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We consider how to best schedule reparative downtime for a customer-facing online service that is vul- 

nerable to cyber attacks such as malware infections. These infections can cause performance degradation 

(i.e., a slower service rate) and facilitate data theft, both of which have monetary repercussions. Infections 

may go undetected and can only be removed by time-consuming cleanup procedures, which require tem- 

porarily taking the service offline. From a security-oriented perspective, cleanups should be undertaken as 

frequently as possible. From a performance-oriented perspective, frequent cleanups are desirable because 

they maintain faster service, but they are simultaneously undesirable because they lead to more frequent 

downtimes and subsequent loss of revenue. We ask when and how often cleanups should happen. 

In order to analyze various downtime scheduling policies, we combine queueing-theoretic techniques 

with a revenue model to capture the problem’s tradeoffs. Unlike classical repair problems, this problem 

necessitates the analysis of a quasi-birth-death Markov chain, tracking the number of customer requests 

in the system and the (possibly unknown) infection state. We adapt a recent analytic technique, Clear- 

ing Analysis on Phases (CAP), to determine the exact steady-state distribution of the underlying Markov 

chain, which we then use to compute revenue rates and make recommendations. Prior work on down- 

time scheduling under cyber attacks relies on heuristic approaches, with our work being the first to 

address this problem analytically. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Cybercrime is an increasingly costly problem for individuals, 

orporations, and governments alike. The total cost of cybercrime 

n 2018 is estimated at nearly $600 billion worldwide, amount- 

ng to about to 0.8% of the global GDP (see Center for Strategic 

 International Studies, 2018 ). In this paper, we focus in particular 

n cyber attacks with persistent effects that target an online ser- 

ice provider. The effects of such attacks remain until the service 

rovider undertakes a cleanup action. These attacks often take the 

orm of malware (malicious software), including viruses, code in- 

ections, Trojan horses, etc. For simplicity, throughout we will refer 

o these persistent attacks as malware. 

Malware attacks are concerning primarily for two reasons: at- 

acks pose a security threat, while also potentially compromising 

ystem performance ; both are costly. For an online service provider, 
∗ Corresponding author. 
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ecurity threats include the direct theft of money as well as data 

reaches, which expose customers to fraud. These breaches lead 

o substantial legal expenses, tarnish the service provider’s reputa- 

ion, and where applicable, negatively affect the parent company’s 

tock price (see Gatzlaff & McCullough, 2010 ). We refer to these 

ombined monetary losses as security losses . Meanwhile, malware 

lso often leads to performance degradation (see Hughes & De- 

one, 2007 ), which effectively reduces the rate at which a service 

rovider can serve its customers’ requests (hereafter, jobs ). Service 

ate reductions lead to lengthier response times, create an inferior 

ervice experience for the customers, and reduce their willingness 

o pay for the service. The removal of malware, although neces- 

ary, leads to additional performance costs: reboots and lengthier 

leanup procedures require temporarily taking the system offline, 

ausing discarded jobs and downtimes (see Bridwell, 2004; Dia- 

ant, Hsu, Lin, & Scoredos, 2014; Logan & Logan, 2003 ). Malware 

nfections also often act as a scaffolding for even more serious mal- 

are attacks. Malware infections often develop in stages that grow 

orse over time, and hence security and performance costs can in- 

rease sharply if infections are left unaddressed (see Caceres, 2002; 
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uang, Arsenault, & Sood, 2006; Poolsappasit, Dewri, & Ray, 2012 ). 

ore severe malware can also take longer to remove, leading to 

onger downtimes. 

Consider a system administrator that is providing an online ser- 

ice. At a certain point in time, she receives an automated warning 

hat her server is currently overloaded. This could, among other 

hings, be a consequence of (i) a resource leak, (ii) a software bug, 

r (iii) a security breach that consumes system resources. The sys- 

em administrator can take several actions: she could do nothing, 

hich could have negative effects on user experience, user pri- 

acy, and ultimately revenues. Alternatively, she could reboot the 

ystem, at the cost of existing clients, with some chance of re- 

olving the issue. Or she could take the system down, investigate 

hat went wrong, and take time-consuming steps to maximize 

he likelihood that the issue is resolved. These dilemmas are faced 

y system administrators on a regular basis. System administrators 

re not the only ones that face such security-availability tradeoffs; 

imilar dilemmas exist in every deployed system where resources 

re limited (see Bishop, 2012 ) and figuring the right balance is 

urrently an open research question (see Darpa Cyber Grand Chal- 

enge, 2016 ). 

In this paper we investigate how an online service provider 

hould respond to observable changes in the system—whether 

irect evidence of an infection or performance degradation that 

erely suggests the possibility of an infection—in order to maximize 

evenue after accounting for security losses. In essence, we develop 

 mathematical model that addresses the question of “what level 

f threat necessitates a response?” At a first glance, it may ap- 

ear that removing malware as early as possible is always revenue- 

ptimal: early cleanups reduce average security costs, minimize 

erformance degradation, and lead to less time-consuming cleanup 

imes. However, frequent cleanup procedures can be detrimental, 

s they can increase the frequency at which jobs are discarded and 

ead to more downtime (even if individual downtimes are shorter). 

We quantify this tradeoff by presenting a stylized but detailed 

arkovian stochastic model of the service provider’s operations 

nd vulnerability to malware. Customers wait in a queue for ser- 

ice and pay a price that depends on the system’s historic average 

esponse time. Over time, the system becomes infected by mal- 

are in stages . Each successive malware state causes greater secu- 

ity losses, further slows down service, and takes longer to clean. 

ndertaking a cleanup action requires discarding all jobs currently 

n the system (the customers are compensated), and taking the 

ystem offline for a prolonged (random) period of time, before re- 

uming service. Using exact stochastic analysis, we quantify the 

evenue rate associated with cleaning up the system at each stage 

nd assess the performance of various cleanup policies. 

In reality, malware is often difficult to detect, so we also con- 

ider the case where performance degradation can occur due to 

easons other than malware, and only the service rate is visible to 

he service provider; the malware state is hidden. By observing the 

ervice rate, the service provider can infer probabilistic beliefs re- 

arding malware infection and take cleanup actions based on the 

uration of time spent in the current performance degradation state . 

Both the visible and hidden malware models provide an ana- 

ytic challenge. In order to quantify the revenue rate under each 

otential policy, we must understand not only the relative pro- 

ortion of time spent in each malware state, but also the mean 

umber of jobs in the system. We determine this quantity by 

nding the exact limiting probability distribution of a continuous 

ime Markov chain that simultaneously tracks the number of jobs 

n the system (an unbounded quantity) and the system’s current 

alware state. This is a quasi-birth–death process Markov chain 

ith a two-dimensional state space that is infinite in one dimen- 

ion. While chains of this form are notoriously difficult to analyze, 

e employ a novel adaptation of the Clearing Analysis on Phases 
597 
CAP) technique—developed in Doroudi, Fralix, and Harchol-Balter 

2016) —to obtain the chain’s exact limiting distribution, by which 

e obtain exact revenues under various cleanup policies. 

While problems closely related to malware cleanup have been 

ddressed in the literature (see, e.g., Huang et al., 2006 ), to date 

ork in this area has focused on heuristic solutions. We are the 

rst to introduce and solve a mathematical model for the malware 

leanup problem. Aspects of our model resemble models studied in 

he literature on the machine interference problem and condition- 

ased maintenance, but with several distinguishing features (see 

ection 2 for details). 

Our primary contributions are four-fold: (i) on the modeling 

ront, we provide the first stochastic model for determining when 

n online service provider facing performance-degrading malware 

hould perform cleanups; (ii) on the theoretical front, we derive 

he revenue rate for various cleanup policies in closed form—this 

equires solving a complex quasi-birth–death process, which re- 

uires first developing an adaptation of the CAP method; (iii) on 

he practical front, we provide a decision tool that allows practi- 

ioners to evaluate cleanup policies for their systems; (iv) on the 

ase study front, we use our decision tool to highlight some inter- 

sting cases and insights by studying parameter sets provided by 

he security company ForAllSecure, Inc. 

. Literature review 

To date, problems very closely related to the malware cleanup 

roblem have been addressed in the computer security literature 

nly in terms of heuristic approaches. A notable example is in the 

ork of Huang et al. (2006) , which proposes a policy where a sub- 

et of the servers being used by service provider are rotated out 

or cleaning, while ensuring that enough servers are running at 

ny given time. This policy is not a result of stochastic analysis. By 

ontrast, our model assumes a single server system, or a system 

here the servers work together and are prone to becoming si- 

ultaneously compromised (e.g., due to unknown exploitable bugs 

hat are common to all servers). 

The bulk of the literature on the stochastic analysis of malware 

nd intrusions focuses on either malware propagation (see e.g., 

aretto, Gong, & Towsley, 2003 ) or intrusion detection (see e.g., 

ue & Çakanyıldırım, 2010 ). There is also a gradually growing body 

f work—including Cavusoglu, Cavusoglu, and Zhang (2008) and 

ore recently, Bao et al. (2017) —studying security patch update 

anagement in a game-theoretic framework. These streams are 

ot directly applicable to our problem, as our focus is on main- 

aining and removing potential infections from a single vulner- 

ble system. More closely related to our work, is an emerging 

rea of research—first explored in detail in Miehling, Rasouli, and 

eneketzis (2015) and expanded upon by Backman and Ramström 

2018) —employing partially observable Markov decision processes 

o take defense actions in the presence of potentially hidden at- 

acks that probabilistically grow worse over time. Nonetheless our 

ork differs markedly from this stream in that, we explicitly ex- 

mine performance degradation (queueing) effects and therefore 

ur underlying Markovian model has an infinite state space. Hence, 

ur work necessitates different analytic machinery. Analytically, 

ur work most closely resembles the work on machine repair (see 

ections 2.1 and 2.2 ), along with the literature on solving quasi- 

irth–death process Markov chains (see Section 2.3 ). 

.1. Machine interference problems 

The classical machine interference (or repairman ) problem —

urveyed in Haque and Armstrong (2007) —features n machines and 

workers. Machines occasionally break down, and a worker can 

pend some time with a machine to restore it. If the number of 
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achines that have broken down at any point exceeds the number 

f workers, r, then some machines will have to wait until they go 

nto repair (i.e., the machines “interfere” with one another). When 

achines exhibit heterogeneity, the problem is to identify which 

achines should be repaired at any given time. 

In contrast, our problem involves only a single server (ma- 

hine), or equivalently a set of servers that work—and become 

ompromised—together. Many successful cyber attacks involve ex- 

loiting a fundamental software-level problem, and therefore an 

ntire system might become infected at the same time. Therefore, 

he malware cleanup problem asks the question of when to repair 

 system, rather than which subsystem to repair. Nonetheless, there 

s a small body of work within this stream of literature which, like 

ur work, features potentially unbounded queues. These problems 

ften require analyzing a quasi-birth–death process Markov chain. 

Chakka and Mitrani (1994) seek to maximize the total ser- 

ice rate in a multi-server heterogenous queueing system. The 

roblem’s underlying Markov chain is solved numerically via the 

pectral expansion method. A similar model is considered in 

artenhorst (1995) , with each server serving its own parallel 

ueue. In Drekic and Grassmann (2002) , the machines play the 

ole of jobs in a single server queueing system, coming from two 

lasses: low- and high-priority classes form a closed and open sys- 

em, respectively. The underlying Markov chain is solved explicitly 

sing eigenvalues. 

Our Markov chain, however, has features that make it distinct 

rom those in the works cited above. For example, our chain fea- 

ures infinite collections of states which transition directly to one 

f few states, corresponding to the fact that all customer requests 

jobs) must be discarded when initiating a cleanup. 

.2. Condition-based maintenance 

Condition-based maintenance problems ask when (i.e., at what 

ondition level ) failure-prone components of a system should be re- 

aired when such components degrade in performance over time. 

here is a natural tradeoff between repairing components early 

nd often (preventative maintenance) and repairing components 

nly when necessary (corrective maintenance). The former can 

ield more frequent downtimes, while the latter leads to more 

everely degraded components and “unplanned downtime.” For an 

verview of work in this area, see Alaswad and Xiang (2017) . 

The malware cleanup problem proposed in this paper can be 

hought of as a type of condition-based maintenance problem. 

he fundamental difference between our problem and the litera- 

ure in this domain is that we consider a single component sys- 

em, where the component serves jobs in a potentially unbounded 

ueue. Therefore, our problem has an infinite state space, whereas 

he work in this area primarily focuses on finite state spaces. Main- 

enance actions (cleanup procedures) require the removal of all 

obs in the queue, triggering an additional loss of revenue, which 

ighlights the necessity of tracking the job count in the system. 

pproximations that forego tracking the job count are inadequate 

see Doroudi, 2016 ). A maintenance model that—like our work—

onsiders an infinite-state queueing system appears in a recent pa- 

er by Ejaz, Alvarado, Gautam, Gebraeel, and Lawley (2019) ; they 

tudy an M/G/1 system with multiple performance degradation 

tates that can be remedied through corrective actions. As in our 

ork, they seek to understand at what degradation level these cor- 

ective actions should be undertaken. However, all of their perfor- 

ance degradation states, except for the terminal state 1 allow the 

erver to continue operating at full speed, and moreover, in their 
1 They call this state “catastrophic failure” and it is roughly analogous to our dead 

tate. 

p

w

a

m
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odel corrective actions only cause a halt in service, whereas in 

ur model cleanups also require discard existing jobs and barring 

urther arrivals until cleanup completion. Furthermore, their paper 

oes not consider hidden states. 

Prior work has considered condition-based maintenance in 

he presence of hidden variables. For example, in Bunks, Mc- 

arthy, and Al-Ani (20 0 0) decisions and inferences are made in 

 condition-based maintenance setting using a Hidden Markov 

odel (HMM), while Lin and Makis (2003) use a modified HMM 

ith a completely observable failure state. In Makis and Jiang 

2003) , an optimal stopping time framework is used to approach 

 similar problem. Problems in this area are often modeled as par- 

ially observable Markov decision processes (POMDPs): examples 

nclude the work of Byon and Ding (2010) , where the problem 

s solved using a backward dynamic programming method, and 

hat of Naderkhani and Makis (2015) , which addresses a problem 

here there is a cost to sampling the system state. While our 

odel can be formulated as a POMDP (see our concluding remarks 

n Section 5 ), complexities that arise in our revenue rate function—

ue to dealing with an infinite state space problem—make the 

ethods used in these papers unsuitable for our setting. 

.3. Methods for solving quasi-birth–death process Markov chains 

Quasi-birth–death (QBD) processes are used to model a vari- 

ty of phenomena. Despite the difficulties associated with finding 

imiting distributions for such chains, several techniques are avail- 

ble for analyzing specific subclasses of QBDs, the most common 

eing matrix-geometric methods (see Neuts, 1981 and Latouche & 

amaswami, 1999 ). These methods are typically implemented nu- 

erically and do not generally allow for closed-form solutions. 

Within the matrix-geometric literature, there are methods 

hich can find closed-form solutions for special classes of QBDs. 

he method given in Van Houdt and van Leeuwaarden (2011) can 

nd the limiting distribution of the chain describing our visible 

alware model, but is not directly applicable to our hidden model. 

he hidden model’s QBD has a directed acyclic graph (DAG) phase 

ransition structure, whereas the method in question is presented 

n the context of tree-like transitions. Outside the matrix-geometric 

iterature, the Recursive Renewal Reward method (see Gandhi, 

oroudi, Harchol-Balter, & Scheller-Wolf, 2013; Gandhi, Doroudi, 

archol-Balter, & Scheller-Wolf, 2014 ), can find closed-form solu- 

ions for chains with a DAG-like transitions in terms of means and 

ransforms, but not complete distributions. 

In this paper we employ the Clearing Analysis on Phases (CAP) 

ethod, first introduced in Doroudi et al. (2016) . The CAP method 

ields exact closed-form solutions for the chain’s entire limiting 

robability distribution by viewing each phase of a QBD as act- 

ng like an M/M/1 model with clearing events. This makes the CAP 

ethod a natural fit for our model, as it features clearing events 

correspond to the start of a cleanup procedure, which requires 

iscarding all jobs). 

. The case of visible malware 

When a host becomes infected by malware, there are two pos- 

ibilities: (i) the system administrator knows of the infection and 

eeds to make a decision regarding whether a cleanup process 

hould be initiated and (ii) the system administrator does not 

now that the host has been infected. In this section, we deal with 

he first case, where malware infections are always visible. While 

his case is certainly simpler, it is of interest for two reasons: (i) it 

rovides a stylized simplification of the malware problem, which 

ill lend itself to easier analysis and interpretation and (ii) it is an 

ppropriate model for “unsophisticated malware,” which serves as 

ore of a nuisance, than a real threat. 
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Fig. 1. The continuous time Markov chain (CTMC) tracking the malware state and 

the number of jobs in the system, assuming no system administration. Transitions 

across malware states preserve the number of jobs. The service rate drops with 

each successive malware state. As there are no cleanups, this chain is not ergodic. 
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.1. Visible malware model 

In the visible malware model, the system can be in one of 

our states ( s ) depending on the severity of malware present, if 

ny: normal (uninfected), bad , worse , and dead . In each succes- 

ive state, (i) security losses rise, (ii) performance (the service rate) 

rops, and (iii) the time required to remove malware increases. For 

ractability, all transition rates are Markovian (i.e., memoryless). 

.1.1. Queueing model 

We consider a revenue-maximizing online service provider, fac- 

ng a stream of incoming customers. Customer requests (hereafter, 

obs ) arrive to a first-come-first-serve queue according to a Poisson 

rocess with rate λ and are served by a single server 2 at some ser- 

ice rate μ, which can drop due to malware; service times are ex- 

onentially distributed. We let T be a job’s response time (i.e., T is 

he duration from a job’s arrival until it is served or discarded). We 

ssume that the steady-state average response time E [ T ] —which 

ill be based on the service provider’s decisions—is known to both 

he service provider and the customers (e.g., via historically avail- 

ble data). 

.1.2. Visible malware evolution 

The server can become infected by malware in stages. Initially, 

he system is in the normal state, but will become infected by bad 

alware after an amount of time that is exponentially distributed 

ith rate αbad . Similarly, there are transitions from bad to worse 

resp. worse to dead ) with rate αworse (resp. αdead ). We restrict 

ttention to the case where malware infections occur in sequen- 

ial stages ; no stage can be skipped. 3 The model’s accuracy can be 

ncreased by considering states beyond these four, but we main- 

ain that using four states allows for an appropriate level of detail, 

iven our aim of providing a stylized model. 

Malware causes the service provider to incur security losses 

e.g., monetary theft, data theft, loss of good will, etc.) and also 

auses the service rate to drop. The average rate of loss (in dollars 

er second) and service rate in state s are given by � s and μs , re-

pectively (e.g., � bad and μslow 

in bad ). Moreover, � dead ≥ � worse ≥
 bad ≥ � normal = 0 , while μfast ≥ μslow 

≥ μslower > μdead = 0 . 4 

The Markovian transition structures allow us to model the sys- 

em as a continuous time Markov chain (CTMC) tracking the sys- 

em’s malware state and number of jobs in the system ( job count ) 

. Fig. 1 shows our model’s CTMC assuming no cleanup events. 

ote that without cleanups, the chain is non-ergodic, as the job 

ount grows without bound once we reach the dead state. We next 

ntroduce the available cleanup policies, which will lead to modifi- 

ations of this chain that will make it ergodic. 

.1.3. Visible malware cleanup 

A system infected by malware can be restored to full speed by a 

leanup procedure during which all existing jobs are discarded (re- 

used service and refunded, see Section 3.1.4 ), and the system stops 

dmitting jobs for a random duration of time. When the cleanup 

s complete, the system is restored to the normal state and re- 

umes accepting jobs. The length of time devoted to the cleanup 

rocedure depends on the current malware state, as more severe 
2 The single-server assumption is for simplicity; our methodology can accommo- 

ate multiple servers. 
3 This is for expository simplicity; our methodology can accommodate skipping 

alware states. 
4 We assume that the system is unusable in the dead state, but we make no 

ssumptions regarding the relationship between λ and the other μs ; even if the 

ystem is “overloaded” in state s because λ > μs , the system will still be ergodic as 

t will eventually be cleaned (and therefore, emptied) upon reaching the dead state, 

f not earlier. That said, in any real-world application, we would at least expect 

< μfast . 

l
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a  

c
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o
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alware takes longer to remove. The cleanup procedure lasts an 

mount of time that is exponentially distributed with rate βs when 

nitiated in state s . 5 For simplicity, we assume that there are no se- 

urity losses during cleanups. 

In the visible malware setting, we have the following cleanup 

olicies: c@bad (“clean at bad ”), c@worse (“clean at worse ”), and 

@dead (“clean at dead ”), which immediately clean the system 

hen (and only when) the system transitions to the correspond- 

ng malware state. 

.1.4. Pricing and revenue model 

We assume that customers are risk neutral and rational, opting 

o use the service if their service valuation equals or exceeds their 

otal expected costs. Moreover, we assume that they are homoge- 

eous in their service valuation q and cost of delay (in dollars per 

econd), c. Hence, the expected cost experienced by each customer 

s p + c · E [ T ] , where p is the price (in dollars) of the service and

 [ T ] is the expected response time (in seconds). Consequently, as 

ong as the service provider charges no more than q − c · E [ T ] , cus-

omers will pay for the service, and since the service provider will 

pt to maximize its profits, they will charge precisely the maxi- 

um price that would still elicit customers to use the service, i.e., 

p ≡ q − c · E [ T ] . Should a job be discarded (either while queued or

n service), the customer is refunded q (i.e., she pays nothing and 

eeps q − p = c · E [ T ] as compensation for waiting some time be-

ore being informed that her job will not be served) and the firm 

ncurs a revenue loss of c · E [ T ] for that customer. 

The service provider’s objective is to implement a malware 

leanup policy that maximizes the rate at which it earns rev- 

nue (less refund and security losses); we can express the ser- 

ice provider’s revenue rate by observing that the service provider 

arns q for each customer that completes service, while incurring a 

oss of c per second for each job in the system (whether or not that 

ustomer is ultimately served; recall that customers whose jobs 

re not served are still compensated c · E [ T ] ), and potentially in-

urring additional security losses each second. Hence, the server’s 

evenue rate is R ≡ qχ − c · E [ N] − L , where q and c are as previ-

usly defined, χ is the system’s throughput (i.e., the average rate 
5 Cleanup durations can actually take on any other distribution. The analysis and 

esults will remain unchanged, as long as the mean cleanup duration is still given 

y 1 /βs when initiated in state s . 
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Fig. 2. The continuous time Markov chain (CTMC) tracking both the malware state and the number of jobs under the c@dead policy. Each phase (pictured as a “row” of 

states) is an infinite collection of states (tracking the number of jobs N) associated with one of the malware states. Transitions from one phase to another preserve the 

number of jobs and always move to a higher-numbered phase (pictured as “downward”). Rather than transitioning to another phase, the states in Phase 2 transition to the 

clean state, where all jobs are discarded. 
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6 Our method requires that all r k be distinct, which is the case for all but a zero 

measure set of parameter settings. 
t which jobs are served), E [ N] is the steady-state time average 

ob count, and L is the average rate at which security losses are 

ncurred. 

.2. Visible malware analysis 

Before analyzing R , we define some additional notation. 

et πnormal , πbad , πworse , and πdead be the long-run steady- 

tate proportion of time spent in the normal , bad , worse , and

ead states, respectively, under a given policy. We can im- 

ediately observe that πbad = 0 under c@bad , πworse = 0 un- 

er both c@bad and c@worse , while πdead = 0 under all poli- 

ies. We can now write L = � bad πbad + � worse πworse + � dead πdead = 

 bad πbad + � worse πworse and consequently, R = qχ − c · E [ N] − L = 

χ − c · E [ N] − � bad πbad − � worse πworse . Finding R under each policy 

equires finding χ, E [ N] , πbad , and πworse under that policy. While 

bad and πdead can be found by analyzing a finite-state Markov 

hain tracking only the malware state , determining χ and E [ N] ex- 

ctly requires analyzing a two-dimensional infinite state Markov 

hain, which we accomplish using the Clearing Analysis on Phases 

CAP) method. In the interest of brevity, we present the detailed 

nalysis of only the most complicated policy, c@dead . For each 

olicy we view our model as a CTMC capturing the malware state 

nd the job count. Fig. 2 shows the c@dead CTMC. 

Each malware state corresponds to a phase of the CTMC, an in- 

nite collection of states that comprise a birth–death process, but 

ith additional transition rates to other phases. In the c@dead 

TMC, Phases 0, 1, and 2 correspond to the normal , bad , and

orse malware states, respectively. We also introduce the clean 

alware state: the system is in this state when it is undergoing a 

leanup procedure. The clean state is a single state, not a phase, as 

e always have N = 0 when cleaning. 

We call attention to the fact that transitions only exist from 

ower-numbered phases to higher-numbered phases, which is es- 

ential for allowing the CAP method to obtain exact solutions. The 

AP method treats each phase as an M/M/1 clearing model —an 

/M/1 chain with identical rates from each state leading to a clear- 

ng event —where clearing events either lead to a higher-numbered 

hase or directly to the clean state. 

In order to apply the CAP method, we introduce some notation. 

et π(m, j) be the limiting probability of being in Phase m with N = 
600 
j ≥ 0 jobs in the system and let πclean be the limiting probability 

f being in the clean state. Let μm 

be the Phase m service rate 

i.e., μ0 = μfast , μ1 = μslow 

, μ2 = μslower ) and let αm 

be the rate 

t which the system leaves Phase m (i.e., α0 = αbad , α1 = αworse , 

2 = αdead ). 

We find limiting probabilities in the form π(m, j) = 

∑ m 

k =0 a m,k r 
j 

k 
, 

here r k is the base term 

6 for Phase k, 

 k ≡
λ + μk + αk −

√ 

(λ + μk + αk ) 2 − 4 λμk 

2 μk 

, 

nd the coefficients a m,k ( 0 ≤ k ≤ m ≤ 2 ) are values associated with

he relationship between Phases m and k . This form is convenient 

or computing E [ N] and χ via geometric series. 

Determining the limiting distribution of the c@dead CTMC re- 

uires only determining the a m,k coefficients, together with πclean . 

hese variables, together with the redundant π(m, 0) variables, are 

he solutions to a system of linear equations, VS , which are a com- 

ination of balance equations and relationships which are derived 

ia the CAP method. In Doroudi et al. (2016) , the CTMCs of in-

erest do not feature clearing events which return directly to the 

on-repeating portion (in the case of the c@dead policy, these are 

he transitions with rate αdead from Phase 2 to the clean state), 

lthough it is mentioned that the CAP method can be extended 

o cover such transitions. We adapt the CAP method to allow it 

o apply to such CTMCs by modifying the balance equation asso- 

iated with πclean to take into account the additional transitions 

nto πclean and by considering αdead as a component of α2 , the to- 

al outgoing transition rate leaving Phase 2 (in this case, we have 

2 = αdead ). Closed-form solutions for the limiting probability dis- 

ribution of the CTMC can be obtained by symbolically solving VS 

or the a m,k , πclean , and π(m, 0) variables, although the resulting ex- 

ressions will not be concise. Most importantly, the solutions will 

e exact, rather than approximations. Applying our adaptation of 

he CAP method (see Appendix A in the online supplement for de- 
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performance degradation effect. 
ails), the system, VS , is as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 0 , 0 = π(0 , 0) π(0 , 0) = 

βdead πclean + μ0 r 0 a 0 , 0 
λ+ α0 

a 1 , 0 = 

r 0 r 1 α0 a 0 , 0 
(λ−μ1 r 0 r 1 )(r 0 −r 1 ) 

π(1 , 0) = 

μ1 (r 0 a 1 , 0 + r 1 a 1 , 1 )+ α0 π(0 , 0) 

λ+ α1 

a 1 , 1 = π(1 , 0) − a 1 , 0 π(2 , 0) = 

μ2 (r 0 a 2 , 0 + r 1 a 2 , 1 + r 2 a 2 , 2 )+ α1 π(1 , 0) 

λ+ α2 

a 2 , 0 = 

r 0 r 2 α1 a 1 , 0 
(λ−μ2 r 0 r 2 )(r 0 −r 2 ) 

πclean = 

α2 

βdead 

(
a 2 , 0 

1 −r 0 
+ 

a 2 , 1 
1 −r 1 

+ 

a 2 , 2 
1 −r 2 

)
a 2 , 1 = 

r 1 r 2 α1 a 1 , 1 
(λ−μ2 r 1 r 2 )(r 1 −r 2 ) 

1 = πclean + 

a 0 , 0 + a 1 , 0 + a 2 , 0 
1 −r 0 

+ 

a 1 , 1 + a 2 , 1 
1 −r 1 

+ 

a 2 , 2 
1 −r 2 

a 2 , 2 = π(2 , 0) − a 2 , 0 − a 2 , 1 . 

With the limiting probabilities determined in a convenient (if 

ot concise) form, we can compute E [ N] and χ in terms of πclean 

nd the a m,k coefficients. Straightforward sum identities yield 

 [ N] = 

∞ ∑ 

j=0 

j · P (N = j) = 

(a 0 , 0 + a 1 , 0 + a 2 , 0 ) r 0 
(1 − r 0 ) 2 

+ 

(a 1 , 1 + a 2 , 1 ) r 1 
(1 − r 1 ) 2 

+ 

a 2 , 2 r 2 
(1 − r 2 ) 2 

. 

ext, we compute χ, the rate at which jobs are served, excluding 

obs that are discarded due to being in the system at the start of a

leanup. Since jobs only arrive when the system is in a non- clean 

tate, the average arrival rate is λ(1 − πclean ) . Moreover, every job 

rriving to the system is eventually either served or discarded, so 

= λ(1 − πclean ) − η where η is the discard rate. To compute η, 

e observe that since jobs are only discarded upon transitions to 

lean , η is the rate of such transitions clean (i.e., αdead · πworse ) 

ultiplied by the time average of the number of jobs at such times 

i.e., E [ N| worse ] ). Hence, we have 

= λ(1 − πclean ) − η = λ(1 − πclean ) − αdead πworse · E [ N| worse ] 

= λ(1 − πclean ) − αdead 

∞ ∑ 

j=0 

jπ(2 , j) 

= λ(1 − πclean ) − αdead 

(
a 2 , 0 r 0 

(1 − r 0 ) 2 
+ 

a 2 , 1 r 1 
(1 − r 1 ) 2 

+ 

a 2 , 2 r 2 
(1 − r 2 ) 2 

)
. 

inding R also requires finding the likelihood of being in 

ach malware state: πbad = 

∑ ∞ 

j=0 π(1 , j) = 

a 1 , 0 + a 1 , 1 
1 −r 1 

and πworse = 

 ∞ 

j=0 π(2 , j) = 

a 2 , 0 + a 2 , 1 + a 2 , 2 
1 −r 2 

. Finally, we have 

 = qχ − c · E [ N] − � bad πbad − � worse πworse 

= λq (1 − πclean ) − qαdead 

(
a 2 , 0 r 0 

(1 − r 0 ) 2 
+ 

a 2 , 1 r 1 
(1 − r 1 ) 2 

+ 

a 2 , 2 r 2 
(1 − r 2 ) 2 

)
− c 

(
(a 0 , 0 + a 1 , 0 + a 2 , 0 ) r 0 

(1 − r 0 ) 2 
+ 

(a 1 , 1 + a 2 , 1 ) r 1 
(1 − r 1 ) 2 

+ 

a 2 , 2 r 2 
(1 − r 2 ) 2 

)

− � bad 

(
a 1 , 0 + a 1 , 1 

1 − r 1 

)
− � worse 

(
a 2 , 0 + a 2 , 1 + a 2 , 2 

1 − r 2 

)
, 

n exact determination of R under the c@dead policy, again in 

erms of πclean and the a m,k coefficients. 

This exact expression for the revenue rate R allows us to in- 

estigate the effect of various parameters on both revenue and 

n the optimal choice of cleanup policy. It turns out that for 

early all “realistic” parameter sets examined, c@bad outperforms 

@worse , which outperforms c@dead . We have only found these 

rends to be reversed under artificial and unrealistic parameter 

onfigurations. Essentially, if you know you have been infected, you 

hould clean the system as soon as possible. This observation vali- 

ates common practices among practitioners when responding to a 

nown infection. The best courses of action under hidden malware, 

owever, will be much more subtle and complex. 

. The case of hidden malware 

In this section we consider hidden malware, which is detectable 

nly in the dead state. This case is of interest because it more ac- 

urately models the types of malware that pose serious threats to 
601 
 system’s security. Attackers often want their attacks to go unde- 

ected, but even stealthy malware attacks can have observable ef- 

ects on the system, including performance degradation . While the 

ervice provider cannot know whether they have been infected by 

alware or not, they can still monitor their system and observe 

erformance degradation. However, malware is not the only reason 

hat a system may be suffering from performance degradation; the 

egradation may be due to memory (or other resource) leaks, lock- 

ng bugs, outdated software, or other external factors. For this rea- 

on, we model performance degradation and malware separately (for 

 discussion of performance anomalies and some ways they can 

e mitigated, see Tan et al., 2012 ). At any given time, the system’s 

erformance state is observable but its malware state is unobservable . 

The remainder of this section is organized as follows: we first 

over the Hidden Malware Model—including some basic cleanup 

olicies—in Section 4.1 . Next, we temporarily defer the presenta- 

ion of our analysis, and instead in Section 4.2 , we consider a case 

tudy where we evaluate the performance of these basic policies. 

uided by the insights we discover, we also propose and explore 

he performance of several additional policies throughout the sub- 

ection. Finally, in Section 4.3 we present the analysis of cleanup 

olicies in the case of hidden malware that enabled our findings 

n our case study. 

.1. Hidden malware model 

In the hidden malware model, as in the visible malware model, 

he system can be in one of four malware states: normal (unin- 

ected), bad , worse , and dead , with each successive malware state 

eading to higher security costs and slower performance. Addi- 

ionally, a non- dead system can be in one of three performance 

tates: fast , slow , and slower , serving jobs at rates μfast , μslow 

, 

nd μslower , respectively. While the performance state can be ob- 

erved, the malware state is unobservable unless the system is 

ead . However, there is a correlation structure between the per- 

ormance and malware states. 7 In particular, we assume that due 

o the resource-hungry nature of malware, 8 a fast system is nec- 

ssarily normal , but a slow system can be either in the normal 

r bad state, and a slower system can be in any of the non- dead

tates. 

The queueing, pricing, and revenue models are identical 

o those in the visible malware case; the objective remains 

o maximize R = qχ − c · E [ N] − L = qχ − c · E [ N] − � bad πbad −
 worse πworse . While the service rate of the system depends on 

he system’s performance state , only actual malware (and not 

erformance) contributes to security loss (i.e., L depends directly 

n πdead and πbad rather than on πslow 

and πslower ). 

.1.1. Hidden malware evolution 

The server can become infected by malware and/or degrade in 

erformance in stages, as shown in Fig. 3 (note that the chains of 

nterest must still track the number of jobs), but only the perfor- 

ance state is observable. Initially, the system is normal and fast . 

 system in the fast state experiences non-malware performance 

egradation that causes it to become slow (after an exponentially 

istributed duration of time) with rate γslow 

, and a slow system 

ecomes slower with rate γslower in the same way. A system also 

volves form normal to bad to worse to dead due to malware (af- 

er an exponentially distributed duration of time) with rates αbad , 

worse , and αdead , respectively. If a fast system just became bad , 
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Fig. 3. The CTMC for the evolution of performance degradation and malware infection on a system under the hidden malware model without system administration. The 

number of jobs has been omitted, but can be viewed as being tracked by states coming “out of the page” in the third-dimension. 
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he resource-hungry nature of the malware will cause it to imme- 

iately become slow (a slow or slower system does not change 

peed when it becomes bad ). 9 Similarly, if a slow system just 

ecame worse , it immediately becomes slower . Unlike the other 

alware states, the dead state is not hidden. 

.1.2. Hidden malware cleanup 

A system potentially infected by hidden malware can be purged 

f malware (if any) and restored to full speed by a cleanup proce- 

ure. As before, such a cleanup procedure requires that all existing 

obs are discarded from the system (customers are refused service 

nd refunded q ), and the system stops admitting customers for a 

uration of time until the system is restored to the normal and 

ast state. The length of time devoted to the cleanup procedure de- 

ends on the worst possible malware that could have infected the 

ystem—based on our model—and hence, this duration actually de- 

ends on the performance state. We call this the pessimistic cleanup 

ssumption (e.g., a normal slower system takes the same amount 

f time to clean as a worse slower system). The cleanup procedure 

asts an amount of time that is exponentially distributed with rate 

bad , βworse , or βdead when initiating the procedure in the slow , 

lower , or dead state, respectively; 10 that is, due to the pessimistic 

leanup assumption, we clean a slow system as if it was bad and a 

lower system as if it was worse . We again assume that there are

o security losses during cleanup. 

In the setting with hidden malware, we can again consider the 

leanup policies that we examined in the case of visible malware, 

ut modifying them to respond to a change in the performance 

tate, rather than the now unobservable malware state. This results 

n the c@slow , c@slower , and c@dead policies, which clean the 

ystem immediately upon a transitioning to the slow , slower , or 

ead state, respectively. 

.2. Hidden malware case study 

In this section, we use our ability to compute exact revenue 

ates under the hidden malware model in order to evaluate and 
9 If a system is already slow when it becomes bad , we assume that the system is 

low enough to obfuscate the impact of malware on performance, and hence does 

ot cause a drop in performance. Alternatively, we could model this complexity 

ith additional states if desired. 
10 As in the case of visible malware, the analysis and results remain unchanged if 

he cleanup durations are drawn from non-exponential distributions with the same 

eans. 

u

o

s

p

c

602 
ompare various cleanup policies. Due to our large parameter 

pace (14 dimensions after normalizing time and money), we can- 

ot exhaustively study the impact of all parameters on R . While no 

ingle parameter set is representative of all systems, after consult- 

ng with the security company ForAllSecure, Inc., we chose a “de- 

ault” parameter set that would be realistic in actual deployments 

ith relatively frequent degradation and infection events. The de- 

ault parameter set—denoted by P and presented in Table 1 —allows 

s to keep most parameters fixed while varying one or two pa- 

ameter at a time in order to observe the impact of various real- 

orld phenomena on our system. Due to substantial security costs, 

@dead performs poorly on all realistic cases, so for simplicity, we 

mit this policy from our results figures. 

Our case study will focus on answering the following questions: 

1. Can we gain more by improving cleanup speeds or improving 

intrusion detection? 

2. Should we act immediately upon a performance degradation 

event or delay our cleanup actions? 

3. What do we gain from incorporating queue length (job count) 

information into cleanup decisions? 

In answering these questions in this case, we draw several in- 

ights regarding the malware cleanup problem. 

.2.1. Improving cleanup speeds vs. improving intrusion detection 

There are several ways in which a service provider can invest 

esources into delivering a more robust service with the hopes of 

enerating greater revenue. In the setting of hidden malware, two 

uch avenues of improvement are (i) improving cleanup speeds (e.g., 

y hiring additional staff when a potential problem is identified, or 

y automating more steps associated with the cleanup procedure) 

nd improving intrusion detection (e.g., by developing or purchasing 

n intrusion detection software which can reliably inform the sys- 

em administrator of an attack). We explore the benefits that arise 

rom both of these approaches. 11 

In order to quantify the benefits of improving cleanup speeds 

nder the P parameter set, we leave βbad fixed at 10 −2 per sec- 

nd, and let βworse = βbad /z and βdead = βworse /z = βbad /z 2 , and 

ubsequently evaluate R (under both the c@slow and c@slower 

olicies) as the free parameter z varies from 1 to 21. The lower z
11 For simplicity, we do not make claims about how much such improvements 

ost and to what extent they are feasible. 
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Table 1 

The default parameter set P used throughout our case study. Recall the various families of parameters: λ (arrival rate), μ (service rates), α (malware infection rates), γ

(non-malware degradation rates), β (cleanup rates), q (price of hypothetical delay-free service), c (waiting cost rate), and � (security loss rates). 

Default parameter set 

1 per second $ $ per second 

λ μfast μslow μslower αbad αworse αdead γslow γslower βbad βworse βdead q c � bad � worse 

P 10 30 14 10.1 10 −3 10 −4 10 −7 10 −2 10 −3 10 −2 10 −3 10 −4 1 0.05 0.5 5 

Fig. 4. Revenue rate R under default parameter set P , as a function of z, where 

z = βbad /βworse = βworse /βdead , with βbad kept fixed at its default value of 10 −2 . 

The c@slow policy exhibits constant performance (as it only depends on the 

fixed cleanup rate βbad ), while c@slower exhibits a convex decline, outperform- 

ing c@slow for low z. The hypothetical omni policy outperforms all other policies. 

The unlabeled curve is a hypothetical policy that attempts to mimic omni by using 

sequential cleanups. 
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s, the faster a slower (or dead ) system can be cleaned. In particu- 

ar, z = 10 corresponds to the default cleanup rates under P with- 

ut modifications. Therefore, z � 10 corresponds to a significant 

nvestment in improving cleanup speeds. Meanwhile, we quantify 

he maximum possible benefits from improving intrusion detection 

y also evaluating R under a hypothetical policy, which we call 

mni (the “omniscient” policy) across the same range of values for 

. This is a policy that can (i) actually observe the malware state 

f the system, (ii) ignore the pessimistic cleaning assumption, and 

iii) choose an optimal subset of joint malware-performance states 

n which to initiate cleanups; a detailed description of this hypo- 

hetical policy is provided in Appendix B in the online supplement. 

he revenue rates are plotted in Fig. 4 . 

We first observe that under c@slow , R is constant in z. This 

s because under c@slow , one never reaches (let alone initiates 

 cleanup in) the slower or dead state; hence, R depends only 

n βbad and not on βworse or βdead . Meanwhile, c@slower outper- 

orms c@slow for low values of z, exhibiting a convex decline. This 

hape is apparent across a wide range of realistic system param- 

ters (and it can be proven to be a hyperbola). We also observe 

hat at z = 1 , R under c@slower matches that under omni . To un-

erstand why, we note that omni behaves like c@slower for low 

alues of z, except that omni circumvents the pessimistic clean- 

ng assumption (it cleans based on the actual malware state rather 

han on performance state). At z = 1 , however, omni and c@slower 

chieve the same revenue rate, because cleaning a slower system 

oes not take less time if one is aware of the kind of malware

resent (if any) when βbad = βworse (i.e., when z = 1 ). Eventually 

visible in the figure at z ≈ 13 . 2 ), the omni policy will clean a sys-

em as soon as it is slower or bad . We can conclude that intru-

ion detection can significantly improve the profitability of a sys- 

em, but so can reducing the time required to cleanup more seri- 

us problems on a system. In this case, the benefits from perfect 

ntrusion detection outweigh those from all but the most extreme 
603 
mprovements in cleanup speeds, suggesting that improving intru- 

ion detection should be a higher priority. 

In fact, it turns out that much of the benefit in the hypothet- 

cal omni policy is due to the fact that it is not bound by the

essimistic cleaning assumption (i.e., it does not need to imple- 

ent a lengthy cleanup procedure if a slower system is not in the 

orse malware state). It can be tempting to mimic this advan- 

age even when malware is not observable by cleaning a slower 

ystem by using a shorter cleanup (i.e., with cleaning rate βbad ). 

hen, if at the conclusion of that cleanup the system is still slug- 

ish (observed to be in the slower state due to lingering malware 

hat was not removed by the quick cleanup), one can implement a 

engthier cleanup (i.e., with cleaning rate βworse ) that is guaranteed 

o remove the malware. The impressive performance of this “se- 

uential” cleanup policy is shown by the unlabeled curve in Fig. 4 . 

nfortunately, such a policy may not always be implementable in 

ractice, as it might be a poor security practice to perform an 

nsufficient cleanup procedure when there is reason to suspect a 

erious infection. However, whenever such a policy is considered 

safe enough,” it is a strong alternative to improving intrusion de- 

ection. For example, before formatting a system that appears to 

e potentially infected, it may pay off to perform a quick reboot to 

ee if the problem persists. In practitioners’ terms, this is “trying 

he easy solution first.”

We conclude that for our case study, intrusion detection is 

referable to improving cleanup speeds (if one must choose only 

ne and the two improvement costs are comparable) whenever 

ear-perfect intrusion is possible, unless it is safe to use a se- 

uence of progressively lengthier cleanups when dealing with a 

ystem in the slower state. However, we must acknowledge that 

he omni policy is a hypothetical policy, and that perfect intrusion 

etection cannot exist in practice. Nevertheless, while we cannot 

ctually detect malware perfectly, the fact that—in many typical 

arameter sets such as P —hidden malware infection occurs at a 

onsiderably lower frequency than natural performance degrada- 

ion should not be overlooked. We proceed to develop a family of 

olicies that can leverage this fact. 

.2.2. Delaying cleanups 

It is natural to ask whether a system should be cleaned as soon 

s one reaches a “target” performance degradation state, or if the 

leanup procedure should be delayed once such a “target” state 

as been reached. The rationale for such a delay is that the ser- 

ice provider may be content with slower performance, but not 

ith malware infections. In particular, since αbad = 10 γslow 

under 

 , a transition to the slow state is unlikely to suggest that the sys-

em has been infected by bad malware, and one can persist in a 

low system for a considerable period of time with little risk of 

eing unknowingly infected. But how much of an improvement in 

 can we expect if we introduce such delays? In order to explore 

uch delays, we formally introduce the following two parameter- 

zed families of policies: 

• dc@slow (ξ ) (“delayed clean at slow ” with rate ξ ): After the 

system transitions to the slow state, wait an amount of time 

that is exponentially distributed with rate ξ , then clean; clean 

immediately upon transitioning to slower . 
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Fig. 5. Revenue rate R under the default parameter set P , as a function of the mean 

delay before initiating cleanup actions 1 /ξ . The revenue rate R appears to be con- 

cave in 1 /ξ , with both policy families benefiting from the introduction of a modest 

delay. However, under both policy families, R eventually attains a local maximum 

in 1 /ξ , and there is a subsequent decrease in profitability as 1 /ξ increases further. 

At their respective optimal ξ values, dc@slower (ξ ) outperforms dc@slow (ξ ) . 
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• dc@slower (ξ ) (“delayed clean at slower ” with rate ξ ): After 

the system transitions to the slower state, wait an amount of 

time that is exponentially distributed with rate ξ , then clean; 

clean immediately upon transitioning to dead . 

If the delays were deterministic rather than random, one could 

otentially obtain even greater revenue rates: a random delay is a 

ottery over a continuum of deterministic delays (with a potentially 

ew outcome after every cleanup event), and so the best policy 

mong the support of this lottery will do no worse than the lot- 

ery itself. We restrict attention to exponentially distributed delays 

or the purpose of tractability, in order to maintain a Markovian 

tructure. 12 

We proceed to explore the benefits of implementing such de- 

ays by evaluating R under the dc@slow (ξ ) and dc@slower (ξ ) 

olicies for the parameter set P . Fig. 5 shows a comparison of 

he revenue rates under these cleanup policies as a function of 

he mean cleanup delay 1 /ξ . We observe that for this parame- 

er set, there is a significant benefit to implementing a delay un- 

er both policies. In fact, introducing such delays is beneficial in 

early all systems, except those where performance degradation 

nd/or malware is so costly that these costs dwarf the detrimental 

mpact of frequent cleanups. Here, the best performing policy is 

c@slower (1 / 696) , attaining a revenue rate of R ≈ 166 . 74 (mea- 

ured in millions of dollars per year). The sensitivity of these re- 

ults is explored in Appendix C in the online supplement. While 

e anticipate robustness to small measurement or estimation er- 

ors in a single parameter (except possibly λ and μslower as they 

re very close to one another in the default parameter set P ), mod- 

st to large errors in measuring γslower , βbad , βworse , q, or c can be 

ostly in the sense that they can lead to the implementation of a 

onsiderably suboptimal cleanup policy. 

The revenue obtained by the dc@slower (1 / 696) policy can be 

mproved further by using a delayed cleanup policy that allows 

leaning in both the slow and slower states, implementing a sep- 

rate delay rate at each. In more precise terms, we consider the 

ollowing family of policies: 

• hdc (ξ1 , ξ2 ) (“hybrid delayed clean” with rates ξ1 and ξ2 ): Af- 

ter the system transitions to the slow state, wait an amount of 

time that is exponentially distributed with rate ξ , then clean, 
1 

12 One could more closely approximate deterministic delays by implementing 

hem as multi-phase Erlang distributions, which approach deterministic distribu- 

ions as the number of (identical) phases tends to infinity, while keeping the mean 

xed. 

i

s

604 
unless a transition to slower occurs, in which case, disregard 

the wait so far and instead wait an amount of time that is in- 

dependently exponentially distributed with rate ξ2 , then clean 

the system; clean immediately upon transitioning to dead . 

Exploring many ξ1 and ξ2 values, the best performance we ob- 

erve under this hybrid-policy, is at ξ ∗
1 = 1 / 680 and ξ ∗

2 = 1 / 749

we will refer to these “optimal delay rates” repeatedly in what 

ollows). The hdc (1 / 6 80 , 1 / 74 9) policy yields R ≈ 167 . 96 . By us-

ng delays in both the slow and slower states, we have a mod- 

st improvement of less than 1% (as compared to the simpler 

c@slower (1 / 696) policy), although such improvements can be 

ore pronounced across a variety of parameter settings. 

Naturally, one benefit of delaying cleanups is decreasing the fre- 

uency of cleanup actions, while adding little additional risk of re- 

iding in or entering a malware state. For example, if one has al- 

eady transitioned to the slower state, one has already effectively 

paid the sunk cost” of a lengthier cleanup duration (which is un- 

ikely to grow any longer if one imposes a reasonable delay, as 

ransition rates to the dead state are typically very low). In this 

ase, one may as well decrease the frequency of cleanup proce- 

ures by spending additional time in the slower state. However, 

his is not the only benefit to implementing cleanup delays. When 

 change in performance level occurs, waiting times gradually in- 

rease over time, rather than increasing immediately. Therefore, if 

n average response time of less than t ∗ is “acceptable,” (i.e., it is 

rofitable to operate under such average response times, in the in- 

erest of engaging in less frequent cleanups) and one is transition- 

ng from a performance state with a steady-state response time of 

 1 � t ∗ to one with t 2 	 t ∗, one can delay a cleanup event and still

njoy “acceptable” response times for some additional time while 

spacing out” cleanups. Hence, delaying cleanups can even be ben- 

ficial in the case of visible malware. The takeaway is that we 

hould consider not acting immediately upon a performance degra- 

ation event. Waiting for an appropriate amount of time can lead 

o significant gains in revenue. 

.2.3. Cleaning up based on queue length 

In the preceding discussion, the gradual transition from one 

teady-state response time to a higher steady-state response time 

s due to the gradual buildup of the queue. Hence, motivated by 

he benefits that come with delaying cleanups, we consider dy- 

amic cleanup policies that can base cleanup decisions on the cur- 

ent job count. But how much can the service provider benefit 

rom taking queue lengths into account? 

We shed light on the potential benefits of dynamic policies by 

valuating R for the special cases of dynamic policies that we 

all threshold policies . Like the policies we have examined thus 

ar, threshold policies also incorporate delays, but they initiate 

leanups in the slower state only if the queue length satisfies a 

iven condition based on a threshold, �. More precisely, we con- 

ider these two policy families: 

• hdc ≥�(ξ1 , ξ2 ) : After the system transitions to the slow state, 

wait an amount of time that is exponentially distributed with 

rate ξ1 , then clean, unless a transition to slower occurs. Once 

the total amount of time in the slower state with N ≥ �

jobs exceeds an (independent) exponentially distributed ran- 

dom variable with rate ξ2 , clean the system; if a transition to 

dead occurs, clean immediately. 
• hdc ≤�(ξ1 , ξ2 ) : This is the same as the preceding policy, except 

when in the slower state, we clean based on having spent suf- 

ficient time with N ≤ � jobs (rather than N ≥ � jobs). 

We note that the hdc ≥�(ξ1 , ξ2 ) (resp. hdc ≤�(ξ1 , ξ2 ) ) policy 

s like the hdc (ξ1 , ξ2 ) policy, except that the transition from the 

lower state to the corresponding cleanup state occurs with rate 
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Fig. 6. Revenue rate R under the default parameter set P , as a function of the 

threshold �, for the hdc ≥�(ξ ∗
1 , ξ

∗
2 ) family of policies, where cleanups in the slower 

state are only permitted if the number of jobs N exceeds the threshold �. R is 

highest at � = 47 . 
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Fig. 7. Revenue rate R under the default parameter set P with a job discarding 

penalty of y = $100 , as a function of the the threshold �, for the hdc ≥�(ξ ∗
1 , ξ

∗
2 ) 

and hdc ≤�(ξ ∗
1 , ξ

∗
2 ) families of policies. R is highest at � ∈ { 43 , 44 } under the latter 

family. 
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2 only when the number of jobs in the system is at least (resp. at 

ost ) �. 

We begin by studying the hdc ≥�(ξ ∗
1 
, ξ ∗

2 
) family of policies 

cross a range of � values, where we fix ξ ∗
1 

= 1 / 680 and ξ ∗
2 

=
 / 749 , which were the best rates (with respect to R ) for the non-

hreshold hdc (ξ1 , ξ2 ) family of policies that we studied in the pre- 

ious subsection. We note that we can view hdc ≥0 (ξ
∗
1 
, ξ ∗

2 
) as a 

enchmark that is identical to hdc (ξ ∗
1 , ξ

∗
2 ) , the best performing 

olicy from the previous subsection. Fig. 6 depicts the revenue 

ates under the hdc ≥�(ξ ∗
1 
, ξ ∗

2 
) policies. We observe that among 

he plotted policies, an optimal 13 revenue rate of R ≈ 171 . 75 is 

chieved at the threshold � = 47 , representing an improvement of 

ore than 2% over the � = 0 benchmark. This modest yet non- 

egligible improvement highlights the power of dynamic policies 

nd suggests that cleanup delays alone are insufficient in captur- 

ng nearly all available revenue. This realization also underscores 

he advantage of tracking the number of jobs in the system as op- 

osed to treating malware cleanup as a standard condition-based 

aintenance problem. 

Let us now turn our attention to the other family of threshold 

olicies, hdc ≤�(ξ1 , ξ2 ) ; the policies in this family initiate cleanup 

rocedures in the slower state only when the number of jobs N

alls at or below the threshold �. We would expect such policies 

for small values of �) to perform poorly for the same reasons 

he preceding policies performed well. 14 These alternative thresh- 

ld policies allow the system to persist in the slower state for far 

oo long, as the system is rarely occupied by only a few jobs in the

lower state. 

Naturally, we ask if there exist scenarios where the 

dc ≤�(ξ1 , ξ2 ) policies outperform their hdc ≥�(ξ1 , ξ2 ) coun- 

erparts. As one can imagine, the hdc ≤�(ξ1 , ξ2 ) policies excel 

t minimizing the number of discarded jobs when a cleaning 

rocedure is initiated. In fact, they limit this number to � per 

leanup event triggered in the slower state. It turns out that the 

ost associated with discarding a job under P is often relatively 

nsignificant. Even if hundreds of jobs are discarded at once, 

he number of jobs served between cleaning procedures may be 

rders of magnitude higher than this figure. However, one can 
13 Naturally, we can expect to do better if we jointly optimize the delays ξ1 and ξ2 

ogether with the threshold �, or consider dynamic policies beyond simple thresh- 

ld policies. We note that allowing for two separate thresholds (below which we 

annot clean), one for the system in the slow state and the other for the slower 

tate did not appear to yield any benefits in this case. 
14 We have verified that this is the case under P for the hdc ≤�(ξ ∗

1 , ξ
∗
2 ) family of 

olicies. 
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magine a modified setting where there is a much stronger desire 

o minimize discarded jobs. 

Consider a variation of the model explored in this paper where 

ach discarded job represents more than just a missed opportu- 

ity for the service provider to collect q for serving an additional 

ustomer request. For each discarded job, the service provider 

ncurs a goodwill penalty y (measured in dollars). That is, we 

ould take qχ − c · E [ N] − � bad πbad − � worse πworse − yη, as our rev- 

nue rate (recall that η is discard rate). 

Now let us consider the default parameter setting P , except that 

e will let y = $100 , rather than y = $0 (which is the case ev-

rywhere else in this paper). Note that this is an extreme value 

hosen for illustrative purposes. Evaluating revenues for both the 

dc ≥�(ξ ∗
1 
, ξ ∗

2 
) and hdc ≤�(ξ ∗

1 
, ξ ∗

2 
) policy families, we observe in 

ig. 7 that R is decreasing in � for hdc ≥�(ξ ∗
1 
, ξ ∗

2 
) , rendering 

he � = 0 benchmark optimal among the policies in this fam- 

ly; this result is driven by the extreme value of y . Meanwhile, 

 is initially increasing (and subsequently decreasing) in � for 

dc ≤�(ξ ∗
1 , ξ

∗
2 ) . The strongest among these policies overall (among 

hose being considered in this setting) is either hdc ≤43 (ξ
∗
1 
, ξ ∗

2 
) or 

dc ≤44 (ξ
∗
1 
, ξ ∗

2 
) , which allows for cleanups in the slower state only 

hen there are at most 43 or 44 jobs present in the system. These 

wo policies exhibit virtually indistinguishable performance: based 

n our numerical calculations, they obtain R values that are within 

 . 0 0 0 02% of one another. Meanwhile, both policies outperform the 

est performing policy from the other family, hdc ≥0 (ξ
∗
1 , ξ

∗
2 ) , (i.e., 

he � = 0 benchmark) by over 14%. This significant improvement 

uggests that in this particular setting, cleanup procedures should 

nly be undertaken when the queue length is relatively short. In 

his setting, it turns out that the common intuition that “the more 

ighly utilized a system is, the more costly it is to take it offline”

s justified. 

At this point, however, we should be wary of tunnel vision: 

ith a sizable discarding penalty of y = 100 , 1 /ξ ∗
1 

and 1 /ξ ∗
2 

may no

onger be ideal mean delay candidates to build our threshold poli- 

ies upon. In fact, dispensing with cleanup delays altogether we 

an improve upon hdc ≤44 (ξ
∗
1 
, ξ ∗

2 
) substantially in this setting: em- 

loying a policy that cleans immediately whenever the job count 

s 0 or 1 in either the slow or slower states yields an improvement

f over 23%. An even larger improvement (over 27%) is possible if 

e only clean a slow system when it is empty, but still clean a 

lower system at either job count 0 or 1. 

The observation that both families of threshold policies can out- 

erform the other depending on the setting suggests that even fur- 

her gains are possible by considering more sophisticated dynamic 

olicies. However, as previously stated, determining the optimal 
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Fig. 8. The CTMC governing the system under the hdc (ξ1 , ξ2 ) cleanup policy. States and phases are labeled by the numbers 0–8, for notational convenience, with Phases 0–5 

denoting the six joint malware-performance states, and states 6–8 denoting the three possible clean states ( clean-short , clean-med , and clean-long ). The transitions due to 

intentional delays imposed by the cleanup policy are shown in color for clarity. Note that each phase (denoted by a thicker border) is actually an infinite collection of states 

that evolves according to a birth–death process. 
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ynamic policy requires solving an intractable dynamic program. 

e are able to obtain results for these threshold policies by ex- 

ending the non-repeating portion of the Markov chain when ap- 

lying our adaptation of the CAP method. 

.3. Hidden malware analysis 

We now turn our attention to deriving R in the case of hid- 

en malware under all of the policies presented throughout this 

ection. As it turns out, we can actually restrict attention to the 

nalysis of R under the hdc (ξ1 , ξ2 ) class of policies. With the ex- 

eption of the threshold policies, revenues under the other policies 

an be computed by taking the appropriate limits (and in the case 

f omni , by choosing the best among several candidate policies). 15 

s for the threshold policies, hdc ≥�(ξ1 , ξ2 ) and hdc ≤�(ξ1 , ξ2 ) , a 

odification of the procedure described in this section allows us to 

etermine R under these policies in essentially the same way. This 

odification involves expanding the non-repeating portion of the 

arkov chain of interest to encompass all states where the number 

f jobs in the system is less than �. 

We again need to calculate R = qχ − c · E [ N] − � bad πbad −
 worse πworse , χ, and E [ N] , which require the analysis of a two-

imensional infinite state Markov chain, this time with six, rather 

han three, phases. 

The first step in our approximation relies on determining 

he limiting probability associated with the six joint malware- 

erformance states (see Fig. 3 ) and each of three separate clean 

tates: clean-short , clean-med , and clean-long , which return to 

he normal fast state with rates βbad , βworse , and βdead , respec- 

ively. For notational convenience we label the phases and states 

f interest with the numbers 0–8, as follows: Phase 0 corresponds 

o the normal state of a fast system, Phases 1 and 2 correspond to 

he normal and bad states of a slow system, respectively, while 

hases 3, 4, and 5 corresponds to the normal , bad , and worse 

tates of a slower system, respectively. Moreover, states 6, 7, and 8 
15 There can be computational advantages to determining R under the other poli- 

ies directly (rather than taking limits of R under the hdc (ξ1 , ξ2 ) policies). Such 

irect calculations follow from simple modifications to the analyses presented in 

his section. 

t

a  

π
6
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orrespond to clean-short , clean-med , and clean-long states, re- 

pectively. 

With this notation, we proceed to apply our adaptation of the 

learing Analysis on Phases (CAP) method to the hidden mal- 

are model under the hdc (ξ1 , ξ2 ) policy. The CTMC we study 

ooks like a more complicated version of the chain depicted in 

ig. 2 (from the analysis of the c@dead policy for the visible 

alware model), except that it consist of six phases , and three 

leanup states , with some transitions across phases “skipping over”

ntermediate phases, and multiple phases transitioning directly to 

leanup states. Our CTMC consists of an infinite repeating portion 

nd a finite non-repeating portion . 

The repeating portion of our CTMC is made up of the 

ix phases, one corresponding to each of the joint malware- 

erformance states, 0–5. Each phase is an infinite collection of 

tates making up a birth–death process tracking the number of 

obs in the system. Each birth–death process has an arrival rate of 

, and departure rate of μfast (in Phase 0), μslow 

(in Phases 1 and 

), or μslower (in Phases 3–5). Each state in the repeating portion 

f the Markov chain is denoted by (m, j) , where m is the phase

nd N = j denotes the job count. We observe that the transitions 

cross these phases are unidirectional in nature (i.e., when moving 

rom one phase in { 0 , . . . , 5 } to another, the phase number always

ncreases), which makes the CTMC amenable to the CAP method. 

oreover, transitions across these phases are independent of the 

ob count, with associated transition rates depicted in Fig. 8 (e.g., 

 transition from Phase 2 to Phase 5 occurs with rate αworse , re- 

ardless of the job count). When any such transition occurs the 

ob count remains unchanged. 

The non-repeating portion of our CTMC is made up of the three 

leanup states: clean-short (6), clean-med (7), and clean-long (8). 

nlike phases, these are single states . As these states represent the 

ystem undergoing a cleanup, they always transition directly to 

tate (0,0) (i.e., Phase 0 with an empty queue). Transitions to one 

f cleanup states from one of the phases are independent of the 

ob count, and occur with the rates given in Fig. 8 . Such a transi-

ion resets the job count to zero (as the jobs are discarded). 

We introduce some notation. Let π(m, j) be the limiting prob- 

bility of being in Phase m ∈ { 0 , . . . , 5 } with j ≥ 0 jobs. Let

6 , π7 , π8 be the limiting probabilities of being in cleanup states 

, 7, and 8, respectively. Let μm 

be the service rate in Phase m 
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 μ0 = μfast , μ1 = μ2 = μslow 

, μ3 = μ4 = μ5 = μslower ) and let αm 

e the rate at which the system leaves Phase m . 16 

We again find limiting probabilities in the form π(m, j) = 

 m 

k =0 a m,k r 
j 

k 
, with base terms (which we again assume are all dis- 

inct) given by 

 k = λ + μk + αk −
√ 

(λ + μk + αk ) 2 − 4 λμk 

2 μk 

. 

e must determine the a m,k coefficients (for 0 ≤ k ≤ m ≤ 5 ), to- 

ether with π6 , π7 , π8 . These variables, together with the redun- 

ant π(m, 0) variables, are the solutions to a system of linear equa- 

ions, HS , which are a combination of balance equations, the nor- 

alization equation, and relationships derived via our adaptation 

f the CAP method (see Appendix A in the online supplement for 

etails). The system HS is as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 0 , 0 = π(0 , 0) a m,m 

=
a 1 , 0 = 

r 0 r 1 γslow 

a 0 , 0 
(λ − μ1 r 0 r 1 )(r 0 − r 1 ) 

π(0 , 0) =

a 2 , 0 = 

r 0 r 2 αbad (a 0 , 0 + a 1 , 0 ) 

(λ − μ2 r 0 r 2 )(r 0 − r 2 ) 
π(1 , 0) =

a 2 , 1 = 

r 1 r 2 αbad a 1 , 1 
(λ − μ2 r 1 r 2 )(r 1 − r 2 ) 

π(2 , 0) =

a 3 ,k = 

r k r 3 γslower a 1 ,k 
(λ − μ3 r k r 3 )(r k − r 3 ) 

(0 ≤ k ≤ 1) π(3 , 0) =

a 3 , 2 = 0 π(4 , 0) =

a 4 ,k = 

r k r 4 (γslower a 2 ,k + αbad a 3 ,k ) 

(λ − μ4 r k r 4 )(r k − r 4 ) 
(0 ≤ k ≤ 2) π(5 , 0) =

a 4 , 3 = 

r 3 r 4 αbad a 3 , 3 
(λ − μ4 r 3 r 4 )(r 3 − r 4 ) 

π6 = 

β

a 5 ,k = 

r k r 5 αworse (a 2 ,k + a 4 ,k ) 

(λ − μ5 r k r 5 )(r k − r 5 ) 
(0 ≤ k ≤ 2) π7 = 

β

a 5 , 3 = 

r 3 r 5 αworse a 4 , 3 
(λ − μ5 r 3 r 5 )(r 3 − r 5 ) 

π8 = 

α

β

a 5 , 4 = 

r 4 r 5 αworse a 4 , 4 
(λ − μ5 r 4 r 5 )(r 4 − r 5 ) 

1 = 

(∑

This system is more complicated than the corresponding sys- 

em for the case of visible malware ( VS ), as in the present model 

ne visits phases (and cleanup states) in a non-deterministic or- 

er. While, the system HS can be solve symbolically, yielding ex- 

ct closed form solutions, it may be more practical to obtain exact 

umeric solutions; various techniques can be used to circumvent 

adly conditioned matrices. 

With the limiting probabilities determined in a convenient 

orm, we compute the values of interest—E [ N] = 

∑ ∞ 

j=0 j · P (N = j) ,

= λ(1 − πclean ) − η, πbad , and πworse —in terms of π6 , π7 , π8 , 

 k , and a m,k . Recalling that η is the rate at which jobs are dis-

arded, letting X(m ) be the rate of initiating a cleanup event in 

hase m, (i.e., X(0) = 0 , X(1) = X(2) = ξ1 , X(3) = X(4) = ξ2 , and

(5) = ξ2 + αdead ), and observing that Phases 2 and 4 make up the

ad malware state, while Phase 5 makes up the worse state, we 

ave 

 [ N] = 

5 ∑ 

m =0 

m ∑ 

k =0 

a m,k r k 
(1 − r k ) 2 

, 

= λ(1 − π6 − π7 − π8 ) −
5 ∑ 

m =0 

m ∑ 

k =0 

X(m ) a m,k r k 
(1 − r k ) 2 

bad = 

∞ ∑ 

j=0 

{
π(2 , j) + π(4 , j) 

}
= 

2 ∑ 

k =0 

a 2 ,k 
1 − r k 

+ 

4 ∑ 

k =0 

a 4 ,k 
1 − r k 

, and 
16 α0 = αbad + γslow , α1 = αbad + γslower + ξ1 , α2 = αworse + γslower + ξ1 , α3 = 

bad + ξ2 , α4 = αworse + ξ2 , α5 = αdead + ξ2 . 

i

o

o

s

607 
 0) −
∑ m −1 

k =0 a m,k (1 ≤ m ≤ 5) 
1 

 α0 
( βbad π6 + βworse π7 + βdead π8 + μ0 r 0 a 0 , 0 ) 

1 

 α1 

(
μ1 

∑ 1 
k =0 (r k a 1 ,k ) + γslow 

π(0 , 0) 

)
1 

 α2 

(
μ2 

∑ 2 
k =0 (r k a 2 ,k ) + αbad (π(0 , 0) + π(1 , 0) ) 

)
1 

 α3 

(
μ3 

∑ 3 
k =0 (r k a 3 ,k ) + γslower π(1 , 0) 

)
1 

 α4 

(
μ4 

∑ 4 
k =0 (r k a 4 ,k ) + γslower π(2 , 0) + αbad π(3 , 0) 

)
1 

 α5 

(
μ5 

∑ 5 
k =0 (r k a 5 ,k ) + αworse (π(2 , 0) + π(4 , 0) ) 

)
 2 
m =1 

∑ m 

k =0 

a m,k 

1 − r k 

 

∑ 5 
m =3 

∑ m 

k =0 

a m,k 

1 − r k ∑ 5 
k =0 

a 5 ,k 
1 − r k 

 

∑ m 

k =0 

a m,k 

1 − r k 

)
+ π6 + π7 + π8 

worse = 

∞ ∑ 

j=0 

π(5 , j) = 

5 ∑ 

k =0 

a 5 ,k 
1 − r k 

. 

inally, we express R = qχ − c · E [ N] − � bad πbad − � worse πworse ex- 

ctly under the hdc (ξ1 , ξ2 ) policy: 

 = λq (1 − π6 − π7 − π8 ) −
5 ∑ 

m =0 

m ∑ 

k =0 

(qX (m ) + c) a m,k r k 
(1 − r k ) 2 

− � bad 

( 

2 ∑ 

k =0 

a 2 ,k 
1 − r k 

+ 

4 ∑ 

k =0 

a 4 ,k 
1 − r k 

) 

− � worse 

( 

5 ∑ 

k =0 

a 5 ,k 
1 − r k 

) 

. 

ith this expression, we can evaluate the hdc (ξ1 , ξ2 ) family of 

leanup policies, including many simple policies such as c@slow , 

@slower , and c@dead . 

. Conclusion and directions for future work 

The primary contributions of this paper are the presentation of 

 Markovian model for the evolution of malware on a customer- 

acing system and the evaluation of revenue rates under various 

leanup policies. Our model moves beyond the techniques avail- 

ble from the literature on condition-based maintenance by incor- 

orating queueing dynamics (for a discussion on how overlooking 

ueueing dynamics can lead to suboptimal revenues, see Doroudi, 

016 , Section 3.5). We find that in many cases, one should not 

lean a system at the first indication of a problem. In such cases, 

ne should either wait for things to get worse, delay cleanup ac- 

ions for some time, or wait until the queue lengths exceeds (or 

alls below) some threshold. 

One of our key discoveries is that the best policies are not nec- 

ssarily those that act only when a new phenomenon is observed, 

nd rather, there are significant benefits to delaying a response 

or some time after witnessing a performance degradation event. 

ne reason that these delays are beneficial is that by delaying a 

leanup, one reduces downtime, while enjoying acceptable wait- 

ng times before convergence to a new steady-state with unaccept- 

ble waiting times. Another way that one can harness the benefits 

f persisting in a system before reaching unacceptably high wait- 

ng times is to make cleanup decisions dynamically by making use 

f queue length information. We find that even the simple thresh- 

ld dynamic policies provide a substantial improvement over their 

tatic (non-dynamic) counterparts. Therefore, we believe that fur- 



S. Doroudi, T. Avgerinos and M. Harchol-Balter European Journal of Operational Research 292 (2021) 596–609 

t

r

c

t

O

e

p

t

s

b

p

s

p

e

l

(

m

e

w

j

m

s

t

a

t

s

t  

N

t

I

a  

c

t  

(

t

fi

t

i

f

t

s

b

p

a

o

p

A

t

e

1

A

S

f

R

A

B

B  

B

B

B  

B

C

C

C

C

D

D

D

D  

D

E  

G  

G  

G

G

H

H  

H

L

L  

L  

M

M  

N

her analytic investigation of such dynamic policies is a natural di- 

ection for future work in this area. 

Another possible direction for future work in this area is the 

onsideration of arbitrary Markovian correlation structures be- 

ween the visible performance state and the hidden malware state. 

ne could also study an enriched model where the arrival rate is 

ndogenously determined based on the prices set by the service 

rovider, the resulting mean response time, and the resulting frac- 

ion of time spent in malware states; both the customers and the 

ervice provider would be making decisions based on their own 

est interest. 

We conclude with a discussion of a potential alternative ap- 

roach that could be taken in future work toward developing 

trong cleanup policies in the case of hidden malware. While this 

aper uses Markovian performance analysis to evaluate a vari- 

ty of policies, one could alternatively structure the same under- 

ying problem as a partially observable Markov decision process 

POMDP), which in this case can also be expressed as an opti- 

al stopping time problem. Recall that at any given time, we are 

ither in some state (m, j) or in one of the cleaning states. But 

hile the number of jobs in the system N = j is visible, the current 

oint malware-performance state is not. Instead, only the perfor- 

ance state is observable, hence, depending on the performance 

tate, the malware state m can take on a number of (i.e., two or 

hree) different values. We should be able to determine the prob- 

bility distribution over the values taken on by m as a function of 

he duration of time (if any) spent in the slow and slower states 

ince the last cleaning. Call such durations t slow 

and t slower and see 

hat the state of the system can be expressed as (t slow 

, t slower , j) .

ote that this state is always changing continuously throughout 

ime, and hence we have formulated a non-Markovian problem. 

n this setting, a policy (or stopping condition) can be defined by 

 well-behaved set A ⊆ R 

2 × { 0 , 1 , 2 , . . . } such that we initiate a

leanup at the first instance of time (since the previous cleanup) 

hat (t slow 

, t slower , j) ∈ A . Hence, the objective is to find a policy

i.e., a “cleanup region” A ) that maximizes the revenue rate. Given 

he non-Markovian nature of the state space, together with the dif- 

culty of evaluating performance under A —which may require both 

he techniques presented in this paper and methods for determin- 

ng the distribution of the joint malware-performance state as a 

unction of (t slow 

, t slower ) —we anticipate that finding an exact op- 

imal solution to this problem will be prohibitively difficult. That 

aid, future work may yield fruitful heuristics or approximations 

y combining the state of the art in POMDP and optimal stop- 

ing time analysis with state space truncation. We hope that the 

nalysis presented in this paper will prove helpful in the devel- 

pment of further heuristics for addressing the malware cleanup 

roblem. 
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