(log4 n) time on the CREW PRAM. Farach and
Muthukrishnan [1996] improved the time to O(log n) with high probability3 on the
CRCW PRAM. These later results are for constant-sized alphabets, are “considerably
non-trivial,” and do not seem to be amenable to efficient implementations.

As mentioned earlier, one way to construct a suffix tree is to first generate a suffix
array and then convert it to a suffix tree using a Cartesian tree algorithm. Using suffix
arrays is attractive since in recent years there have been considerable theoretical and
practical advances in the generation of suffix arrays (see e.g. Puglisi et al. [2007]).
The interest is partly due to their use in the popular Burrows-Wheeler compression
algorithm [Burrows and Wheeler 1994], and also as a more space-efficient alternative
to suffix trees. As such, there have been dozens of papers on efficient implementations
of suffix arrays. Among these, Kärkkäinen, Sanders and Burkhardt have developed a

1More general alphabets can be used by first sorting the characters and then labeling them from 1 to n.
2Worst case time for constant sized alphabets.
3We use “with high probability” to mean with probability at least 1 − 1/nc for any constant c > 0.
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A Parallel Cartesian Tree Algorithm and its Application to Parallel Suffix Tree Construction 8:3

quite simple and efficient parallel algorithm for suffix arrays [Kärkkäinen et al. 2006;
Kulla and Sanders 2007] that can also generate LCPs.

The case of generating Cartesian trees in parallel is less satisfactory. Berkman et al.
[1993] describe a parallel algorithm for the all nearest smaller values (ANSV) problem,
which can be used to generate a binary Cartesian tree. However, it cannot directly be
used to generate a multiway Cartesian tree, and the algorithm is very complicated.
Iliopoulos and Rytter [2004] present two much simpler algorithms for generating suf-
fix trees from suffix arrays, one based on merging and one based on a variant of the
ANSV problem that allows for multiway Cartesian trees. However they both require
O(n log n) work.

In this article we describe a linear work, linear space, and polylogarithmic time
algorithm for generating multiway Cartesian trees. The algorithm is based on divide-
and-conquer and we describe two versions that differ in whether the merging step is
done sequentially or in parallel. The first, based on a sequential merge, is very simple,
and for a tree of height d, it runs in O(min{d log n, n}) time on the EREW PRAM. The
second version is only slightly more complicated and runs in O(log2 n) time on the
EREW PRAM. They both use linear work and space.4

Given any linear work and space algorithm for generating a suffix array and corre-
sponding LCPs using O(S(n)) time, our results lead to a linear work and space algo-
rithm for generating suffix trees in O(S(n) + log2 n) time. For example, using the skew
algorithm [Kärkkäinen et al. 2006] on the CRCW PRAM, we have O(log2 n) time with
high probability for constant-sized alphabets and O(nε) time (0 < ε < 1) for the alpha-
bet [ n]. We note that a polylogarithmic time, linear work, and linear space algorithm
for the alphabet [ n] would imply stable radix sort on [ n] in the same bounds, which is
a long-standing open problem [Rajasekaran and Reif 1989].

For comparison, we also present a technique for using the ANSV problem to gen-
erate multiway Cartesian trees on arbitrary alphabets in linear work and space. The
algorithm runs in O(I(n) + log log n) time on the CRCW PRAM, where I(n) is the best
time bound for a linear-work stable sorting of integers from [ n]. Of independent inter-
est, we show that the Cartesian tree can be used to solve the ANSV problem in linear
work and O(log2 n) time, and the algorithm is much simpler than that of previous work
[Berkman et al. 1993].

We have implemented the first version of our Cartesian tree algorithm and present
various experimental results analyzing our algorithm on a shared memory multi-core
parallel machine on a variety of inputs. First, we compare our Cartesian tree algorithm
to a simple stack-based sequential implementation. On a single thread, our algorithm
is about 3x slower, but we achieve about 35x speedup (about 12x with respect to the
sequential implementation) on 40 cores with hyper-threading (2 threads per core). We
show three queries on strings that can be answered with the Cartesian tree on the
suffix array and LCP array of the string. First, we compute the number of leaves in
the subtree at each internal node in order to support various types of queries relating
to counts of repeated substrings in the input. As an example, we use this information
to compute the longest substring that occurs at least k times in the input. Finally, we
compute the minimum position of a suffix in the subtree of internal nodes, which is
useful for computing the Ziv-Lempel decomposition of a string. These computations
only require some basic parallel operations and are fast compared to the suffix array
and LCP construction times.

4Very recently, Poon and Yuan [2013] have improved the time bound by describing a modification to our
algorithm that runs in O(n) work and O(log n) time.
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8:4 J. Shun and G. E. Blelloch

We also analyze the Cartesian tree algorithm when used as part of code to generate a
suffix tree from the original string. We compare the code to the ANSV-based algorithm
described in the previous paragraph and to the fastest existing sequential implemen-
tation of suffix trees. Our algorithm is always faster than the ANSV-based algorithm.
The algorithm is competitive with the sequential code on a single core, and achieves
good speedup on 40 cores. We present timings for searching multiple strings in the
suffix trees that we construct. On one core, our search times are always faster than
searching with the sequential suffix tree and are an order of magnitude faster on 40
cores using hyper-threading.

2. PRELIMINARIES

Given a string s of length n over an ordered alphabet �, the suffix array, SA, represents
the n suffixes of s in lexicographically sorted order. To be precise, SA[ i] = j if and only
if the suffix starting at the j’th position in s appears in the i’th position in the suffix-
sorted order. A patricia tree [Morrison 1968] (or compacted trie) of a set of strings S is a
modified trie in which, (1) edges can be labeled with a sequence of characters instead of
a single character, (2) no node has a single child, and (3) every string in S corresponds
to concatenation of labels for a path from the root to a leaf. Given a string s of length
n, the suffix tree for s stores the n suffixes of s in a patricia tree.

In this article, we assume an integer alphabet � ⊆ [ n], where n, is the total number
of characters. We require that the patricia tree and suffix tree support the following
queries on a node in constant expected time: finding the child edge based on the first
character of the edge, finding the first child, finding the next and previous siblings in
the character order, and finding the parent. If the alphabet size is constant, then all of
these operations can easily be implemented in constant worst-case time.

A Cartesian tree [Vuillemin 1980] on a sequence of elements taken from a total order
is a binary tree that satisfies two properties: (1) heap order on values, i.e. a node has
an equal or lesser value than any of its descendants, and (2) an in-order traversal
of the tree defines the sequence order. If the elements in the sequence are distinct,
then the tree is unique, otherwise it might not be. When elements are not distinct we
refer to a connected component of equal value nodes in a Cartesian tree as a cluster.
A multiway Cartesian tree is derived from a Cartesian tree by contracting each cluster
into a single node while maintaining the order of the children. A multiway Cartesian
tree of a sequence is always unique.

Let LCP(si, sj) be the length of the longest common prefix of si and sj. Given a sorted
sequence of strings S = [ s1, . . . , sn], if the string lengths are interleaved with the
length of their longest common prefixes ([|s1|, LCP(s1, s2), |s2|, . . . , LCP(sn−1, sn), |sn|])
the corresponding multiway Cartesian tree has the structure of the patricia tree for
S. The patricia tree can be generated by adding strings to the edges, which is easy
to do, e.g. for a node with value v = LCP(si, si+1) and parent with value v′, the edge
corresponds to the substring si[ v′ + 1, . . . , v]. As a special case, interleaving a suffix
array with its LCPs and generating the multiway Cartesian tree gives the suffix tree
structure. Adding the nodes to a hash table to allow for efficient downward traversals
completes the suffix tree construction.

In this article, we use the exclusive-read exclusive-write (EREW) parallel random
access machine (PRAM) model and the concurrent-read concurrent-write (CRCW)
PRAM. For the CRCW PRAM, we use the model where concurrent writes to the same
location results in an arbitrary processor succeeding. We analyze the algorithm in the
work-time framework where we assume unlimited processors and count the number of
time steps (T) and total number of operations (W). Using Brent’s Work-Time schedul-
ing principle, this implies an O(W

P + T) time bound using P processors [Jaja 1992].

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 8, Publication date: September 2014.
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A Parallel Cartesian Tree Algorithm and its Application to Parallel Suffix Tree Construction 8:5

1 struct node { node∗ parent; int value; };
2
3 void merge(node∗ left, node∗ right) {
4 node∗ head;
5 if ( left−>value > right−>value) {
6 head = left; left = left−>parent;}
7 else { head = right; right= right−>parent; }
8
9 while(1) {

10 if ( left == NULL) { head−>parent = right; break; }
11 if (right == NULL) { head−>parent = left; break; }
12 if ( left−>value > right−>value) {
13 head−>parent = left; left = left−>parent; }
14 else { head−>parent = right; right = right−>parent; }
15 head = head−>parent; }}
16
17 void cartesianTree(node∗ Nodes, int n) {
18 if (n < 2) return;
19 cilk spawn cartesianTree(Nodes, n/2);
20 cartesianTree(Nodes+n/2, n−n/2);
21 cilk sync;
22 merge(Nodes+n/2−1, Nodes+n/2);}

Fig. 1. C code for Algorithm 1a. The cilk spawn and cilk sync declarations are part of the CilkPlus parallel
extensions [Leiserson 2010] and allow the two recursive calls to run in parallel.

3. PARALLEL CARTESIAN TREES

We describe a work-efficient parallel divide-and-conquer algorithm for constructing a
Cartesian tree. The algorithm works recursively by splitting the input array A into
two subarrays, generating the Cartesian tree for each subarray, and then merging the
results into a Cartesian tree for A. We define the right-spine (left-spine) of a tree to
consist of all nodes on the path from the root to the rightmost (leftmost) node of the
tree. The merge works by merging the right-spine of the left tree and the left-spine of
the right tree based on the value stored at each node. Our algorithm is similar to the
O(n log n) work divide-and-conquer suffix array to suffix tree algorithm of Iliopoulos
and Rytter [2004], but the most important difference is that our algorithm only looks
at the nodes on the spines at or deeper than the deeper of the two roots, and our
fully parallel version uses trees instead of arrays to represent the spines. This leads
to our O(n) work bound. In addition, Iliopoulos and Rytter’s algorithm works directly
on the suffix array rather than solving the Cartesian tree problem so the specifics are
different.

We describe a partially parallel version of this algorithm (Algorithm 1a) and a
fully parallel version (Algorithm 1b). Algorithm 1a is very simple, and takes up to
O(min(d log n, n)) time, where d is the depth of the resulting tree, although for most
inputs it takes significantly less time (e.g. for the sequence [1, 2, . . . , n] it takes O(log n)
time even though the resulting tree has depth n). The algorithm only needs to maintain
parent pointers for the nodes in the Cartesian tree. The complete C code is provided in
Figure 1 and line numbers from it will be referenced throughout our description.

The algorithm takes as input an array of n elements (Nodes) and recursively splits
the array into two halves (lines 19–21), creates a Cartesian tree for each half, and
then merges them into a single Cartesian tree (line 22). For the merge (lines 3–15),
we combine the right spine of the left subtree with the left spine of the right sub-
tree (see Figure 2). The right (left) spine of the left (right) subtree can be accessed by

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 8, Publication date: September 2014.
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8:6 J. Shun and G. E. Blelloch

Fig. 2. Merging two spines. Thick lines represent the spines of the resulting tree; dashed lines represent
edges that existed before the merge but not after the merge; dotted edges represent an arbitrary number of
nodes; all non-dashed lines represent edges in the resulting tree.

following parent pointers from the rightmost (leftmost) node of the left (right) subtree.
The leftmost and rightmost nodes of a tree are simply the first and last elements in
the input array of nodes. We note that once the merge reaches the deeper of the two
roots, it stops and needs not process the remaining nodes on the other spine. The code
in Figure 1 does not keep child pointers since we do not need them for our experiments,
but it is easy to add a left and right child pointer and maintain them.

THEOREM 3.1. Algorithm 1a produces a Cartesian tree on its input array.

PROOF. We show that at every step in our algorithm, both the heap and the in-order
properties of the Cartesian trees are maintained. At the base case, a Cartesian tree of
one node trivially satisfies the two properties. During a merge, the heap property is
maintained because a node’s parent pointer only changes to point to a node with equal
or lesser value. Consider modifications to the left tree. Only the right children of the
right spine can be changed. Any new right children of a node come from the right tree,
and hence correspond to elements later in the original sequence. An in-order traversal
will correctly traverse these new children of a node after the node itself. A symmetric
argument holds for nodes on the left spine.

Furthermore the order within each of the two trees is maintained since any node
that is a descendant on the right (left) in the trees before merging remains a descen-
dant on the right (left) after the merge.

THEOREM 3.2. Algorithm 1a for constructing a Cartesian tree requires O(n) work,
O(min(d log n, n)) time, and O(n) space on the EREW PRAM.

PROOF. We use the following definitions to help with proving the complexity bounds
of our algorithm. A node in a tree is left-protected if it does not appear on the left spine
of its tree, and a node is right-protected if it does not appear on the right spine of its
tree. A node is protected if it is both left-protected and right-protected.

In the algorithm, once a node becomes protected, it will always be protected and
will never have to be looked at again since the algorithm only ever processes the left

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 8, Publication date: September 2014.
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A Parallel Cartesian Tree Algorithm and its Application to Parallel Suffix Tree Construction 8:7

and right spines of a tree. We show that during a merge, all but two of the nodes
that are looked at become protected, and we charge the cost of processing those two
nodes to the merge itself. Call the last node looked at on the right spine of the left tree
lastnodeLeft and the last node looked at on the left spine of the right tree lastnodeRight
(see Figure 2).

All nodes that are looked at, except for lastnodeLeft and lastnodeRight will be left-
protected by lastnodeLeft. This is because those nodes become either descendants of
the right child of lastnodeLeft (when lastnodeLeft is below lastnodeRight) or descen-
dants of lastnodeRight (when lastnodeRight is below lastnodeLeft). A symmetric argu-
ment holds for nodes being right-protected. Therefore, all nodes looked at, except for
lastnodeLeft and lastnodeRight, become protected after this sequence of operations.
We charge the cost for processing lastnodeLeft and lastnodeRight to the merge itself.

Other than when a node appears as lastnodeRight or lastnodeLeft it is only looked
at once and then becomes protected. Therefore the total number of nodes looked at is
2n − 2 for lastnodeRight or lastnodeLeft on the n − 1 merges, and at most n for the
nodes that become protected for a total work of O(n).

Although Algorithm 1a makes parallel recursive calls, it uses a sequential merge
routine. In the worst case this can take time equal to the depth of the tree per level of
recursion. As there are O(log n) levels of recursion, the time spent is O(min(d log n, n)).
The parallel recursive calls are on different parts of the data, so it runs on the EREW
PRAM.

Since each node only maintains a constant amount of data, the space required
is O(n).

We now describe a fully parallel version of the algorithm, which we refer to as
Algorithm 1b. The algorithm maintains binary search trees for each spine, and substi-
tutes the sequential merge with a parallel merge. We will use split and join operations
on the spines. A split goes down the spine tree and cuts it at a specified value v so
that all values less than or equal to v are in one tree and values greater than v are in
another tree. A join takes two trees such that all values in the second are greater than
or equal to the largest value in the first, and joins them into one. Both operations can
run in time proportional to the depth of the spine tree and the join adds at most one to
the height of the larger of the two trees.

Without loss of generality, assume that the root of the right Cartesian tree has a
smaller value than the root of the left Cartesian tree (as in Figure 2). For the left tree,
the end point of the merge will be its root. To find where to stop merging on the right
tree, the algorithm searches the left-spine of the right tree for the root value of the left
tree and splits the spine at that point. Now it merges the whole right-spine of the left
tree and the deeper portion of the left-spine of the right tree. After the merge these two
parts of the spine can be discarded, since their nodes have become protected. Finally
the algorithm joins the shallower portion of the left spine of the right tree with the
left spine of the left tree to form the new left spine. The right-spine of the resulting
Cartesian tree is the same as that of the right Cartesian tree before the merge.

THEOREM 3.3. Algorithm 1b for constructing a Cartesian tree requires O(n) work,
O(log2 n) time, and O(n) space on the EREW PRAM.

PROOF. The trees used to represent the spines are never deeper than O(log n), since
each merge does only one join, which adds only one node to the depth. All splits and
joins therefore take O(log n) time. The merge can be done using a parallel merging
algorithm that runs in O(log n) time and O(n) work on the EREW PRAM [Hagerup and
Rüb 1989], where n is the number of elements being merged. The depth of Algorithm
1b’s recursion is O(log n), which gives a O(log2 n) time bound. The O(n) work bound

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 8, Publication date: September 2014.
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8:8 J. Shun and G. E. Blelloch

follows from a similar analysis to that of Algorithm 1a, with the exception that splits
and joins in the spine cost an extra O(log n) per merge, so for the extra cost we have a
recurrence W(n) = 2W(n/2) + O(log n), which solves to O(n). The trees on the spines
take linear space so the O(n) space bound still holds. Processor allocation on each level
of recursion is straightforward to do within O(log n) time.

LEMMA 3.4. The outputs of Algorithm 1a and Algorithm 1b can be used to construct
a multiway Cartesian tree in O(n) work and space. On the EREW PRAM, this requires
O(d) time using path compression or O(log n) time using tree contraction.

PROOF. We can use path compression to compress all clusters of the same value
into the root of the cluster, which can then be used as the representative of the cluster.
All parent pointers to nodes in a cluster will now point to the representative of that
cluster. This is done sequentially and requires linear work and O(d) time. We can also
substitute path compression with a parallel tree contraction algorithm, which requires
O(n) work and O(log n) time on the EREW PRAM [Reid-Miller et al. 1993].

For non-constant sized alphabets if we want to search in the tree efficiently (O(1)
expected time per edge) the edges need to be inserted into a hash table, which can be
done in O(log n) time and O(n) work (both with high probability) on a CRCW PRAM.

COROLLARY 3.5. Given a suffix array for a string over the alphabet [ n] and the
LCPs between adjacent elements, a suffix tree can be generated in hash table format
with Algorithm 1b, tree contraction, and hash table insertion using O(n) work and
O(log2 n) time with high probability, and O(n) space on the CRCW PRAM.

PROOF. This follows directly from Theorem 3.3, Lemma 3.4, and the bounds for
hash table insertion.

4. CARTESIAN TREES AND THE ANSV PROBLEM

The all nearest smaller values (ANSV) problem is defined as follows: for each element
in a sequence of elements from a total ordering, find the closest smaller element to
the left of it and the closest smaller element to the right of it. Here we augment the
ANSV-based Cartesian tree algorithm of Berkman et al. [1993] to support multiway
Cartesian trees, and also show how to use Cartesian trees to solve the ANSV problem.

The algorithm of Berkman et al. [1993] solves the ANSV problem in O(n) work and
O(log log n) time on the CRCW PRAM. The ANSV can then be used to generate a
Cartesian tree by noting that the parent of a node has to be the nearest smaller value
in one of the two directions (in particular the larger of the two nearest smaller values is
the parent). To convert their Cartesian tree to the multiway Cartesian tree, one needs
to group all nodes pointing to the same parent and coming from the same direction
together. If I(n) is the best time bound for stably sorting integers from [ n] using linear
space and work, then the grouping can be done in linear work and O(I(n) + log log n)
time by sorting on the parent ID numbers of the nodes. Stability is important since a
suffix tree needs to maintain the relative order among the children of a node.

THEOREM 4.1. A multiway Cartesian tree on an array of elements can be generated
in O(n) work and space and O(I(n) + log log n) time on the CRCW PRAM.

PROOF. This follows from the bounds of the ANSV algorithm and of integer
sorting.

It is not currently known whether I(n) is polylogarithmic so at present this result
seems weaker than the result from the previous section. In the experimental section,
we compare the algorithms on various inputs. In a related work, Iliopoulos and Rytter
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[2004] present an O(n log n) work polylogarithmic time algorithm based on a variant
of ANSV.

4.1. Cartesian Tree to ANSV

We now describe a method for obtaining the ANSVs from a Cartesian tree in parallel
using tree contraction. Note that for any node in the Cartesian tree, both of its nearest
smaller neighbors (if they exist) must be on the path from the node to the root (one
neighbor is trivially the node’s parent). We first present a simple linear-work algorithm
for the task that takes time equal to the depth of the Cartesian tree. Let d denote the
depth of the tree, with the root being at depth 1. The following algorithm returns the
left nearest neighbors of all nodes. A symmetric algorithm returns the right nearest
neighbors.

(1) For every node, maintain two variables, node.index which is set to the node’s index
in the sequence corresponding to the in-order traversal of the Cartesian tree and
never changed, and node.inherited, which is initialized to null.

(2) For each level i of the tree from 1 to d: In parallel, for all nodes at level i: pass
node.inherited to its left child and node.index to its right child. The child stores the
passed value in its inherited variable.

(3) For all nodes in parallel: if node.inherited �= null, then node.inherited denotes the
index of the node’s left smaller neighbor. Otherwise it does not have a left smaller
neighbor.

By using parallel tree contraction [Reid-Miller et al. 1993], we obtain a linear-work
and fully parallel algorithm for computing the ANSVs, as described in the following
theorem.

THEOREM 4.2. There is an linear-work algorithm for computing the ANSVs of a
sequence using O(log2 n) time on the EREW PRAM.

PROOF. We first compute the binary Cartesian tree of the input sequence. Then we
perform tree contraction on the resulting Cartesian tree. We describe tree contraction
operations for finding the smaller left neighbors; the procedure for finding the smaller
right neighbors is symmetric. To find the left neighbors, we describe how to compress
and uncompress the tree for several configurations, and the rest of the configurations
have a symmetric argument. For compression, there are the left-left and right-left
configurations. The left-left configuration consists of three nodes A, B, and C, with B
being the left child of A, and C being the left child of B. For this configuration, B is
the compressed node, and during uncompression B takes the inherited value of A and
passes its inherited value to C. The right-left configuration consists of three nodes A,
B, and C, with B being the right child of A, and C being the left child of B. For this
configuration, B is again the compressed node, and during uncompression takes the
index value of A and passes its inherited value to C. The right-right and left-right
configurations are defined similarly and have symmetric properties. A raked left leaf
takes the inherited value of its parent when it is unraked, and a raked right leaf takes
the index value of its parent when it is unraked. Note that values are only passed
during uncompression and unraking, and not during compression and raking. Tree
contraction requires O(n) work and O(log n) time on the EREW PRAM. Combined with
the complexity bounds for generating the Cartesian tree of Theorem 3.3, this gives us a
O(n) work and O(log2 n) time algorithm on the EREW PRAM for computing all nearest
smaller values.

Although the time complexity is higher, our algorithm is much simpler than the
linear-work algorithms of Berkman et al. [1993].
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5. EXPERIMENTS

The goal of our experiments is to analyze the efficiency of our parallel Cartesian tree
algorithm both on its own and also as part of code to generate suffix trees. We show
three applications of the Cartesian tree for answering queries on strings. We compare
the Cartesian tree-based suffix tree algorithm to the ANSV-based algorithm and to the
best available sequential code for suffix trees. We believe that it is important to com-
pare our parallel algorithm with existing sequential implementations to make sure
that the algorithm can significantly outperform existing sequential ones even on mod-
est numbers of processors (cores) available on current desktop machines. In our dis-
cussion, we refer to the two variants of our main algorithm (Section 3) as Algorithm 1a
and Algorithm 1b, and to the ANSV-based algorithm as Algorithm 2. For the exper-
iments, in addition to implementing Algorithm 1a and a variant of Algorithm 2, we
implemented parallel code for computing suffix arrays and their corresponding LCPs,
and parallel code for inserting the tree nodes into a hash table to allow for efficient
search (these codes are now part of the Problem Based Benchmark Suite [Shun et al.
2012]). All of our experiments were performed on a 40-core parallel machine (with
hyper-threading) using a variety of real-world and artificial strings. Our suffix tree
code is available for download.5

5.1. Auxiliary Code

To generate the suffix array and LCPs, we implemented a parallel version of the skew
algorithm [Kärkkäinen et al. 2006]. The implementation uses a parallel radix sort, re-
quiring O(n) work and O(nε) time for some constant 0 < ε < 1. Our LCP code is based
on an O(n log n) work solution for the range-minima problem instead of the optimal
O(n). The O(n log n) work solution creates a table with log n levels, where the i’th level
of the table stores the minimum value of every interval of length 2i in the sequence
(computed in parallel from the i − 1’st level). We did implement a parallel version of
the linear-time range-minima algorithm by Fischer and Heun [2006], but found that
it was slower. Due to better locality in the parallel radix sort than the sequential one,
our code on a single core is actually faster than a version of Kärkkäinen et al. [2006]
implemented in the paper and available online, even though that version does not com-
pute the LCPs. We get a further 9 to 27 fold speedup on a 40 core machine. Compared
to the parallel implementation of suffix arrays by Kulla and Sanders [2007], our times
are faster on 40 cores than the 64 core numbers reported by them (10.8 seconds vs
37.8 seconds on 522 million characters), although their clock speed is slower than ours
and it is a different system so it is hard to compare directly. Mori provides a paral-
lel suffix array implementation using OpenMP [Mori 2010a], but we found that it is
slower than their corresponding sequential implementation. Our parallel implemen-
tation significantly outperforms that of Mori. These are the only two existing parallel
implementations of suffix arrays that we are aware of.

We note that recent sequential suffix array codes are faster than ours running on
one core [Mori 2010a, 2010b; Puglisi et al. 2007], but most of them do not compute the
LCPs (though these could be computed sequentially in a post-processing step [Kasai
et al. 2001; Kärkkäinen et al. 2009]). For real-world texts, those programs are faster
than our code due to many optimizations that these programs make. We expect that
many of these optimizations can be parallelized and could significantly improve the
performance of parallel suffix array construction, but this was not the purpose of our
studies. One advantage of basing suffix tree code on suffix array code, however, is that

5http://www.cs.cmu.edu/∼jshun/suffixTree.tar.gz
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improvements made to parallel suffix arrays would improve the performance of the
suffix tree code as well.

We use a parallel hash table [Shun and Blelloch 2014] to allow for fast search in the
suffix tree. The hash table uses a compare-and-swap primitive for concurrent insertion.
Furthermore we optimized the code so that most entries near leaves of the tree are not
inserted into the hash table and a linear search is used instead. In particular, since
our Cartesian tree code stores the tree nodes as an in-order traversal of the suffixes of
the suffix tree, a child and parent near the leaf are are likely to be near each other in
this array. In our code, if the child is within some constant c (16 in the experiments) in
the array we do not store it in the hash table, but instead use a linear search.

For Algorithm 2, we use an optimized O(n log n) work and O(log n) time ANSV algo-
rithm, which was part of the code of Shun and Zhao [2013], instead of the much more
complicated work-optimal version of Berkman et al. [1993].

5.2. Experimental Setup

We performed experiments on a 40-core Intel machine (with hyper-threading) with
4 × 2.4GHz Intel 10-core E7-8870 Xeon processors (1066MHz bus and 30MB L3 cache)
and 256GB of main memory. The parallel programs were compiled using the Intel icpc
compiler (version 12.1.0, which supports CilkPlus [Leiserson 2010]) with the -O2 flag.
The sequential programs were compiled using g++ 4.4.1 with the -O2 flag.

For comparison to sequential suffix tree code we used the code of Tsadok and Yona
[2003] and Kurtz’s code from the MUMmer project [Delcher et al. 2002; Kurtz 1999],6
both of which are publicly available. We only list the results of Kurtz because they
are superior to those of Tsadok and Yona [2003] for all of our test files. Kurtz’s code is
based on McCreight’s suffix tree construction algorithm [McCreight 1976]—it is inher-
ently sequential and completely different from our algorithms. Other researchers have
experimented with building suffix trees in parallel [Ghoting and Makarychev 2009;
Tsirogiannis and Koudas 2010] and our running times appear significantly faster than
those reported in the corresponding papers, even after accounting for differences in
machine specifications. Iliopoulos and Rytter [2004] describe how to transform a suffix
array into a suffix tree in parallel in O(n log n) work, but they do not have an imple-
mentation available.

Independent of our work, Mansour et al. [2011] have developed a disk-based parallel
suffix tree algorithm, which works for input strings that do not fit in main memory.
Our algorithm is faster than theirs on a per-core basis—on the human genome
(3.08 GB), our algorithm takes 168 seconds using 40 cores while the algorithm of
Mansour et al. takes 19 minutes on 8 cores and 11.3 minutes on 16 cores. However,
their algorithm is disk-based and requires less memory than ours. We note that their
algorithm requires super-linear work and time in the worst case. Very recently, Comin
and Farreras [2013] described a parallel disk-based algorithm implemented using
MPI. For the human genome, they report a running time of 7 minutes using 172 pro-
cessors, which is slower than our algorithm using 40 cores. However, their algorithm
again is disk-based, and their experiments were done on older hardware. A description
of other disk-based suffix tree algorithms can be found in the survey by Barsky et al.
[2010].

For running the experiments we used a variety of strings available online,7
a Microsoft Word document (thesaurus.doc), XML code from Wikipedia samples

6http://mummer.sourceforge.net
7http://people.unipmn.it/manzini/lightweight/corpus/
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Fig. 3. Speedup of our Cartesian tree algorithm relative to the stack-based sequential algorithm on a 40
core machine. “40h” indicates 80 hyper-threads.

(wikisamp8.xml and wikisamp9.xml), the human genome8 (HG18.fasta), and artifi-
cial inputs. Our artificial inputs are all of size 108 and include an-all identical string
(100Midentical), random strings with an alphabet size of 10 (100Mrandom), and a
string with an alphabet size of 2 where every 104th position contains one character and
all other positions contain the other character (100Msqrtn). We also included two files
of integers, one with random integers ranging from 1 to 104 (100MrandomInts10K),
and one with random integers ranging from 1 to 231 (100MrandomIntsImax), to show
that our algorithms run efficiently on arbitrary integer alphabets. See Table II for all
of the input sizes.

5.3. Cartesian Trees

We experimentally compare our Cartesian tree algorithm from Algorithm 1 to the
linear-time stack-based sequential algorithm of Gabow et al. [1984]. There is also a
linear-time sequential algorithm based on ANSVs, but we verified that the stack-based
algorithm outperforms the ANSV one so we only report times for the former. Figure 3
shows the speedup of our parallel Cartesian tree algorithm with respect to the se-
quential stack-based algorithm on the interleaved SA and LCPs of various inputs. Our
parallel algorithm outperforms the sequential algorithm with 4 or more cores, and
achieves about 35x speedup (about 12x speedup with respect to the sequential algo-
rithm). The performance is consistent across the different inputs.

5.4. Applications of Cartesian Trees

We are able to answer certain string queries by bottom-up traversals of the Cartesian
tree built on the interleaved SA and LCPs of the string, which is essentially a suffix
tree without the downward pointers. Abouelhoda et al. [2004] show how to perform
certain suffix tree queries using just the SA and LCPs. Their sequential stack-based

8http://webhome.cs.uvic.ca/∼thomo/HG18.fasta.tar.gz
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Table I. Times for Bottom-Up Traversals

Text Cartesian tree Leaf counts Longest Leftmost
substring (k = 10) suffix positions

T40 T1 SU T40 T1 SU T40 T1 SU T40 T1 SU

100Midentical 0.23 6.61 28.7 1.7 3.27 1.92 1.69 3.61 2.14 1.73 3.37 1.95
etext99 0.26 9.2 35.4 0.12 4.77 39.8 0.14 5.19 37.1 0.12 4.87 40.6
rctail96 0.28 9.58 34.2 0.15 5.1 34 0.16 5.71 35.7 0.14 5.22 37.3

rfc 0.28 9.78 34.9 0.15 5.16 34.4 0.16 5.66 35.4 0.14 5.27 37.6
w3c2 0.26 9.14 35.2 0.13 4.37 33.6 0.14 4.83 34.4 0.13 4.47 34.4

wikisamp8.xml 0.25 8.52 34.1 0.12 4.48 37.3 0.13 4.99 38.4 0.12 4.58 38.2

Note: Times (seconds) for bottom-up traversals on a 40 core machine with hyper-threading. T40 is the time
for our parallel algorithm on 40 cores (80 hyper-threads), T1 is the single-thread time and SU is the speedup
computed as T1/T40.

method essentially computes the ANSVs on the array of LCPs to generate the tree
structure, similar to the classic sequential stack-based ANSV algorithm. Berkman
et al. [1993] showed how to parallelize the ANSV algorithm, which we generalized
in Section 4. At the end of the day, however, we found that building the Cartesian
tree directly is more efficient than using the ANSV method, at least in parallel (see
the “Cartesian tree” timings in Figure 5 versus the “ANSV”, “Compute parents” plus
“Create internal nodes” timings in Figure 6). As with the Abouelhoda et al. method,
building the Cartesian tree is so fast that it can be recomputed per bottom-up com-
putation, only requiring one to store the SA and LCP arrays between computations.
For our experiments, we report the times both for constructing the Cartesian tree and
for answering the queries (see Table I). The times include parallel times on 40 cores
with hyper-threading (T40), times using a single thread (T1), and the speedup (SU).
The code for the Abouelhoda et al. method is not available online so we were unable to
obtain timings.

We use the Cartesian tree on the interleaved SA and LCPs of a string to compute for
each internal node, the number of leaf nodes in its subtree. This information can be
used to answer queries related to repeated substrings, such as the number of repeated
substrings of a given length that appear at least x times, or the number of repeated
substrings of length at least y.

To compute the number of leaves contained in the subtree of each internal node, we
process the Cartesian tree in a bottom-up manner where initially all of the leaves are
active and each active node passes the number of leaves in its subtree to its parent,
which records the sum of these values it receives. Once a node receives values from
all of its children, it becomes active and passes its value to its parent. This process is
work-efficient but requires time proportional to the height of the tree. The times for
this query are shown in the “Leaf counts” column in Table I.

We also use the Cartesian tree to compute the longest substring that appears at
least k times in the text. To answer this query, we modify the previous computation to
return the deepest node in the tree that has a subtree of at least size k. The times for
this query for k = 10 are shown in the “Longest substring (k = 10)” column in Table I.

Finally, we use our Cartesian tree on the interleaved SA and LCP array of a string
to compute the leftmost starting position of any suffix in the subtree of each node.
This is useful for computing the Ziv-Lempel decomposition [Ziv and Lempel 1977]
of a string, as described in Abouelhoda et al. [2004]. The code for doing this is very
similar to computing the number of leaves per subtree. Instead of summing the chil-
dren’s values, each parent takes the minimum value of its children, and leaves start

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 8, Publication date: September 2014.
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Table II. Times for Suffix Tree Construction

Text Size Kurtz Alg 1a Alg 1a Alg 1a Alg 2 Alg 2 Alg 2
(MB) T40 T1 SU T40 T1 SU

100Midentical 100 9.53 2.299 41.7 18.14 2.812 44.75 15.91
100Mrandom 100 168.9 3.352 80.6 24.05 3.971 84.2 21.2
100Msqrtn 100 14.52 3.518 55.2 15.69 4.023 57.97 14.41

100MrandomInts10K 100 – 5.24 81.1 15.48 5.774 84.8 14.69
100MrandomIntsImax 100 – 3.88 61.3 15.8 4.141 64.1 15.48

chr22.dna 34.6 24.5 1.469 32.62 22.21 1.728 34.45 19.94
etext99 105 119 4.977 120.3 24.17 5.75 125 21.74
howto 39.4 27.31 1.785 41.02 22.98 2.062 42.87 20.79
jdk13c 69.7 14.69 3.278 78.22 23.86 3.833 81.73 21.33
rctail96 115 55.13 5.61 133.2 23.74 6.34 138.9 21.91

rfc 116 71.77 5.619 133 23.67 6.476 139.2 21.49
sprot34.dat 110 75.11 5.299 126.2 23.82 6.048 131.6 21.76

thesaurus.doc 11.2 8.61 0.485 7.677 15.83 0.564 8.19 14.52
w3c2 104 28.44 5.24 121.2 23.13 5.913 126.1 21.33

wikisamp8.xml 100 31.48 4.808 117.2 24.37 5.612 124.8 22.24
wikisamp9.xml 1000 – 53 1280 24.15 61.88 1339 21.64

HG18.fasta 3083 – 168 3402 20.25 –† –† –†

Note: Comparison of running times (seconds) of Kurtz’s sequential algorithm and our algorithms for
suffix tree construction on different inputs on a 40 core machine with hyper-threading. T40 is the time
using 40 cores (80 hyper-threads) and T1 is the time using a single thread. SU is the speedup computed
as T1/T40. †We do not have times for Algorithm 2 on HG18.fasta since for this file, it uses more memory
than the machine has available.

with a value equal to the starting position of their corresponding suffix in the original
string. The times for this query are shown in the “Leftmost suffix positions” column
in Table I.

For most real-world strings, the height of the Cartesian tree of the interleaved SA
and LCPs is not very large and these three applications get good speedup. As expected,
this process does not get much speedup for the all-identical string, whose tree has lin-
ear height (the slight speedup comes from the preprocessing and postprocessing steps).
For the real-world strings, the cost of building the Cartesian tree is just about twice
the cost of the query, which makes it reasonable to store just the SA and LCP arrays
and build the Cartesian tree on-the-fly when performing a query. Other queries, such
as finding maximal repeated pairs [Abouelhoda et al. 2004] and finding the longest
common substring of two strings [Gusfield 1997] can also be computed by a bottom-up
traversal of the Cartesian tree.

5.5. Suffix Trees

We use Algorithms 1a and 2 along with our suffix array code and hash table insertion
to generate suffix trees on strings. Table II presents the runtimes for generating the
suffix tree based on Algorithm 1a, our variant of Algorithm 2, and Kurtz’s code. For
the implementations based on Algorithm 1a and Algorithm 2, we give both sequential
(single thread) running times (T1) and parallel running times on 40 cores with hyper-
threading (T40). The speedup (SU) is computed as T1/T40. We note that the speedup
ranges from 14 to 24. Compared to Kurtz’s code, our code running sequentially is be-
tween 2.1x faster and 5.3x slower. Our parallel code, however, is always faster than
Kurtz’s code and up to 50x faster. Comparatively, Kurtz’s code performs best on strings
with lots of regularity (e.g. the all-identical string). This is because the incremental

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 8, Publication date: September 2014.



�

�

�

�

�

�

�

�

A Parallel Cartesian Tree Algorithm and its Application to Parallel Suffix Tree Construction 8:15

Fig. 4. Speedup of Algorithm 1a relative to Kurtz’s sequential algorithm on a 40 core machine. “40h” indi-
cates 80 hyper-threads.

sequential algorithms based on McCreight’s algorithm are particularly efficient on
these strings. The runtime for our code is affected much less by the type of input
string. Kurtz’s code only supports reading in text files with fewer than 537 million
characters, so we were unable to obtain timings for wikisamp9.xml (1 billion charac-
ters) and HG18.fasta (3.08 GB). Also since the code reads the input files as ASCII
(alphabet size of 128), we do not have timings for integer files with larger alphabet
sizes. We plot the speedup of Algorithm 1a relative to Kurtz’s sequential algorithm on
various inputs in Figure 4. The speedup varies widely based on the input file, with as
much as 50x speedup for 100Mrandom and as little as 5.4x speedup for w3c2.

Figures 5 and 6 show the breakdown of the times for our implementations of
Algorithm 1a and Algorithm 2, respectively, when run on 40 cores with hyper-
threading. In Figure 5, “Cartesian tree” refers to the time to construct the binary
Cartesian tree and “Grouping internal nodes” refers to the time to convert to a mul-
tiway Cartesian tree. In Figure 6, “ANSV” is the time to compute the nearest smaller
neighbors in the LCP array, and “Compute parents” is the time to select a smaller
neighbor to be the parent. “Create internal nodes” does an integer sort to create the
internal nodes of the tree. In both figures, “Hash table insertion” is the time to create a
hash table for downward traversal, and completes the suffix tree construction. Figure 7
shows the breakdown of the time for generating the suffix array and LCP array. For
Algorithm 1a, more than 80% of the total time is spent in generating the suffix array,
less than 10% in inserting into the hash table and less than 5% on generating the
Cartesian tree from the suffix array (the code shown in Figure 1). For Algorithm 2,
we note that the ANSV portion takes less than 2% of the total time even though it
is an O(n log n) work algorithm. Improvements to the suffix array or hash table code
will likely lead to an improvement in the overall code performance. Figure 8 shows
the performance of Algorithm 1a in terms of characters per second on random char-
acter strings of varying sizes. We observe that the ratio remains nearly constant as
we increase the input size, indicating good scalability. While our implementation of
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Fig. 5. Breakdown of running times for converting a suffix array to a suffix tree using Algorithm 1a on 40
cores with hyper-threading.

Fig. 6. Breakdown of running times for the suffix tree portion of Algorithm 2 on 40 cores with hyper-
threading.

Algorithm 1a is not truly parallel, it is incredibly straightforward and performs better
than Algorithm 2.

5.6. Searching the Suffix Tree

We present times for performing existential queries (searching) for random substrings
in the suffix trees of several texts constructed using our code and Kurtz’s code. We also
report times for searches using the suffix array code of Manber and Myers [1993], as
Abouelhoda et al. [2004] show that this code (mamy) performs searches more quickly

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 8, Publication date: September 2014.
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Fig. 7. Breakdown of running times for the suffix array portion of Algorithm 1a and Algorithm 2 on 40 cores
with hyper-threading.

Fig. 8. Performance (characters per second) of Algorithm 1a on random character strings of varying sizes
on 40 cores with hyper-threading.

than Kurtz’s code does. The suffix array code uses the LCP array and answers queries
in O(m + log n) time, where m is the length of the pattern. For each text, we search
500,000 random substrings of the text (these should all be found) and 500,000 random
strings (most of these will not be found) with lengths uniformly distributed between 1
and 50. For all searches, the starting position in the text of the search string is reported
if found.

Existential query times are reported in Table III. Searches done in our code are on
integers, while those done in Kurtz’s code and Myer and Manber’s code (mamy) are

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 8, Publication date: September 2014.
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Table III. Times for String Searching

Text Alg 1a Alg1a Alg1a Kurtz mamy
T40 T1 SU T1 T1

100Mrandom 0.017 0.78 45.88 1.65 1.05
etext99 0.019 0.9 47.37 6.32 1.38

sprot34.dat 0.014 0.681 48.64 3.29 1.3

Note: Comparison of times (seconds) for searching (existential
queries) 1,000,000 strings of lengths 1 to 50 on a 40 core machine
with hyper-threading. T40 is the time using 40 cores (80 hyper-
threads) and T1 is the time using a single thread. SU is the speedup
computed as T1/T40.

Table IV. Space Requirements

Component Space (number of bytes)

Computing SA + LCP 32n
SA + LCP data structure 8n

Node initialization 24n
Building Cartesian Tree 16n

Cartesian Tree data structure 16n
Finding roots 16n

Hash table insertion 31n
Suffix Tree data structure 29n

Note: Space requirements for the different components of
Algorithm 1a.

done on characters, which puts us at a slight disadvantage. We report both sequen-
tial and parallel search times for our algorithm. Our results show that sequentially,
our code performs searches faster than Kurtz’s code (2.1–7x) and mamy (1.3–1.9x).
Abouelhoda et al. [2004] report being 1.2–1.7x faster than mamy for searches on
strings with small alphabets, but are up to 16x slower than mamy on larger alpha-
bets. In contrast, our search performance does not degrade with increasing alphabet
size, since we use a hash table to store children of internal nodes.

The layout of our nodes in memory is in suffix array order, so listing occurrences
can also be done in a cache-friendly manner by scanning the nearby nodes, similar to
mamy.

5.7. Space Requirements

Since suffix trees are often constructed on large texts (e.g. the human genome), it is
important to keep the space requirements minimal. As such, there has been related
work on compactly representing suffix trees [Abouelhoda et al. 2004; Giegerich et al.
2003; Gog and Ohlebusch 2013; Navarro and Mäkinen 2007; Sadakane 2007]. Our
suffix tree uses 3 integers per node (leaf and internal) and about 5n bytes for the hash
table, which totals to about 29n bytes. This compares to about 12n bytes for Kurtz’s
code, which has been optimized for space [Delcher et al. 2002; Kurtz 1999]. Table IV
shows the space requirements (in bytes) for the different portions and data structures
of our implementation. We leave further optimization of the space requirements of our
implementation to future work.

6. CONCLUSIONS

We have described a linear work, linear space, and O(log2 n) time parallel algorithm
for constructing a Cartesian tree and a multiway Cartesian tree. In conjunction with
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a parallel suffix array algorithm, we can use our algorithm to generate a suffix tree in
linear work with O(log2 n) time with high probability for constant-sized alphabets and
O(nε) time (0 < ε < 1) for the integer alphabet [ n]. Our approach is much simpler than
previous approaches for generating suffix trees in parallel and can handle arbitrary
alphabets. We implemented our algorithm, and showed that it achieves good speedup
and outperforms existing suffix tree construction implementations on a shared mem-
ory multi-core machine. We also describe three applications that can be implemented
with just the Cartesian tree, and show that they perform well on real-world inputs.
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