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Task Assignment Problem is very Old 
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What’s a good 
dispatching policy for 

minimizing E[T] ?
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Lots of attention:
Adan , Azar, Avrahami, Bachmat, 
Bonald, Bonomi, Borst, Boxma, 
Bramson, Broberg, Cardellini, 
Ciardo, Colajanni, Cohen, Conolly,      
Crovella, Doroudi, Down, El-Taha, 
Feng, Flatto, Foss, Ghosh, Gupta,
Greenberg, Harchol-Balter, Hyytiä, 
Jelenkovic, Jonckheere, Korshunov,                   
Kingman, Leonardi,  Lin, Lu, Lui, Maddah,               
McKean, Misra, Muntz, Nelson, Philips,
Prabhakar,  Proutiere, Raghavendra, Raz, 
Rao, Riska,  Rubenstein, Sarfati, 
Schroeder, Smirni,  Stanford, Squillante, 
Tari, Towsley, Tsitsiklis, van  der Wal, 
Virtamo, Wessels, Whitt, Xia, Yao, 
Yechialli, Young, Yu, Zhang, Zijm, …



Same problem in Supermarket
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Me
Where should 

I go?



4

Dispatcher
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What’s a good
dispatching policy for

minimizing E[T] ?

 Random
 Round-Robin
 Join-Shortest-Queue 
 Least-Work-Left 
 Size-Interval-Task-

Assignment

Job size distribution, X, plays big role



Knowing X is not enough
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Suppose you know job size distribution, X, …

And you even know exact job sizes …

Claim:  Still insufficient for good task assignment.



Supermarket

Me
Where should 

I go?

Problem:  What you see ≠ What you get
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My Supermarket Experience
Me
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My Supermarket Experience
Me
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My Supermarket Experience

Me

Price
check
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My Supermarket Experience

Me

Price
check
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My Supermarket Experience

Me

Price
check
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My Supermarket Experience

Me

Extreme
coupons
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My Supermarket Experience

Me

Extreme
coupons
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My Supermarket Experience

Me

Bathroom
Break
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Problem:  Server-side variability



… can be more relevant than inherent job size, X

Server-side variability 
can dominate a job’s runtime

Example:  Webpage download
 Typically very fast:  X ≈ 10 ms

 But can be 1 s if server is slow  

When server-side variability dominates,
need new task assignment policy
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Me

16 16

Redundancy!



Redundancy!
Me Hubby

Wish I had
more 

husbands…
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Same job runs on multiple servers at once.   
Wait for 1st copy to complete.

 Berkeley Dolly System  [Ananthanarayanan et al. 2012]
 Google “Tail at Scale” 2013  [Dean, Barroso 2013]
 Berkeley Sparrow paper 2013 [Ousterhout et al. 2013]
 DNS and Database query systems 2013  [Vulimiri et al. 2013] 
 GRASS  2014 [Ananthanarayanan et al. 2014]
 Hopper 2015 [Ren et al. 2015]

Computer Systems Redundancy Research:
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Same job can take 12X longer on
one machine than another [Dolly]

Background load
Garbage collection
Network interrupts
Disk head location
Cache contents

Redundancy in Computer Systems

Same job can take 27X longer on
one machine than another [Xu]

Motivation: Server-side variability:

Computer Systems ≠ SuperMarket



Redundancy in Our Lives

19 19

Multiple Listing
for Kidneys/Livers

Multi-listing at
Daycare Centers

Job Replication in 
Computer Systems

Redundant Packet Transmisison



Why Redundancy Rocks!
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1. Redundancy  Experience queue with less work

2. Redundancy  Experience lower server slowdown

Both 
important
under high 
server-side 
variability

HOW MUCH
redundancy is best?

But redundancy can also hurt …
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 [Koole, Righter 2009]

 [Joshi, Liu, Soljanin 2012]

 [Shah, Lee, Ramchandran 2012]

 [Huang, Pawar, Zhang, 

Ramchandran 2012]

 [Vulimiri, Godfrey, Mittal, Sherry, 

Ratnasamy, Shenker 2013] 

 [Shah, Lee, Ramchandran 2013]

 [Joshi, Liu, Soljanin 2014]

 [Kumar, Tandon, Clancy 2014]

 [Sun, Koksal, Shroff 2016]   

Approximations Exact Analysis

 [Gardner, Doroudi, Harchol-Balter, Hyytiä, 
Scheller-Wolf, Zbarsky] –Sigmetrics 2015

 [Gardner, Harchol-Balter, Scheller-Wolf, 
Zbarsky] – Operations Research 2017.

 [Bonald, Comte  2017]

Analyzing Redundancy is Not Easy…
Requires tracking all copies of a job
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 Every arrival is sent to d servers at random.
Job is “done” as soon as 1st copy completes.

 Poisson arrivals with rate kλ

 Independent runtimes (service times),  
Exponentially-distributed with rate µ

22 22

. . .
𝑑𝑑

. . .

k servers

kλ

Example:  Redundancy-d 
[Gardner, Harchol-Balter, Scheller-Wolf, Zbarsky 2016]

How does
increasing d

affect E[T] ?
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Markov Chain Analysis of Redundancy-d

. . .
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𝑘𝑘𝜆𝜆
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Each job chooses
random subset 
of d servers.

subset
chosen “color”

ci : color of ith arrival

All current jobs in order of arrival
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Markov Chain Analysis of Redundancy-d
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Each job chooses
random subset 
of d servers.

subset
chosen “color”

ci : color of ith arrival

All current jobs in order of arrival
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Results of Exact Analysis: Redundancy-d
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Results of Exact Analysis: Redundancy-d
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. . .
𝑑𝑑

. . .

𝑘𝑘𝜆𝜆

k servers

µExpµExp
µExpµExp

But WHY?

Is more redundancy 
always better?

Maybe only true 
for exponential 
runtimes?
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Results of Exact Analysis
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d1 5 10

But WHY?

Is more redundancy 
always better?

More true for 
more variable 
runtime distributions.

Exponentially-distributed runtimes
Even more variable runtimes
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Results of Exact Analysis
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Problem:

Independent
Runtime Model 

Exponentially-distributed runtimes
Even more variable runtimes

. . .
𝑑𝑑

. . .

𝑘𝑘𝜆𝜆

k servers

µExpµExp
µExpµExp

Same job is assigned 
a new independent 
runtime (service time) 
at each server.  
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 [Koole, Righter 2009]

 [Joshi, Liu, Soljanin 2012]

 [Shah, Lee, Ramchandran 2012]

 [Huang, Pawar, Zhang, 

Ramchandran 2012]

 [Vulimiri, Godfrey, Mittal, Sherry, 

Ratnasamy, Shenker 2013] 

 [Shah, Lee, Ramchandran 2013]

 [Joshi, Liu, Soljanin 2014]

 [Kumar, Tandon, Clancy 2014]

 [Sun, Koksal, Shroff 2016]   

Approximations Exact Analysis

 [Gardner, Doroudi, Harchol-Balter, 
Scheller-Wolf, Zbarsky 2015]

 [Gardner, Harchol-Balter, Scheller-Wolf, 
Zbarsky 2016]

 [Bonald, Comte  2017]

Prior Analytical Work assumes
Independent Runtime Model (IRM)

IRM is  reasonable if 
inherent job size is negligible.

Unreasonable, otherwise.



Introducing S&X model
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server
slowdown

inherent
job size

. . .

𝑑𝑑 = 2

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12

Need to 

Empirical 
server slowdown 
distribution 
[Dolly ‘12]
𝐸𝐸 𝑆𝑆 = 4.7

Traditional Q-theory 
handles only single

“service time” variable.
INADEQUATE
for redundancy.

Ex:  Redundancy-d

[Gardner, 
Harchol-Balter, 
Scheller-Wolf, 
MASCOTS 2016]    



Introducing S&X model
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server
slowdown

inherent
job size

. . .

𝑑𝑑 Runtime = R XS= ⋅
𝑊𝑊ℎ𝑒𝑒𝑒𝑒 𝑑𝑑 = 1,

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12

Need to 

Empirical 
server slowdown 
distribution 
[Dolly ‘12]
𝐸𝐸 𝑆𝑆 = 4.7

Ex:  Redundancy-d

Resp.Time QT RT= = +

𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑟𝑟.
𝑊𝑊ℎ𝑒𝑒𝑒𝑒 𝑑𝑑 > 1, 𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑟𝑟𝑙𝑙𝑒𝑒𝑟𝑟𝑡𝑡 𝑟𝑟𝑜𝑜 𝑑𝑑



Redundancy in S&X: pros/cons
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+ Redundancy  see queue with lesser work

+ Redundancy  see lower server slowdown

- Job with large inherent size 
adds lots of load.

server
slowdown

inherent
job size

. . .

𝑑𝑑
𝑘𝑘𝜆𝜆

𝑘𝑘 𝑟𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟



Redundancy-d in S&X Model
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𝜆𝜆 = 0.3 𝜆𝜆 = 0.7

(simulation results: k = 1000 servers)
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Issues

1. Robustness:  
Replication can create overload in S&X model
Very sensitive to “right d”

2. Analytic Intractability:
Can’t analyze Redundancy-d in S&X model
(our results are from simulation)  

We propose one solution for both issues
34
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Solution: RIQ algorithm

+ Limits extra load  No overload & More robust

+ Analytically tractable (approximately)

S∀
server

slowdown
inherent
job size

X∀
cancellation

cost

Z∀



36

Replicate-to-Idle-Queue (RIQ)

RIQ intuition:
Only adding load if 

system can “take it.”

Arrival queries 𝑑𝑑 random queues
o Replicate at all idle servers of d
o If none idle, pick random queue of d

RIQ policy:

. . .

𝑑𝑑 = 2

RIQ analysis:
Replicas only affect 
first runtime in busy 
period  M/G/1/efs
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RIQ Analysis Sketch

[ | find 1 idle server]E T ≥ [ | find all servers busy]E T

[ ]E T
1 dρ− dρ

Pr{Server is busy}ρ =

Asymptotic Assumption:
queues are independently
busy with probability ρ
(recall d « k)

Arrival queries 𝑑𝑑 random queues (d « k)
o If 𝑡𝑡 > 0 idle  replicate at all 𝑡𝑡
o If all busy  go to random queue

RIQ policy:
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RIQ Analysis Sketch

[ ( )]E R i
[ | find all servers busy]E T

[ ]E T
dρ

Pr{Server is busy}ρ =

Asymptotic Assumption:
queues are independently
busy with probability ρ

Arrival queries 𝑑𝑑 random queues
o If 𝑡𝑡 > 0 idle  replicate at all 𝑡𝑡
o If all busy  go to random queue

RIQ policy:

[ (1)]E R

[ ( )]E R d

[ (2)]E R ( )(1 )i d id
i ρ ρ −−

1 2( ) min( , ,..., )iS SR S Xi = ⋅
𝑅𝑅𝑅𝑅𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑟𝑟𝑒𝑒 𝑡𝑡 𝑟𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟

38
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RIQ Analysis Sketch

[ | find all servers busy]E T

[ ]E T
dρ

Pr{Server is busy}ρ =
[ (1)]E R

[ (2)]E R

[ ( )]E R d𝑡𝑡 > 0 I
idle

servers  job goes to random queue

≡Random
Queue M*/G/1/efs

( ) 11   w.p. (1 )first 1( ) i d id
iG R i ρ ρ− −− −−=

rest (1)G R=
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RIQ Analysis Sketch

[ | find all servers busy]E T

[ ]E T
dρ

Pr{Server is busy}ρ =
[ (1)]E R

[ (2)]E R

[ ( )]E R d𝑡𝑡 > 0 I
idle

servers  job goes to random queue

≡Random
Queue M*/G/1/efs

( ) 11   w.p. (1 )first 1( ) i d id
iG R i ρ ρ− −− −−=

rest (1)G R= idle
dk
k

λ λ= ⋅

1
 busy

1ddk
k d

λ λ ρ −= ⋅ ⋅ ⋅
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Dispatcher

jobs (tasks)

Conclusion  1/4

 Classic task assignment
policies are inadequate
in light of high 
server-side variability

 NEED REDUNDANCY!

43



Conclusion  2/4
 Traditional redundancy analysis,  

based on Independent Runtime Model, 
can lead to misleading conclusions.

“More redundancy
is always better”

E[T]

d

44

. . .
𝑑𝑑

. . .

𝑘𝑘𝜆𝜆

k servers

µExpµExp
µExpµExp

Redundancy-d



Conclusion  3/4
 Introduce S&X model

 Show via simulation that
S&X leads to bathtubs

. . .

𝑑𝑑
. . .
𝑘𝑘𝜆𝜆

𝑘𝑘 𝑟𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟

server
slowdown

inherent
job size

Redundancy-d  in  S&X

E[T]

d

Redundancy-d

 Not robust!
Also, not analytically tractable, 
so can’t find “right” 𝑑𝑑

45



Conclusion  4/4

Arrival queries 𝑑𝑑 random queues

o Replicate at all idle servers of d
o If none idle, pick random queue of d

Replicate-to-Idle-Queue policy:
 Introduced RIQ policy

 Analytically tractable 

in S&X model

 RIQ never in overload

Safe S&X

E[T]

d

RIQ

Redundancy-d

RIQ bound
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Open questions on Replication

Other replication
algorithms

 “Replicate only small jobs” [Dolly]
 “Delay before replicating”

[LATE, Mantri, Hopper]
 “Reserve servers for replicas”

More sophisticated models
 Jobs composed of multiple tasks
 Heterogeneous servers
 Correlated server slowdowns

between consecutive jobs

Math questions

 Convexity of E[T] vs. d curve?
 What is the instability region

for Redundancy-d?
 When does redundancy 

beat no redundancy?

Please email:  harchol@cs.cmu.edu

Scheduling/Fairness
 PS queues
 Priority queues (kidneys)
 Class-based redundancy:

 Pricing for redundancy
 Which class to 

schedule first

47
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