
A Simple and Practical Linear-Work Parallel
Algorithm for Connectivity

Julian Shun
Carnegie Mellon University

jshun@cs.cmu.edu

Laxman Dhulipala
Carnegie Mellon University
ldhulipa@andrew.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

ABSTRACT
Graph connectivity is a fundamental problem in computer science
with many important applications. Sequentially, connectivity can
be done in linear work easily using breadth-first search or depth-
first search. There have been many parallel algorithms for con-
nectivity, however the simpler parallel algorithms require super-
linear work, and the linear-work polylogarithmic-depth parallel al-
gorithms are very complicated and not amenable to implementa-
tion. In this work, we address this gap by describing a simple and
practical expected linear-work, polylogarithmic depth parallel al-
gorithm for graph connectivity.

Our algorithm is based on a recent parallel algorithm for generat-
ing low-diameter graph decompositions by Miller et al. [44], which
uses parallel breadth-first searches. We discuss a (modest) variant
of their decomposition algorithm which preserves the theoretical
complexity while leading to simpler and faster implementations.
We experimentally compare the connectivity algorithms using both
the original decomposition algorithm and our modified decomposi-
tion algorithm. We also experimentally compare against the fastest
existing parallel connectivity implementations (which are not theo-
retically linear-work and polylogarithmic-depth) and show that our
implementations are competitive for various input graphs. In ad-
dition, we compare our implementations to sequential connectivity
algorithms and show that on 40 cores we achieve good speedup
relative to the sequential implementations for many input graphs.
We discuss the various optimizations used in our implementations
and present an extensive experimental analysis of the performance.
Our algorithm is the first parallel connectivity algorithm that is both
theoretically and practically efficient.

Categories and Subject Descriptors: F.2 [Analysis of Algorithms
and Problem Complexity]: General

Keywords: Parallel Algorithms, Graph Connectivity, Experiments

1. INTRODUCTION
Finding the connected components of a graph is a fundamental
problem in computer science that has been well-studied. The prob-
lem takes as input an undirected graph with n vertices andm edges,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
Copyright 2014 ACM 978-1-4503-2821-0/14/06 ...$15.00
http://dx.doi.org/10.1145/2612669.2612692 .

and assigns each vertex a label such that vertices in the same con-
nected component have the same label, and vertices in different
connected components have different labels. Graph connectivity
has many important applications, such as in VLSI design and im-
age analysis for computer vision.

Sequentially, connectivity can be easily implemented in linear
work using breadth-first search (BFS) or depth-first search, or nearly
linear work with union-find. On the other hand, computing con-
nected components and spanning forests1 in parallel has been a
long studied problem [1, 2, 15, 16, 18, 26, 28, 30, 31, 33, 34, 36, 41,
45, 47, 49, 50, 52, 53, 60]. Some of the parallel algorithms devel-
oped are relatively simple, but require super-linear work. The algo-
rithms of Shiloach and Vishkin [53] and Awerbuch and Shiloach [2]
work by combining the vertices into trees such that at the end of
the algorithm vertices in the same component will belong to the
same tree. These algorithms guarantee that the number of trees de-
creases by a constant factor in each iteration, but do not guarantee
that a constant fraction of the edges are removed, and thus require
O(m logn) work. The random mate algorithms of Reif [52] and
Phillips [50] work by contracting vertices in the same component
together and guarantee that a constant fraction of the vertices de-
crease in expectation per iteration, but again do not guarantee that
a constant fraction of the edges are removed. Therefore, these al-
gorithms also requireO(m logn) expected work and are not work-
efficient.

Work-efficient polylogarithmic-depth parallel connectivity algo-
rithms have been designed in theory [17, 19, 23, 24, 49, 51]. These
algorithms are based on random edge sampling [19, 23, 24] or
linear-work minimum spanning forest algorithms, which also in-
volve sampling and filtering edges [17, 49, 51]. However, these
algorithms are complicated and unlikely to be practical (there are
no implementations of these algorithms available).

There has also been significant experimental work on parallel
connectivity algorithms in the past. Hambrusch and TeWinkel [25]
implement connected component algorithms on the Massively Par-
allel Processor (MPP). Greiner [22] implements and compares par-
allel connectivity algorithms using NESL [9]. Goddard et al. [21],
Hsu et al. [29], Bader et al. [3, 4], Patwary et al. [48], Shun et
al. [57], Slota et al. [58], and the Galois system [46] implement
algorithms for shared-memory CPUs. Bus and Tvrdik [12], Krish-
namurthy et al. [35], Bader and JaJa [5] and Caceres et al. [13] im-
plement connected components algorithms for distributed-memory
machines. There has been some recent work on designing con-
nectivity algorithms for GPUs [27, 59, 6]. There have also been
connectivity algorithms that require time proportional to the diam-
eter of the graph in recent graph processing packages [32, 37, 38,
1A spanning forest algorithm can be used to compute connected compo-
nents.

143

54]. None of the previous parallel algorithms implemented are the-
oretically work-efficient.

We note that a parallel BFS can be performed to visit the compo-
nents of the graph one-by-one. While this approach is linear-work,
the depth is proportional to the sum of the diameters of the con-
nected components. Therefore this approach is not efficient as a
general-purpose parallel connectivity algorithm, although it works
well for low-diameter graphs with few connected components.

In this paper, we present a simple linear-work algorithm for con-
nectivity requiring polylogarithmic depth, and experimentally show
that it rivals the best existing parallel implementations for connec-
tivity. Our algorithm is the first work-efficient parallel graph con-
nectivity algorithm with an implementation, and furthermore the
implementation also performs well in practice.

Our algorithm is based on a simple parallel algorithm for gener-
ating low-diameter decompositions of graphs by Miller et al. [44],
which is an improvement of an algorithm by Blelloch et al. [10].
A low-diameter decomposition of a graph partitions the vertices,
such that the diameter of each partition is small, and the number
of edges between partitions is small [42]. Such decompositions
have many uses in computer science, including in linear system
solvers [10] and in metric embeddings [7]. The algorithm of Miller
et al. partitions a graph such that the diameter of each partition
is O(logn/β) and the number of edges between components is
O(βm) for 0 < β < 1. It runs in linear work and O(log2 n/β)
depth with high probability2. Their algorithm is based on perform-
ing breadth-first searches from different starting vertices in parallel
with start times drawn from an exponential distribution. Due to
properties of the exponential distribution, the algorithm only needs
to run the multiple breadth-first searches for at most O(logn/β)
iterations before visiting all vertices.

We observe that this decomposition algorithm can be used to
generate the connected components labeling of a graph. Our algo-
rithm simply calls the decomposition algorithm recursively with β
set to a constant fraction, and after each call contracts each partition
into a single vertex, and relabels the vertices and edges between
partitions. Since the number of edges decreases by a constant frac-
tion in expectation in each recursive call, the algorithm terminates
after O(logn) calls with high probability. Hence we obtain an al-
gorithm for connected components labeling that runs in linear work
and O(log3 n) depth with high probability. An illustration of this
algorithm is shown in Figure 1. Our implementation is based on
parallel breadth-first searches and some simple parallel routines.

We also present a slight modification of the decomposition al-
gorithm of Miller et al. which relaxes the relative ordering among
vertices due to different breadth-first search start times. We show
that this modification does not affect the asymptotic complexity of
the decomposition algorithm, while leading to a simpler and faster
implementation. We use this decomposition algorithm for connec-
tivity and apply various optimizations to our implementations.

We experimentally compare our algorithm against the fastest ex-
isting parallel connectivity implementations (which are not theo-
retically linear-work and polylogarithmic-depth) [57, 48, 54, 58]
on a variety of input graphs and show that our algorithm is com-
petitive. On 40 cores, our parallel implementations achieve 18–39
times speedup over the same implementation run on a single thread,
and achieve good speedups over the sequential implementations on
many graphs. We show that on most graphs, the number of edges
decreases by significantly more than predicted by the theoretical
bounds due to duplicate edges between components. In addition,
2We use “with high probability” (w.h.p.) to mean probability at least 1 −
1/nc for any constant c > 0.

(a) graph decomposition (b) contracted graph

Figure 1. Illustration of our decomposition-based connectivity al-
gorithm. (a) At t = 0, vertex 0 starts a BFS (red ball), and at t = 1,
vertices 3 (green ball) and 4 (blue ball) start BFS’s. In this illustra-
tion, when there are ties (multiple BFS’s visiting the same unvisited
neighbor), the BFS center with the lowest ID wins. The balls repre-
sent the resulting partitions and the rings around the balls represent
each level of the corresponding BFS. (b) Each ball is contracted
into a single vertex, and the decomposition is applied recursively.

we study how the performance of our algorithms varies with differ-
ent settings of β in the decomposition algorithms.

Contributions. The main contributions of this paper are as follows.
Firstly, we describe a simple linear-work and polylogarithmic-depth
parallel algorithm for connectivity. This is the first practical paral-
lel connectivity algorithm with a linear-work guarantee. Secondly,
we describe a (modest) variation of the parallel decomposition al-
gorithm by Miller et al. that leads to a faster implementation and
prove that it has the same theoretical guarantees as the original al-
gorithm. Next, we present highly-optimized implementations of
our algorithm. Finally, we present experimental results showing
that our algorithm is competitive with the best previously available
parallel implementations of graph connectivity.

2. NOTATION AND PRELIMINARIES
In this paper, we use the concurrent-read concurrent-write (CRCW)
parallel random access machine model (PRAM). We state our re-
sults in the work-depth model, where work is equal to the number
of operations required (equivalently, the product of the time and
the number of processors) and depth is equal to the number of time
steps required.

We use the atomic compare-and-swap and writeMin operations
in our implementations. A compare-and-swap (CAS) is an atomic
instruction that takes three arguments—a memory location (loc), an
old value (oldV) and a new value (newV); if the value stored at loc is
equal to oldV it atomically stores newV at loc and returns true, and
otherwise it does not modify loc and returns false. A writeMin is an
atomic instruction that takes three arguments—a memory location
(loc), a value (val), and a comparison function <, and atomically
updates the value at loc to be the minimum of the stored value and
val according to <. It returns true if the value at loc was changed,
and false otherwise. writeMin can be implemented with a loop,
which reads the value at loc and applies a CAS if val is less than the
value read according to <. The loop terminates when either a CAS
is successful or when the read value is smaller than val according
to <. The reader may refer to [56] for details.

A connected component in an undirected graph contains ver-
tices such that any two vertices can reach one another through a
path. The connected components labeling problem takes an undi-
rected graph G = (V,E), and returns a labeling L such that for
two vertices u and v, L(u) = L(v) if u and v belong in the same
connected component, and L(u) 6= L(v) otherwise.

144

A breadth-first search (BFS) algorithm takes an unweighted
graph G = (V,E) and a source vertex r ∈ V , and visits the ver-
tices reachable from r in breadth-first order, i.e. for all reachable
vertices u, v ∈ V , if dist(r, u) < dist(r, v) then u will be visited
before v, where dist(x, y) is the length of the shortest path between
x and y. A simple parallel algorithm processes each level of the
BFS in parallel [11].

The exponential distribution with parameter λ is defined by the
probability density function:

f(x, λ) =

{
λe−λx if x ≥ 0

0 otherwise

The mean of the exponential distribution is 1/λ.
A (β, d)-decomposition (0 < β < 1) of an undirected graph

G = (V,E) is a partition of V into subsets V1, . . . , Vk such that
(1) the shortest path between any two vertices in each Vi using only
vertices in Vi is at most d, and (2) the number of edges (u, v) ∈ E
such that u ∈ Vi, v ∈ Vj , i 6= j is at most βm.

Miller et al. present a parallel decomposition algorithm based
on parallel BFS’s [44], which we call DECOMP. They prove that
for a value β, DECOMP generates a (β,O(logn

β
)) decomposition in

O(m) work andO(log
2 n
β

) depth with high probability on a CRCW
PRAM. The algorithm works by assigning each vertex v a shift
value δv drawn from an exponential distribution with parameter β
(mean 1/β). Miller et al. show that the maximum shift value is
O(logn

β
) w.h.p. Each vertex v is then assigned to the partition Su

that minimizes the shifted distance dist−δ(u, v) = dist(u, v)− δu.
This can be implemented by performing multiple BFS’s in paral-
lel. Each iteration of the implementation explores one level of each
BFS and at iteration t (starting with t = 0) breadth-first searches
are started from the unvisited vertices v such that δv ∈ [t, t + 1).
If multiple BFS’s reach the same unvisited vertex w in the same
time step, then w is assigned to the partition corresponding to the
origin of the BFS with the smaller fractional portion of the shift
value (equivalently, w is assigned to the partition whose origin has
the smallest shifted distance to w). Since the maximum shift value
is O(logn

β
), the algorithm terminates in O(logn

β
) iterations. Each

iteration requires O(logn) depth for packing the frontiers of the
BFS’s, leading to an overall depth of O(log

2 n
β

) w.h.p. The BFS’s
are work-efficient, so the total work is O(m).

3. LINEAR-WORK CONNECTIVITY
In this section, we describe our simple linear-work parallel algo-
rithm for connectivity. As a subroutine, it uses the parallel decom-
position algorithm DECOMP described in Section 2. By the def-
inition of a decomposition, the number of inter-component edges
remaining after a call to DECOMP starting with m edges is at most
βm in expectation. We can contract each component into a single
vertex and recurse on the remaining graph, whose edge count has
decreased by at least a constant factor in expectation. This leads
to a linear-work parallel connectivity algorithm, assuming the con-
traction and relabeling can be done efficiently.

The pseudo-code for our connected components algorithm (CC)
is shown in Algorithm 1. The input to DECOMP is a graphG(V,E)
and a value β, and the output is a labeling L of the vertices in V ,
such that vertices in the same partition will have the same label.
CONTRACT takes a graph G(V,E) and a labeling L as input, and
returns a new graphG′(V ′, E′) such that vertices with the same la-
bel in V according to L are contracted into a single vertex, forming
the vertex set V ′, and the inter-component edges inE are relabeled

according to L and form the edge set E′. RELABELUP takes as
input labelings L and L′ and returns a new labeling L′′ such that
L′′[i] = L′[L[i]]. RELABELUP is necessary because the original
labels L must be updated with the labels L′ returned by the recur-
sive call to CC.
Algorithm 1 Parallel decomposition-based algorithm for con-
nected components labeling
1: β = some constant fraction in (0, 1)
2: procedure CC(G(V,E))
3: L = DECOMP(G(V,E), β)
4: . L contains the labels returned by DECOMP
5: G′(V ′, E′) = CONTRACT(G(V,E), L)
6: if |E′| = 0 then
7: return L
8: else
9: L′ = CC(G′(V ′, E′))

10: L′′ = RELABELUP(L, L′)
11: return L′′

THEOREM 1. Algorithm 1 runs in O(m) expected work and
O(log3 n) depth w.h.p. on a CRCW PRAM.

PROOF. The algorithm sets β to a constant between 0 and 1.
Since the number of edges decreases to at most βm in expectation
after each recursive call, and the rate of reduction is independent
across iterations, the total number of calls is O(log 1

β
m) w.h.p.

Each recursive call requires O(log
2 n
β

) depth w.h.p. and O(m′)

work where m′ is the number of remaining edges for DECOMP.
Hence the total contribution of DECOMP to the depth of CC is
O(log 1

β
m log2 n

β
) = O(log3 n) w.h.p. and the total contribution

to the work of CC is upper bounded by
∑∞
i=0 β

icm for some con-
stant c, which is O(m) in expectation.

We now discuss an implementation of DECOMP that allows us to
do contraction and relabeling within the same complexity bounds.
Recall that DECOMP performs multiple breadth-first searches in
parallel, with each BFS corresponding to one of the components
(partitions) of the graph. We can maintain all BFS’s using a single
frontier array, where vertices belonging to the same component are
in consecutive positions in the frontier. In each iteration, vertices
that need to start their own BFS are added to the end of this frontier
array in parallel. We store all of the frontiers created throughout
one call to DECOMP, and there are O(logn

β
) such frontiers w.h.p.

Each individual BFS stores the starting and ending position of its
component’s vertices on each frontier, as well as the total number
of edges for these vertices. Using this information, we can compute
appropriate offsets into shared arrays for each component using
prefix sums over all the O(logn

β
) frontiers for each BFS. For each

iteration of CC, the work for computing offsets is O(m′) where
m′ is the number of edges at the beginning of the iteration, and the
depth is O(logn

′

β
).

As a vertex visits other vertices during the BFS’s, if it encoun-
ters an edge to a vertex belonging to the same component (an intra-
component edge), it will mark that edge as deleted (using some
special value). These edges will be packed out at the end of DE-
COMP, which can be done in O(m′) total work and O(logm′)
depth, where m′ is the number of edges at the beginning of the
iteration. The rest of the edges will be inter-component edges and
hence need to be kept for the next iteration. Each component will
become a single vertex in the next iteration, with all of the edges
of the component vertices merged. Since the vertices of each com-
ponent are stored consecutively on the frontiers, we can create a
new edge array and have the original vertices copy their edges in,

145

guaranteeing that the resulting array will store each component’s
edges consecutively (we can compute each vertex’s offset into this
array with a prefix sum). We can remove duplicate edges within
the complexity bounds of an iteration using parallel hashing [43,
20], although the number of edges decreases by a constant factor in
expectation even if we do not remove duplicates.

To relabel the new vertices, we first compute the total number
of components k and assign each original label with a new label in
the range [0, . . . , k−1], which can be done using prefix sums. Sin-
gleton vertices are then removed, but their labels are kept. For the
k′ non-singleton vertices remaining, we relabel them to the range
[0, . . . , k′ − 1] and recursively call CC. After the recursive call,
the original labels are relabeled according to the result of CC. This
can all be done using prefix sums in linear work in the number of
remaining vertices and O(logn) depth per iteration.

We summarize the proof of this theorem. For a constant frac-
tion β, there are O(logn) calls to DECOMP w.h.p., each of which
does O(logn) iterations of BFS. Each iteration of BFS requires
O(logn) depth for packing. The depth for contraction and rela-
beling is absorbed by the depth of DECOMP. This gives an overall
depth of O(log3 n) w.h.p. DECOMP, contraction and relabeling
can be done work-efficiently, and each call to DECOMP decreases
the number of edges by a constant fraction in expectation, leading
to O(m) expected work overall.

We note that theoretically the depth of DECOMP could be im-
proved to O(logn log∗ n) by using approximate compaction [20]
(which is linear-work) for packing the frontiers of the BFS’s. This
would give us an algorithm with expected linear-work algorithm
and O(log2 n log∗ n) depth w.h.p.

We consider a slight variation of DECOMP which breaks ties ar-
bitrarily among frontier vertices visiting the same unvisited neigh-
bor in a given iteration of the BFS’s. This modification simplifies
our implementation and leads to improved performance as we dis-
cuss later in the paper. This variation is equivalent to rounding
down all the δv values to the nearest integer and again assigning
each vertex v to the partition Su that minimizes dist−δ(u, v) =
dist(u, v) − δu, but breaking ties arbitrarily. We call this version
Decomp-Arb and show that this modified version has the same the-
oretical guarantees (within a constant factor). In particular, we
show that the number of inter-component edges in the decompo-
sition is at most 2βm in expectation (the original bound was βm).

THEOREM 2. Decomp-Arb generates aO(2β,O(logn
β

)) decom-

position in O(m) expected work and O(log
2 n
β

) depth w.h.p.

PROOF. Since we are still picking values from an exponential
distribution, the diameter of each component is O(logn

β
) w.h.p. as

shown in [44]. Hence the depth of the algorithm is the same as
the original algorithm, namely O(log

2 n
β

) w.h.p. The work is still
O(m) in expectation, since the BFS’s are work-efficient. Hence we
only need to show that the number of inter-component edges is at
most 2βm in expectation.

As in [44], consider the midpoint w of an edge (u, v). Lemma
4.3 of [44] states that if u and v belong to different components,
then dist−δ(u′, w) and dist−δ(v′, w) are within 1 of the minimum
shifted distance to w. Decomp-Arb rounds all shifted distances
down to the nearest integer. Hence when comparing two rounded
shift distances, their difference is at most 1 if and only if the two
original shift distances were within 2 of each other. In other words,
suppose the two distances we are comparing are d1 and d2. Then
|bd2c − bd1c| ≤ 1 if and only if |d2 − d1| < 2. Hence we can

modify Lemma 4.3 of [44] to state that if u and v belong to dif-
ferent components, then dist−δ(u′, w) and dist−δ(v′, w) (using
the original shift distances) are within 2 of the minimum shifted
distance to w.

Lemma 4.4 of [44] uses properties of the exponential distribution
to show that the probability that the smallest and second smallest
shifted distance to w (corresponding to the first two BFS’s that ar-
rive at w) has a difference of less than c is at most βc. Here we
have c = 2, so the probability that an edge is an inter-component
edge is at most 2β. By linearity of expectations, the expected total
number of inter-component edges is at most 2βm.

We can plug in Decomp-Arb into the proof of Theorem 1 and
obtain a linear-work connectivity algorithm for 0 < β < 1/2.

4. IMPLEMENTATION DETAILS
A naive implementation of Algorithm 1 would probably only re-
quire tens of lines of code. However to obtain the best performance
in practice, an implementation must take into account constant fac-
tors, cache performance, and the synchronization primitives used.
Therefore, in this section we describe our algorithmic engineer-
ing efforts to obtain a fast implementation of Algorithm 1. We
describe three versions of DECOMP, referring to the original algo-
rithm as Decomp-Min, the version which breaks ties arbitrarily as
Decomp-Arb, and a variant of Decomp-Arb that we discuss later as
Decomp-Arb-Hybrid.

We represent our graph using the adjacency array format, where
we have an array of vertex offsets V into an array of edges E.
The targets of the outgoing edges of vertex i are then stored in
E[V [i]], . . . , E[V [i + 1]] − 1 (to deal with the edge case, we set
V [n] = m). Our graph is undirected so each edge is stored in both
directions. We also maintain an array D, where D[i] stores the
degree of the i’th vertex. Initially D[i] is set to V [i+ 1]− V [i].

As suggested in [44], in our implementations we simulate the
assignment of values from the exponential distribution to vertices
by generating a random permutation (in parallel), and in each round
adding chunks of vertices starting from the beginning of the permu-
tation as start centers for new BFS’s, where the chunk size grows
exponentially. If a vertex in a chunk has already been visited, then
it is not added as a start center. Each vertex also draws a random
integer from a large enough range to simulate the fractional part
of its shift value (denoted by δ′v for vertex v), used to break ties
if multiple BFS’s visit the same unvisited neighbor. We maintain
the active frontier of the BFS’s using a single array. New BFS cen-
ters are simply added to the end of this array in parallel. We note
that parallel BFS can also be implemented using Cilk reducers [40]
with similar performance.

Since we do not need to keep around the inter-component edges
in recursive calls to CC, we pack out inter-component edges as we
encounter them. Therefore as we explore vertices, we determine
on-the-fly whether the incident edge to the explored vertex is an
inter-component edge or an intra-component edge.

In contrast to the description in the proof of Theorem 1, in our
implementations we do not store the frontiers of the BFS’s and off-
sets of each BFS into the frontiers. Therefore the vertices of the
same component will not be able to be accessed contiguously in
memory. Instead, in the contraction phase we use an integer sort to
collect all the vertices of the same component together. We found
this to be more efficient than the method described in the proof of
Theorem 1 because the amount of bookkeeping is reduced and the
integer sort is only performed over the remaining inter-component
edges, which is usually much fewer than the number of original

146

edges. We use the linear-work and O(mε) depth (0 < ε < 1) inte-
ger sort algorithm from the Problem Based Benchmark Suite [57].

Decomp-Min is split into two phases over the frontier vertices
(pseudo-code shown in Algorithm 2). In our implementation, we
use an array C to to store both the component ID’s of the vertices
and to store the values that vertices write to resolve conflicts. In
particular, the array C stores pairs (c1, c2) where for a vertex v,
c1 is used for markings from frontier vertices competing to visit v,
and c2 stores the component ID of vertex v. We will use C1[v] and
C2[v] to refer to the first and second value of the pair C[v], respec-
tively. Decomp-Min uses the writeMin operation (described in Sec-
tion 2) on integer pairs, where the comparison function (not shown
in the pseudo-code) uses integer comparison on the first value of
pair. Note that instead of keeping pairs in C we could keep two
arrays, one to store the component IDs and the other to resolve
conflicts, but this leads to an additional cache miss per vertex visit.

The entries of C are initialized to (∞,∞) on Line 1. The ∞
in the second value of the pair indicates that the vertex has not yet
been visited, and the first value of the pair is the identity value for
the writeMin function. When a vertex v is added to the BFS on
Lines 5–6 (i.e. it starts a new BFS), C[v] is set to (−1, v)—the
value−1 in C1[v] indicates that v has been visited, and the value v
in C2[v] indicates that the component ID of v is its own vertex ID.
In our implementation, inter-component edges are kept while intra-
component edges are deleted on-the-fly. We overwrite the edge
array E as we loop over the edges (Lines 17–18 and 21–22) using
a counter k indicating the current position in the array (Line 11).
In the first phase, frontier vertices mark unvisited neighbors with
the writeMin primitive (Lines 14–16) with the fractional part of its
BFS center’s shift value, δ′C2[v]

(the BFS center’s ID is equal to
C2[v], the component ID of v). We assume there are no ties as
the numbers can be drawn from a large enough range to guarantee
this w.h.p. Also, as long as for a neighbor w, C1[w] 6= −1, this
means the neighbor has not been visited in a previous iteration. In
this case, we need to keep the edge (Lines 17–18) as we currently
do not know whether it is an intra- or inter-component edge (this
can only be determined once all other frontier vertices finish doing
their writeMin’s). Otherwise, the neighbor w has been visited in a
previous iteration and we can determine the status of the edge to
w—if w has component label different from v, it keeps the edge as
it is an inter-component edge (Lines 20–22). It labels the endpoint
of the edge with its new component ID (so that it does not have to
be relabeled later) but sets the sign bit of the value (negates it and
subtracts 1) to indicate that this edge need not be considered again
in the second phase. Otherwise, the edge is an intra-component
edge and is deleted. We set the degree of v to be the number of
edges kept in this phase (Line 23).

In the second phase, the remaining edges incident on v are looped
over and for edges which have a non-negative value (an edge whose
status has not yet been determined from the first phase), we deter-
mine whether δ′C2[v]

is stored on the neighbor w. If so, then v uses
a compare-and-swap (CAS) to attempt to atomically set C1[w] to
−1 (so that future writeMin’s will not mark it again) and if success-
ful adds w to the next frontier (Lines 30–31) and does not keep the
edge (it is an intra-component edge). A CAS is required here since
there could be multiple vertices from the same component explor-
ing the same neighbor w (they all have the same δ′C2[v]

value), and
we want w to be added only once to the next frontier. If the condi-
tion on Line 30 does not hold, we check whether the component ID
of w matches that of v, and if they differ, then the edge is an inter-
component edge and we keep it (Lines 32–35). We set the sign bit
of the value of its component ID and store it in E (Lines 34–35).
If C2[w] = C2[v], then (v, w) is an intra-component edge and we

do not keep it. If the edge has a negative value, then it was already
processed in the first phase, and we just keep it (Lines 36–38). We
set the degree of v to be the number of inter-component edges in-
cident on v (Line 39). After the BFS’s are finished, we unset the
sign bit of the remaining (inter-component) edges, so that they can
be properly processed during the relabeling phase after the call to
DECOMP by the connected components algorithm.

Note that for high-degree vertices (e.g. degree greater than k logn
for some constant k), the inner sequential for-loops over the neigh-
bors of a vertex can be replaced with a parallel for-loop, marking
the deleted edges with a special value and packing the edges with a
parallel prefix sums after the for-loop.

Algorithm 2 Decomp-Min
1: C = {(∞,∞), . . . , (∞,∞)}
2: Frontier = {}
3: numVisited = 0
4: while (numVisited < n) do
5: add to Frontier unvisited vertices v with δv < round + 1
6: and set C[v] = (−1, v) . new BFS centers
7: numVisited = numVisited + size(Frontier)
8: NextFrontier = {}
9: parfor v ∈ Frontier do

10: start = V [v] . start index of edges in E
11: k = 0
12: for i = 0 to D[v]− 1 do
13: w = E[start + i]
14: if C1[w] 6= −1 then
15: if C1[w] > δ′

C2[v]
then

16: writeMin(C[w],(δ′
C2[v]

, C2[v]))

17: E[start + k] = w
18: k = k + 1
19: else
20: if C2[w] 6= C2[v] then
21: E[start + k] = −C2[w]− 1
22: k = k + 1
23: D[v] = k

24: parfor v ∈ Frontier do
25: start = V [v] . start index of edges in E
26: k = 0
27: for i = 0 to D[v]− 1 do
28: w = E[start + i]
29: if w ≥ 0 then
30: if C1[w] = δ′

C2[v]
and CAS(C1[w], δ′C2[v]

,−1) then
31: add w to NextFrontier . v won on w
32: else
33: if C2[w] 6= C2[v] then
34: E[start + k] = −C2[w]− 1
35: k = k + 1
36: else
37: E[start + k] = w
38: k = k + 1
39: D[v] = k

40: NextFrontier = Frontier

Decomp-Min is split into two phases because we need all the ver-
tices to apply the writeMin on their unvisited neighbors before we
can determine a winner. Hence, a synchronization point is needed
between the writeMin’s and the checks to see if a vertex success-
fully visits a neighbor.

In contrast to Decomp-Min, Decomp-Arb only requires one phase
over the edges of the frontier vertices and their outgoing edges
(pseudo-code shown in Algorithm 3). Here C stores only a sin-
gle integer value, indicating the component ID’s of the vertices.
Each entry is initialized to ∞ (Line 1) to indicate that the vertex
has not yet been visited. The code of Decomp-Arb is similar to that
of Decomp-Min, except that there is only a single phase over the
edges of each frontier. Instead of using a writeMin as in Decomp-

147

Min, Decomp-Arb uses a CAS to mark an unvisited neighbor (Line
14) with the component ID of the frontier vertex. A vertex that suc-
cessfully marks a neighbor can delete its edge to that neighbor since
it is guaranteed to be an intra-component edge. That vertex is also
responsible for adding the neighbor to the next frontier (Line 15).
Otherwise, the vertex checks the component ID of its neighbor and
if it differs from its own, it keeps the edge as an inter-component
edge (Lines 17–19). It also marks the endpoint of the edge with
its component ID so that it doesn’t have to be relabeled later (Line
18). Note that although the pseudo-code shown does not make use
of the fact that the degree is set to the number of inter-component
edges on Line 20, we make use of it during the relabeling phase (not
shown in the pseudo-code). Unlike in Decomp-Min, Decomp-Arb
does not need to use the fractional part of the shift values (the δ′v
values) because an arbitrary BFS can mark an unvisited neighbor.

Decomp-Arb only requires a single phase over the edges of the
frontier vertices because once a vertex w is visited by some vertex
v and its component ID is set to the component ID of v, it can no
longer be visited again by another vertex. At that point we know
that the edge from v tow is an intra-component edge and can delete
it, and any other neighbor of w with a different component ID than
w that fails to mark w with the CAS has an inter-component edge
to w which is kept.

Algorithm 3 Decomp-Arb
1: C = {∞, . . . ,∞}
2: Frontier = {}
3: numVisited = 0
4: while (numVisited < n) do
5: add to Frontier unvisited vertices v with δv < round + 1
6: and set C[v] = v . new BFS centers
7: numVisited = numVisited + size(Frontier)
8: NextFrontier = {}
9: parfor v ∈ Frontier do

10: start = V [v] . start index of edges in E
11: k = 0
12: for i = 0 to D[v]− 1 do
13: w = E[start + i]
14: if C[w] =∞ and CAS(C[w],∞, C[v]) then
15: add w to NextFrontier
16: else
17: if C[w] 6= C[v] then . inter-component edge
18: E[start + k] = C[w]
19: k = k + 1
20: D[v] = k

21: NextFrontier = Frontier

During the relabeling phase, we only need to relabel the source
endpoint of each remaining edge, as the target endpoint was already
relabeled during DECOMP. After relabeling, we use a parallel hash
table [55] to remove duplicate edges between components. On the
way back up from the recursive call to CC, we simply index into
the labeling returned by CC with a parallel for-loop to relabel the
original labels appropriately (corresponding to RELABELUP of Al-
gorithm 1).

As we show experimentally in Section 5, Decomp-Arb performs
better than Decomp-Min due to only requiring one pass over the
edges of each frontier during the BFS’s, and needing less book-
keeping overall.

We considered the direction-optimizing (hybrid) BFS idea first
described by Beamer et al. [8] and later implemented for general
graph traversal algorithms in Ligra [54]. In BFS, the idea is that
when the frontier is large, it is cheaper to have all unvisited vertices
read their incoming neighbors and once a vertex finds a neighbor
on the frontier, it chooses it as its parent and quits (subsequent in-
coming edges to this vertex do not need to be examined). If a large

number of vertices’ neighbors are on the frontier, then this possibly
saves many edge traversals.

In contrast to a standard BFS, our connectivity algorithm re-
quires all edges to be inspected, since we must decide whether the
edge is an inter-component or an intra-component edge for the re-
cursive call. Therefore, if we apply the optimization, we must in-
troduce a post-processing step that inspects the edges determining
whether or not they should be kept, so the total number of edges in-
spected is not reduced. We apply this optimization to Decomp-Arb,
as it allows a vertex to select an arbitrary neighbor’s component ID,
and thus can exit the loop over the neighbors early. One modifi-
cation is that edges that are relabeled on-the-fly during the write-
based computation (e.g. Line 19 of Algorithm 3) must be marked
that they have been relabeled, so that we do not process them again
during the post-processing phase (we use the sign bit in the label
for this purpose). Our experiments show that even though no edge
traversals are saved, switching to the read-based computation when
the frontier is large (the fraction of vertices on the frontier is greater
than 20%) helps for some graphs, as the read-based computation is
more cache-friendly, and does not require using an atomic opera-
tion, in contrast to the original Decomp-Arb which uses compare-
and-swaps to resolve conflicts. We refer to the direction-optimizing
version of Decomp-Arb as Decomp-Arb-Hybrid.

5. EXPERIMENTS
We compare our three implementations of the connectivity algo-
rithm to the fastest available parallel connectivity algorithms that
we are aware of [57, 48, 54, 58]. We refer to our algorithm us-
ing Decomp-Min as decomp-min-CC, Decomp-Arb as decomp-
arb-CC and Decomp-Arb-Hybrid as decomp-arb-hybrid-CC. We
also tried parallelizing over the edges for the high-degree vertices
in our implementations (as discussed in Section 4), but due to the
modest core count of our machine, we did not find a performance
improvement. Patwary et al. [48] describe two parallel spanning
forest implementations—a lock-based one and a verification-based
one. We use their lock-based implementation (parallel-SF-PRM)
since we found that the verification-based one sometimes fails to
terminate. Furthermore, they found that their lock-based imple-
mentation usually outperforms their verification-based one. We
also compare with the parallel spanning forest implementation in
the Problem Based Benchmark Suite (PBBS) [57] (parallel-SF-
PBBS). We note that these existing spanning forest-based parallel
implementations are not theoretically work-efficient. As for con-
nectivity based on BFS, we compare with the direction-optimizing
BFS [8] available as part of Ligra [54], performed on each compo-
nent of the graph. We refer to this implementation as hybrid-BFS-
CC. This approach is work-efficient but the depth can be linear in
the worst case. Very recently and independently of our work, Slota
et al. [58] describe a connected components algorithm which com-
bines direction-optimizing BFS with label propagation (multistep-
CC). In label propagation, each vertex starts with a unique ID and
in each iteration every vertex updates its ID to be the minimum
of its own ID and all of its neighbors IDs; the label propagation
terminates when no IDs change in an iteration. In the worst case,
the algorithm of Slota et al. requires quadratic work and linear
depth. We compare all of the parallel implementations to a sim-
ple sequential spanning forest-based connectivity algorithm using
union-find (serial-SF) from the PBBS. The single-thread times for
hybrid-BFS-CC and multistep-CC are sometimes better than serial-
SF, and can also be used as a sequential baseline. For the spanning
forest-based connectivity algorithms, we include in the timings a
post-processing step that finds the ID of the root of the tree for
each vertex (done in parallel for the parallel implementations).

148

We run our experiments on a 40-core (with hyper-threading) ma-
chine with 4 × 2.4GHz Intel 10-core E7-8870 Xeon processors
(with a 1066MHz bus and 30MB L3 cache) and 256GB of main
memory. We run all parallel experiments with two-way hyper-
threading enabled, for a total of 80 hyper-threads. We compiled our
code with g++ version 4.8.0 with the -O2 flag. The parallel codes
use Cilk Plus [39] to express parallelism, which is supported by
the g++ compiler that we use. In particular, the parallel for-loops
are written using the cilk_for construct. Divide-and-conquer
parallelism, which is required by the parallel integer sort, is writ-
ten using the cilk_spawn construct. When running in parallel,
we use the command numactl -i all to evenly distribute the
allocated memory among the processors.

We use a variety of synthetic graphs, the first three of which are
taken from the PBBS [57], and a real-world graph. random is a
random graph where every vertex has five edges to neighbors cho-
sen randomly. The rMat graph [14] is a graph with a power-law
degree distribution. rMat2 uses the same generator as rMat, but
with a higher edge-to-vertex ratio, giving a denser graph. 3D-grid
is a grid graph in 3-dimensional space where every vertex has six
edges, each connecting it to its 2 neighbors in each dimension. line
is a path of length n− 1 (i.e. each vertex has two neighbors except
for the first and the last vertex in the path). This is a degenerate
graph with diameter n − 1. com-Orkut is a social network graph
downloaded from the Stanford Network Analysis Project (SNAP),
available at http://snap.stanford.edu. For the synthetic
graphs, the vertex labels are randomly assigned. The sizes of the
graphs are shown in Table 1. For our decomposition-based algo-
rithms we store an edge in each direction, so we use twice the num-
ber of edges than as noted in Table 1, while for the spanning forest-
based algorithms, edges only need to be stored in one direction.

Input Graph Num. Vertices Num. Edges
random 108 5× 108

rMat 227 5× 108

rMat2 220 4.2× 108

3D-grid 108 3× 108

line 5× 108 5× 108

com-Orkut 3,072,627 117,185,083

Table 1. Input graphs
The serial and parallel running times of the implementations on

the various inputs are summarized in Table 2. The times that we
report are based on a median of three trials. We see that decomp-
arb-CC and decomp-arb-hybrid-CC usually outperform decomp-
min-CC (by up to 2.3 times). This is because (1) decomp-arb-CC
and decomp-arb-hybrid-CC require only one pass over the edges of
the frontier instead of two passes in decomp-min-CC and (2) the
vertices store less data when computing the labeling. Decomp-arb-
hybrid-CC is faster than decomp-arb-CC for most of the graphs, es-
pecially for the graphs whose frontier grows very large (e.g. about
2x faster for rMat2 and com-Orkut), as these graphs benefit more
from the optimization of using a read-based computation for the
large frontiers. For 3D-grid and line, the times are about the same
for decomp-arb-CC and decomp-arb-hybrid-CC, since in decomp-
arb-hybrid-CC the frontier never grows large enough to switch to
the read-based computation. Among the two spanning forest-based
parallel implementations, parallel-SF-PRM is faster than parallel-
SF-PBBS in parallel. Compared to parallel-SF-PRM, decomp-arb-
hybrid-CC is at most 70% slower in parallel, and faster sequen-
tially. On 40 cores with hyper-threading, our parallel implementa-
tions achieve a self-relative speedup of between 18 and 39.

We observe that the implementations based on a single direction-
optimizing BFS (hybrid-BFS-CC and multistep-CC) work well for
dense graphs with low-diameter, such as random, rMat2 and com-

Orkut, outperforming the other implementations both sequentially
and in parallel on these graphs. For the dense rMat2 graph, which
requires only 5 levels of BFS to completely traverse, even the se-
quential times of these implementations are competitive with the
parallel times of the other implementations. This is because the
read-based optimization of direction-optimizing BFS significantly
reduces the number of edges traversed. For graphs with many com-
ponents (i.e. rMat with over 13 million components), hybrid-BFS-
CC does poorly in parallel since it visits the components one-by-
one, while multistep-CC does better because it uses parallel BFS to
compute only one component, and then switches to label propaga-
tion to compute the rest. For the line graph, both implementations
perform poorly and get no speedup due to the large diameter of the
graph. Our fastest parallel implementation (decomp-arb-hybrid-
CC) is faster than hybrid-BFS-CC and multistep-CC for the line
graph, competitive for the rMat and 3D-grid graphs, and slower for
the random, rMat2 and com-Orkut graphs. For graphs with only
one component (random, rMat2, 3D-grid and line), multistep-CC
and hybrid-BFS-CC both perform exactly one BFS, and the differ-
ences in running times are due to the choice of when to switch to the
read-based computation, starting vertex of the BFS, and slight im-
plementation differences. Note that on a single thread, multistep-
CC outperforms serial-SF for four of the graphs, since the read-
based optimization allows it to traverse many fewer edges for these
graphs.

Compared to the best single-thread times among serial-SF, hybrid-
BFS-CC and multistep-CC, on 40 cores our fastest implementation
achieves up to a 13 times speedup. For the dense rMat2 graph, on
40 cores our parallel implementation is actually slower than hybrid-
BFS-CC run on a single thread, but this is a special case on which
the direction-optimizing BFS approach works particularly well.

Figure 2 shows the running time versus the number of threads
for the different implementations on the input graphs. For the line
graph, we do not plot hybrid-BFS-CC and multistep-CC as they
perform very poorly and get no speedup. We see that our parallel
implementations get good speedup, and except for rMat2 and com-
Orkut, outperform the best sequential time with a modest number of
threads. Our parallel implementations (decomp-arb-CC, decomp-
arb-hybrid-CC and decomp-min-CC) perform reasonably well and
are competitive with the other parallel implementations implemen-
tations, which are not theoretically linear-work and polylogarithmic-
depth guarantee, for all graphs except rMat2 and com-Orkut, on
which the direction-optimizing BFS implementations perform ex-
ceptionally well. While our parallel implementations do not achieve
the fastest performance for any particular graph, due to their theo-
retical guarantees, they perform reasonable well across all inputs
and do not suffer from poor performance on any “worst-case” in-
puts.

Figure 3 shows the 40-core running time of decomp-arb-CC,
decomp-arb-hybrid-CC and decomp-min-CC as a function of the
parameter β for several graphs. We see that the trends for the
implementations are similar, and the β leading to the fastest run-
ning times is between 0.05 and 0.2. Figure 4 shows the number of
edges remaining per iteration for decomp-arb-hybrid-CC as a func-
tion of β. As expected, the number of edges drops more quickly for
smaller β, leading to fewer phases until reaching the base case. Fur-
thermore, the upper bound of a 2β-fraction of edges being removed
(or β-fraction for decomp-min-CC) per iteration does not account
for the removal of duplicate edges between contracted components.
For all our graphs except the line graph, there are (many) duplicate
edges between components that are removed, leading to a much
sharper decrease (up to an order of magnitude more than predicted
by the upper bound) in the number of remaining edges per iteration.

149

Implementation random rMat rMat2 3D-grid line com-Orkut
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-SF 19.5 – 21.5 – 2.86∗ – 17.5 – 68.6 – 0.82∗ –
decomp-arb-CC 43.1 1.97 46.7 2.5 6.95 0.256 30.1 1.36 254 6.49 2.35 0.115

decomp-arb-hybrid-CC 38.7 1.89 39.8 2.22 4.11 0.116 30.6 1.39 247 6.5 1.22 0.058
decomp-min-CC 74.8 2.86 76.3 3.49 7.22 0.221 57.9 2.11 348 9.11 2.39 0.132

parallel-SF-PBBS 70.9 1.91 79.2 2.13 9.79 0.515 41.1 1.53 174 5.22 2.98 0.156
parallel-SF-PRM 48.8 1.64 42.2 1.3 4.51 0.1 30.3 1.33 313 4.02 1.25 0.04
hybrid-BFS-CC 28 1.3 25.9 13.3 0.111 0.009 22.1 1.51 304 304† 0.191 0.021
multistep-CC 9.74 1.29 15.9 2.06 0.23 0.05 27.0 1.22 343 343† 0.16 0.06

Table 2. Times (seconds) for connected components labeling. (40h) indicates 40 cores with hyper-threading. ∗We use the timing for the
sequential spanning forest code from Patwary et al. [48] as we found it to be faster than the PBBS implementation. †We use the sequential
time as the parallel time was higher due to overheads of parallel execution.

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

hybrid-BFS-CC

multistep-CC

(a) random

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

hybrid-BFS-CC

multistep-CC

(b) rMat

2 4 8 16 24 32 40 40h

Number of threads

0

101

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

hybrid-BFS-CC

multistep-CC

(c) rMat2

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

hybrid-BFS-CC

multistep-CC

(d) 3D-grid

2 4 8 16 24 32 40 40h

Number of threads

0

101

102

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

parallel-SF-PRM

(e) line

2 4 8 16 24 32 40 40h

Number of threads

0

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

serial-SF

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

parallel-SF-PBBS

hybrid-BFS-CC

multistep-CC

(f) com-Orkut
Figure 2. Times versus number of threads on a 40-core machine with hyper-threading. (40h) indicates 80 hyper-threads.

random rMat 3D-grid line
0

2

4

6

8

10

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

init

bfsPre

bfsPhase1

bfsPhase2

contractGraph

Figure 5. Breakdown of timings on 40 cores with hyper-threading
for decomp-min-CC.

Figure 5 shows the breakdown of the 40-core running time for
decomp-min-CC on several graphs. In the figure, “init” refers to
the time for generating random permutations and initializing ar-
rays, “bfsPre” refers to adding new vertices to the BFS frontier and
computing offsets into shared arrays for the frontier vertices, “bf-
sPhase1” refers to the first phase (Lines 9–23 of Algorithm 2), “bf-
sPhase2” refers to the second phase (Lines 24–39 of Algorithm 2),
and “contractGraph” includes the time for removing duplicate edges,
renumbering vertices and edges, creating the contracted graph for

random rMat 3D-grid line
0

1

2

3

4

5

6

7

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

init

bfsPre

bfsMain

contractGraph

Figure 6. Breakdown of timings on 40 cores with hyper-threading
for decomp-arb-CC.

the recursive call, and relabeling after the recursive call. We see
that 80–90% of the time is spent in the two BFS phases, with the
first phase being the more expensive of the two.

Figure 6 shows the breakdown of the running time for decomp-
arb-CC on 40 cores on several inputs. “bfsMain” refers to the sin-
gle phase of the BFS iteration (Lines 9–20 of Algorithm 3), and the
other sub-timings have the same meaning as in the previous para-
graph. The majority of the time (55–75%) is spent in the main BFS
phase. Compared to decomp-min-CC, the savings in running time

150

0 0.2 0.4 0.6 0.8 1

beta

0

1

2

3

4

5

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

(a) random

0 0.2 0.4 0.6 0.8 1

beta

0

1

2

3

4

5

6

7

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

(b) rMat

0 0.2 0.4 0.6 0.8 1

beta

0

1

2

3

4

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

(c) 3D-grid

0 0.2 0.4 0.6 0.8 1

beta

0

5

10

15

20

25

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

decomp-arb-CC

decomp-arb-hybrid-CC

decomp-min-CC

(d) line
Figure 3. Running time versus β on various input graphs on a 40-core machine using 80 hyper-threads.

0 1 2

iteration

100

101

102

103

104

105

106

107

108

n
u
m

.
re

m
a
in

in
g

e
d
g
e
s

beta

0.1

0.2

0.3

0.4

0.5

(a) random

0 1 2 3 4 5 6 7 8 9

iteration

100

101

102

103

104

105

106

107

108

n
u
m

.
re

m
a
in

in
g

e
d
g
e
s

beta

0.1

0.2

0.3

0.4

0.5

(b) rMat

0 1 2 3 4

iteration

100

101

102

103

104

105

106

107

108

n
u
m

.
re

m
a
in

in
g

e
d
g
e
s

beta

0.1

0.2

0.3

0.4

0.5

(c) 3D-grid

0 1 2 3 4 5 6 7 8 9

iteration

100

101

102

103

104

105

106

107

108

n
u
m

.
re

m
a
in

in
g

e
d
g
e
s

beta

0.003

0.008

0.02

0.04

0.06

0.08

0.1

0.2

(d) line
Figure 4. Number of remaining edges per iteration versus β of decomp-arb-hybrid-CC on various graphs.

of decomp-arb-CC comes from this part of the computation due to
requiring only one pass over the edges.

Figure 7 shows the breakdown of the 40-core running time for
decomp-arb-hybrid-CC. “bfsSparse” refers to the time spent in the
main phase of the BFS when performing the write-based compu-

tation for sparse frontiers, and “bfsDense” refers to the time spent
in the main phase performing the read-based computation on the
dense frontiers. As noted in Section 4, a post-processing step to
filter out the intra-component edges is required, and “filterEdges”
refers to this phase. We see that for 3D-grid and line, the frontier

151

random rMat 3D-grid line
0

1

2

3

4

5

6

7

R
u
n
n
in

g
ti
m

e
(s

e
c
o
n
d
s
)

init

bfsPre

bfsSparse

bfsDense

filterEdges

contractGraph

Figure 7. Breakdown of timings on 40 cores with hyper-threading
for decomp-arb-hybrid-CC.

never becomes dense enough to switch to the read-based computa-
tion, hence all of the BFS time is captured by bfsSparse. On the
other hand, random and rMat do have BFS frontiers that become
dense enough where the read-based computation is invoked. Since
they switch to the read-based computation, some edges do not get
inspected and hence the filterEdges phase performs more work to
filter out the intra-component edges. For random and rMat, about
40% of the time is spent in the main BFS phase.

Figure 8 shows the running time of decomp-arb-hybrid-CC on
80 hyper-threads as a function of graph size for random graphs with
sizes from m = 5 × 107 to 5 × 108, and n = m/5. The running
time increases almost linearly as we increase the graph size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1e+08 2e+08 3e+08 4e+08 5e+08

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Number of edges

Running time versus input size

Figure 8. Running time of decomp-arb-hybrid-CC vs. problem
size for random graphs on 40 cores with hyper-threading.

Besides PBBS and the implementations by Patwary et al., Bader
and Cong describe a parallel spanning tree implementation based
on parallel depth-first search [3]. However, Patwary et al. [48] show
that their implementations are faster than Bader and Cong’s imple-
mentation. Galois [46] also contains implementations of connected
components based on union-find, but we found them to be slower
than the implementation by Patwary et al, decomp-arb-hybrid-CC,
and decomp-arb-CC for all of the input graphs. Several graph pro-
cessing systems [54, 32, 37, 38] have connected components imple-
mentations based on label propagation, but the depth of the algo-
rithm is proportional to the diameter of the graph and the algorithm
is not work-efficient. As noted in [54], this algorithm usually does
not perform as well as linear or near-linear work algorithms.

6. CONCLUSION
We have presented a simple linear-work parallel algorithm for find-
ing the connected components of a graph. Our algorithm is the
first practical work-efficient parallel algorithm with polylogarith-
mic depth for this problem. We present implementations of our
algorithm and experimentally show that it is competitive with the
fastest existing parallel algorithms for finding the connected com-
ponents of a graph.

Acknowledgements. This work is supported by the National Sci-
ence Foundation under grant number CCF-1314590, the Intel Labs
Academic Research Office for the Parallel Algorithms for Non-
Numeric Computing Program, the Intel Science and Technology
Center for Cloud Computing (ISTC-CC) and a Facebook Gradu-
ate Fellowship. We thank Jeremy Fineman, Phillip Gibbons, Gary
Miller and Shen Chen Xu for helpful discussions.

References
[1] A. Agrawal, L. Nekludova, and W. Lim. A parallel O(logN)

algorithm for finding connected components in planar
images. In ICPP, pages 783–786, 1987.

[2] B. Awerbuch and Y. Shiloach. New connectivity and MSF
algorithms for Ultracomputer and PRAM. In ICPP, pages
177–187, 1983.

[3] D. A. Bader and G. Cong. A fast, parallel spanning tree
algorithm for symmetric multiprocessors (SMPs). Journal of
Parallel and Distrib. Comput., 65(9):994–1006, 2005.

[4] D. A. Bader, G. Cong, and J. Feo. On the architectural
requirements for efficient execution of graph algorithms. In
ICPP, pages 547–556, 2005.

[5] D. A. Bader and J. JaJa. Parallel algorithms for image
histogramming and connected components with an
experimental study. J. Parallel Distrib. Comput.,
35(2):173–190, 1996.

[6] D. S. Banerjee and K. Kothapalli. Hybrid algorithms for list
ranking and graph connected components. In High
Performance Computing, pages 1–10, 2011.

[7] Y. Bartal. Graph decomposition lemmas and their role in
metric embedding methods. In ESA, pages 89–97. 2004.

[8] S. Beamer, K. Asanović, and D. Patterson.
Direction-optimizing breadth-first search. In
Supercomputing, pages 12:1–12:10, 2012.

[9] G. E. Blelloch. NESL. In Encyclopedia of Parallel
Computing, pages 1278–1283. 2011.

[10] G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller, R. Peng,
and K. Tangwongsan. Near linear-work parallel SDD
solvers, low-diameter decomposition, and low-stretch
subgraphs. In SPAA, pages 13–22, 2011.

[11] G. E. Blelloch and B. M. Maggs. Parallel algorithms. In The
Computer Science and Engineering Handbook, pages
277–315. 1997.

[12] L. Bus and P. Tvrdik. A parallel algorithm for connected
components on distributed memory machines. In Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, pages 280–287. 2001.

[13] E. Caceres, H. Mongelli, C. Nishibe, and S. W. Song.
Experimental results of a coarse-grained parallel algorithm
for spanning tree and connected components. In High
Performance Computing & Simulation, pages 631–637,
2010.

[14] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A
recursive model for graph mining. In SDM, pages 442–446,
2004.

[15] F. Y. Chin, J. Lam, and I.-N. Chen. Efficient parallel
algorithms for some graph problems. Commun. ACM, pages
659–665, 1982.

[16] K. Chong and T. Lam. Finding connected components in
O(logn log logn) time on the EREW PRAM. Journal of
Algorithms, 18(3):378–402, 1995.

[17] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum
spanning forests in logarithmic time and linear work using
random sampling. In SPAA, pages 243–250, 1996.

152

[18] R. Cole and U. Vishkin. Approximate parallel scheduling. II.
applications to logarithmic-time optimal parallel graph
algorithms. Information and Computation, 92(1):1–47, 1991.

[19] H. Gazit. An optimal randomized parallel algorithm for
finding connected components in a graph. SIAM J. Comput.,
20(6):1046–1067, Dec. 1991.

[20] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly
constant time parallel algorithms. In FOCS, pages 698–710,
1991.

[21] S. Goddard, S. Kumar, and J. F. Prins. Connected
components algorithms for mesh-connected parallel
computers. In Parallel Algorithms: 3rd DIMACS
Implementation Challenge, pages 43–58, 1995.

[22] J. Greiner. A comparison of parallel algorithms for
connected components. In SPAA, pages 16–25, 1994.

[23] S. Halperin and U. Zwick. An optimal randomized
logarithmic time connectivity algorithm for the EREW
PRAM. J. Comput. Syst. Sci., 53(3):395–416, 1996.

[24] S. Halperin and U. Zwick. Optimal randomized EREW
PRAM algorithms for finding spanning forests. In J.
Algorithms, pages 1740–1759, 2000.

[25] S. Hambrusch and L. TeWinkel. A study of connected
component labeling algorithms on the MPP. In
Supercomputing, pages 477–483, 1988.

[26] Y. Han and R. A. Wagner. An efficient and fast
parallel-connected component algorithm. J. ACM,
37(3):626–642, July 1990.

[27] K. A. Hawick, A. Leist, and D. P. Playne. Parallel graph
component labelling with GPUs and CUDA. Parallel
Comput., 36(12):655–678, Dec. 2010.

[28] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate.
Computing connected components on parallel computers.
Commun. ACM, 22(8):461–464, Aug. 1979.

[29] T.-S. Hsu, V. Ramachandran, and N. Dean. Parallel
implementation of algorithms for finding connected
components in graphs, 1997.

[30] K. Iwama and Y. Kambayashi. A simpler parallel algorithm
for graph connectivity. J. Algorithms, 16(2):190–217, Mar.
1994.

[31] D. B. Johnson and P. Metaxas. Connected components in
O(log3/2 n) parallel time for the CREW PRAM. Journal of
Computer and System Sciences, 54(2):227–242, 1997.

[32] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS:
mining peta-scale graphs. Knowl. Inf. Syst., 27(2):303–325,
2011.

[33] D. R. Karger, N. Nisan, and M. Parnas. Fast connected
components algorithms for the EREW PRAM. SIAM J.
Comput., 28(3):1021–1034, Feb. 1999.

[34] V. Koubek and J. Krsnakova. Parallel algorithms for
connected components in a graph. In Fundamentals of
Computation Theory, pages 208–217. 1985.

[35] A. Krishnamurthy, S. S. Lumetta, D. E. Culler, and
K. Yelick. Connected components on distributed memory
machines. In Parallel Algorithms: 3rd DIMACS
Implementation Challenge, pages 1–21, 1994.

[36] C. Kruskal, L. Rudolph, and M. Snir. Efficient parallel
algorithms for graph problems. Algorithmica, 5(1-4), 1990.

[37] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. In Operating
System Design and Implementation, pages 31–46, 2012.

[38] A. Kyrola, J. Shun, and G. E. Blelloch. Beyond synchronous
computation: New techniques for external memory graph

algorithms. In Symposium on Experimental Algorithms,
2014.

[39] C. E. Leiserson. The Cilk++ concurrency platform. The
Journal of Supercomputing, 51(3):244–257, 2010.

[40] C. E. Leiserson and T. B. Schardl. A work-efficient parallel
breadth-first search algorithm (or how to cope with the
nondeterminism of reducers). In SPAA, pages 303–314,
2010.

[41] W. Lim, A. Agrawal, and L. Nekludova. A fast parallel
algorithm for labeling connected components in image
arrays. In Tech. Report NA86-2, Thinking Machines
Corporation, 1986.

[42] N. Linial and M. Saks. Low diameter graph decompositions.
Combinatorica, 13(4):441–454, 1993.

[43] Y. Matias and U. Vishkin. On parallel hashing and integer
sorting. Journal of Algorithms, 12(4):573–606, 1991.

[44] G. L. Miller, R. Peng, and S. C. Xu. Parallel graph
decomposition using random shifts. In SPAA, pages
196–203, 2013.

[45] D. Nath and S. N. Maheshwari. Parallel algorithms for the
connected components and minimal spanning tree problems.
Inf. Process. Lett., 14(1):7–11, 1982.

[46] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In Symposium on
Operating Systems Principles, pages 456–471, 2013.

[47] N. Nisan, E. Szemeredi, and A. Wigderson. Undirected
connectivity in O(log1.5 n) space. In FOCS, pages 24–29,
1992.

[48] M. Patwary, P. Refsnes, and F. Manne. Multi-core spanning
forest algorithms using the disjoint-set data structure. In
IPDPS, pages 827–835, 2012.

[49] S. Pettie and V. Ramachandran. A randomized time-work
optimal parallel algorithm for finding a minimum spanning
forest. SIAM J. Comput., 31(6):1879–1895, 2002.

[50] C. A. Phillips. Parallel graph contraction. In SPAA, pages
148–157, 1989.

[51] C. K. Poon and V. Ramachandran. A randomized linear work
EREW PRAM algorithm to find a minimum spanning forest.
In ISAAC, pages 212–222, 1997.

[52] J. Reif. Optimal parallel algorithms for integer sorting and
graph connectivity. TR-08-85, Harvard University, 1985.

[53] Y. Shiloach and U. Vishkin. An O(logn) parallel
connectivity algorithm. J. Algorithms, 3(1):57–67, 1982.

[54] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. In Principles and
Practice of Parallel Programming, pages 135–146, 2013.

[55] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for
determinism. In SPAA, 2014.

[56] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons.
Reducing contention through priority updates. In SPAA,
pages 152–163, 2013.

[57] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons,
A. Kyrola, H. V. Simhadri, and K. Tangwongsan. Brief
announcement: the Problem Based Benchmark Suite. In
SPAA, pages 68–70, 2012.

[58] G. M. Slota, S. Rajamanickam, and K. Madduri. BFS and
coloring-based parallel algorithms for strongly connected
components and related problems. In IPDPS, 2014.

[59] J. Soman, K. Kishore, and P. J. Narayanan. A fast GPU
algorithm for graph connectivity. In IPDPS, pages 1–8, 2010.

[60] U. Vishkin. An optimal parallel connectivity algorithm.
Discrete Applied Mathematics, 9(2):197–207, 1984.

153

