New Stability Results for Multiserver-job Models via
Product-form Saturated Systems

Isaac Grosof
Carnegie Mellon University
Pittsburgh, PA, USA

igrosof@cs.cmu.edu

ABSTRACT

Multiserver-job (MSJ) models are increasingly common in
today’s datacenters. In these models, each job runs on mul-
tiple servers concurrently, for some duration. The most
common service ordering for jobs is First-Come First-Served
(FCFS). Unfortunately, MSJ FCFS models are hard to an-
alyze, and even the stability region of MSJ FCFS models is
not well understood.

Stability has only been analyzed in the case where all
jobs have independent exponentially-distributed durations
with the same mean (the “single duration” setting). This
does not allow, however, for modeling the common situa-
tion where jobs with higher server need (number of servers
required) also have higher expected duration. This paper
provides the first analysis of stability for MSJ FCFS models
in the two-class setting, where each class of jobs has its own
server need and its own exponentially-distributed duration.

To analyze stability, we make use of the saturated system,
whose throughput determines the stability region. While
the saturated system has been useful in deriving stability
regions in the past, it has never been applied in settings
where jobs occupy multiple servers. By looking at the satu-
rated system in a new light, we find that its solution has an
attractive product form in the two-class setting, and a differ-
ent product form in the single-duration setting, both novel
results. Besides solving our problem, this product form may
also serve as a gateway to analyzing other complex models.

1 Introduction

Multiserver queueing theory traditionally focuses on settings
such as the M/G/k where every job occupies exactly one
server. These models have remained popular for decades
because they capture the behavior of many important sys-
tems, including previous computing systems, while remain-
ing amenable to theoretical analysis. However, these one-
server-per-job models are no longer representative of modern
computing systems. In modern data centers, jobs require a
variable amount of resources by default. In Google’s recently
published trace of its “Borg” computation cluster, jobs vary
in CPU requirement by a factor of 10° [6,12].

To capture this common situation, we focus on the “mul-
tiserver-job model”, in which each job occupies a fixed num-
ber of servers (its “server need”), typically more than one,
throughout its time in service (its “service duration”). We
specifically focus on the first-come first-served (FCFS) ser-

Copyright is held by author/owner(s).

Mor Harchol-Balter
Carnegie Mellon University
Pittsburgh, PA, USA

harchol@cs.cmu.edu

Alan Scheller-Wolf

Carnegie Mellon University
Pittsburgh, PA, USA

awolf@andrew.cmu.edu

vice ordering, which is the default policy in both cloud com-
puting and supercomputing [2,11].

Currently, little is known about FCFS service in MSJ
models. Even the stability region is not generally under-
stood. More is known about MSJ models with more spe-
cialized scheduling policies, both for stability and mean re-
sponse time [4,6,7,9].

The most general prior result on stability in the MSJ
FCFS setting is due to Rumyantsev and Morozov [10]. They
studied a setting in which each job has service duration
X ~ Exp(u), independent of the job’s server need, which
can come from a general distribution, and used a matrix-
analytic approach to explicitly characterize the stability re-
gion. We call this setting the “single duration” setting.

However, in real systems, service duration is typically
positively correlated with server need. For example, a sig-
nificant correlation is present in the aforementioned Borg
trace [5,12]. To capture this correlation, we study a two-
class MSJ FCFS model, where each class has a distinct
server need and a distinct exponentially-distributed dura-
tion, X; ~ Fxp(u;). Note that this is not a strict general-
ization of the single-duration setting, as an arbitrary server-
need distribution is permitted in that setting.

In this paper, we give the first characterization of the
stability region of the two-class setting. This is the first
stability region result for any MSJ FCFS model in which
server need and service duration are correlated.

We make key use of the saturated system approach [1,3]
to prove our result. While this approach is a well-known
method for characterizing stability, we are the first to apply
it to the MSJ system. The saturated system is a closed sys-
tem in which completions trigger new arrivals, so the total
server need of jobs in the system is always at least the num-
ber of servers. Note that some servers may remain idle, due
to the FCF'S service and packing limitations. An important
property of the saturated system is the saturation rule: The
throughput of the saturated system matches the threshold
of stability of the original system [1]. Thus, to determine
the stability region of the original system, it suffices to de-
termine the stationary distribution of the saturated system.

In this paper, we explicitly characterize the stationary
distribution of the saturated system for the two-class setting,
proving that it has a product-form structure. We also prove
that in the single-duration setting, the saturated system also
exhibits a product-form solution, which differs from the two-
class setting’s solution. We thereby provide a cleaner proof
of the stability region of the single-duration setting. These
product-form results are of independent interest, and open

up the potential for a new class of product-form results,
going beyond prior product-form results for open systems
such as Order-Independent queues [8].

In Section 2, we define the saturated system. Next, we
present our results: Section 3 for the single-duration system,
and Section 4 for the two-class system.

2 Saturated System

The saturated system is a closed system, meaning that com-
pletions trigger new arrivals — there is no exogenous arrival
process. The number of jobs is always large enough that the
total server need is at least k, the number of servers. For
this reason, the system is referred to as “saturated”.

There are three equivalent formulations of the saturated
system:

I. A closed system in which there are always exactly k
jobs. Whenever a job completes, a new job arrives.
The state descriptor is a ordered list of k jobs. This for-
mulation is simple, but the resulting system has many
possible states.

II. A closed system in which there are always just enough
jobs such that the total server need is at least k. Note
that at most 1 job can be in the queue, in this formula-
tion. The state descriptor tracks the job in the queue,
if any, and the multiset of jobs in service. Under this
formulation, there are very few possible system states.
In Section 4, we simplify this formulation even further.

III. A system with infinitely many jobs in the queue, at all
times. Baccelli and Foss used this formulation in their
original proof of the “saturation rule” [1].

All of these formulations of the saturated system can be
coupled such that the set of jobs in service is identical at all
times and the same jobs complete at the same times, so we
refer to them interchangeably as “the saturated system”.

We use the first formulation for the single-duration set-
ting, and the second for the two-class setting.

In the saturated system, there are two natural Markov
chains to consider: The continuous-time Markov chain, and
the embedded discrete-time Markov-chain that changes state
once per job completion. Note that we focus on exponential
job durations, so the state only changes on job completions.

The two Markov chains are closely related, and station-
ary distributions of each can be used to derive the station-
ary distribution of the other. In this paper, we focus on
the embedded DTMC, which we prove has a product-form
stationary distribution in each of our two settings.

3 Single Duration Results

First, let us consider a multiserver-job (MSJ) system in
which all jobs require Exzp(p) duration, independent of server
need. Server needs are sampled i.i.d. from an arbitrary dis-
tribution, where p, represents the probability that a job has
server need ¢. Jobs are served in FCFS order. We call this
the “single-duration” setting.

For this result, we use the “exactly k jobs” formulation
(I) of the saturated system. A state of the saturated system
is an ordered list m of k jobs, where each job is identified by
its server need £. We write m; to represent the server need
of the i*"-oldest job in the system. The set of jobs in service
is the largest initial sequence of jobs with total server need
< k. Let o(m) denote the number of jobs served in state m.

Let 7, represent the stationary probability of state m.

THEOREM 1. In the single-duration setting, the station-
ary distribution of the embedded DTMC of the saturated sys-
tem 1s:

k
7 = [e
1=1

PrOOF. Let P(m,m’) represent the probability that state
m transitions to state m’, after a completion and the cor-
responding arrival. Let M represent the set of all possible
states of the saturated system.

Consider the balance equation for a given state m:

Tm = Z Tt P(m/, m). (1)

m’eM

For each possible server need 1 < ¢ < k, a state could tran-
sition to m via the completion of a server need ¢ job. Let
me(l) denote one specific predecessor state to m, the state
m = [(,m1,ma,...,mk_1]. From state m®(1), if the server
need ¢ job in position 1 completes, and then a server need
my job arrives, the system transitions to state m.

Several more states can transition to state m via the com-
pletion of a server need ¢ job. If a state has a server need ¢
job in service, and the other £ — 1 jobs in the system have
server needs [mi, ..., mi—1], the state will transition to state
m if the server need ¢ job completes and a server meed my
job arrives. In total, there are o(mf(1)) such states, because
the server need £ job will be in service if and only if it is in
one of the positions that receives service in state m(1).!
We call these states m*(j), for 1 < j < o(m¥(1)), where the
index j represents the position where the server need ¢ job is
inserted. Note that for all j, o(m*(j)) = o(m*(1)), because
the same set of jobs is served in each of these states.

From any state m®(j), the probability P(m‘(j),m) of
transitioning to state m is pm, /o(m*(1)), because each of
the o(m*(j)) = o(m®(1)) jobs in service are equally likely
to depart, because each job has the same exponential com-
pletion rate p. If the server need ¢ job completes, a server
need my job must then arrive to finish the transition to
state m. The stationary probability of state m‘(j) under
the proposed stationary distribution 7 iS Tmpe/pm,, . Thus,
the corresponding portion of the balance equation (1) is:

o(mf(1))
0y .
7rm@(j)P(m (4),m)
j=1

Pe Pmy, P o
mﬁmg(m (1)) = TTmpPe.

=7
Summing over all server needs ¢, we see that (1) must hold.
Because m was an arbitrary state, the balance equation
holds for all states. Because m sums to 1, it is the stationary
distribution. [

4 Two-class Results

Next, consider a MSJ system in which there are two classes
of jobs: Class 1 jobs have server need ¢; and duration Exp(u1),
while class 2 jobs have server need £2 and duration Ezp(us2),
where {1 < ¢ < k. Arriving jobs are class 1 with probability

'We distinguish otherwise identical states where the server
need £ job that will complete is inserted in distinct locations.

p1, and class 2 with probability p2 = 1 — p1, sampled i.i.d.
Service is again FCFS. We call this the “two-class” setting.
For this result, we use the “just enough total server need”
formulation (II) of the saturated system, with a slight mod-
ification: a completion only triggers a new arrival if there
are enough servers available that a class 1 job could fit into
service. After a completion, if the total server need of jobs in
the system is at most k — ¢1, a new arrival occurs. Arrivals
continue until the total server need exceeds k£ — ¢;. This
formulation still has the same jobs in service and the same
completion times as any of the formulations in Section 2.

A state of the saturated system consists of a triple [h, a, b].
a represents the number of class 1 jobs in service, b repre-
sents the number of class 2 jobs in service. h represents
whether a class 2 job is blocking the head of the queue. If
al1+bly > k—{1, then no additional jobs could fit in service,
so we write h = 0. If al; + bly < k — 1, then there must be
a class 2 job at the head of the queue, so we write h = 1.

There is exactly one state for each possible number a of
class 1 jobs in service. To see this, imagine starting with
a class 1 jobs in service, then adding class 2 jobs until the
total server need threshold is reached. This must reach a
unique state. We refer to this state as s1(a).

There is exactly one state with h = 0 for each possible
number b of class 2 jobs in service. To see this, imagine
starting with b class 2 jobs in service, then adding class 1
jobs until the total server need threshold is reached. This
too must reach a unique state with A = 0. We refer to this
state as s2(b).

For a given state s, a transition consists of a completion,
perhaps followed by the blocking job entering service, and
perhaps followed by jobs being newly generated until the
total server need is again > k. For a given state s, let fi(s)
denote the probability that the next completion is a class
1 job, and define f2(s) = 1 — fi(s) correspondingly. For a
given state [-, a, b], we have

b,uz

a,
f1([-7a,b])=$7 m-

apir + buo fa(la.8]) =

Again, let 75 denote the stationary probability of state s.
THEOREM 2. In the two-class exponential setting, the sta-
tionary distribution of the embedded DTMC of the saturated

system 1s:

a

“ b
o b+h 1 1
mnan =21 [T I sy

where C is a normalization constant.

PROOF SKETCH. See [5, Sections 4 and 5] for a full proof.
To verify that 7 is the correct stationary distribution, we
must show that the balance equations hold for each state:

Ts = Z 7o P(s',s)

In fact, a form of local balance holds, corresponding to the
class of the job completed in each transition. Let P;(s’,s)
be the probability of a transition from s’ to s due to a com-
pletion of a class 1 job, and define P»(s’, s) correspondingly.

We show that the following local balance result holds:

P1Ts = Zﬂs/Pl(S/,S) PoTts = ZWS/PQ(SI,S).
s’/ s/

At this point, it remains to enumerate over all states to
prove that local balance holds, splitting up states based on
whether h = 0 or h = 1. See [5] for details. []

5 Conclusion

We give the first product-form solutions for the saturated
system in two MSJ FCFS settings: The single-duration set-
ting and the two-class setting. These solutions allow us to
characterize the stability region of both settings. This is the
first characterization of stability in the two-class setting, and
a simpler proof for the single-duration setting.

An interesting direction for future work is to study whether
either of these product-form results can be generalized to a
larger class of settings. Specifically, we believe that one
could consider any FCFS system where there is some rule
determining which jobs can serve together. We believe that
results in this paper generalize to any such FCFS system.

6 References

[1] F. Baccelli and S. Foss. On the saturation rule for the
stability of queues. Journal of Applied Probability,
32(2):494-507, 1995.

[2] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn.
Parallel job scheduling—a status report. In Workshop
on Job Scheduling Strategies for Parallel Processing,
pages 1-16, New York, NY, USA, 2004. Springer.

[3] S. Foss and T. Konstantopoulos. An overview of some
stochastic stability methods. Journal of the Operations
Research Society of Japan, 47(4):275-303, 2004.

[4] J. Ghaderi. Randomized algorithms for scheduling
VMs in the cloud. In IEEE INFOCOM 2016 - The
85th Annual IEEE International Conference on
Computer Communications, pages 1-9, Apr. 2016.

[5] I. Grosof, M. Harchol-Balter, and A. Scheller-Wolf.
Stability for two-class multiserver-job systems. arXiv
preprint arXiw:2010.00631, 2020.

[6] I. Grosof, M. Harchol-Balter, and A. Scheller-Wolf.
WCFS: A new framework for analyzing multiserver
systems. Queueing Systems, 2022.

[7] 1. Grosof, Z. Scully, M. Harchol-Balter, and
A. Scheller-Wolf. Optimal scheduling in the
multiserver-job model under heavy traffic. Proc. ACM
Meas. Anal. Comput. Syst., 6(3), Dec 2022.

[8] A. E. Krzesinski. Order Independent Queues, pages
85—-120. Springer US, Boston, MA, 2011.

[9] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic
models of load balancing and scheduling in cloud
computing clusters. In 2012 Proceedings IEEE
Infocom, pages 702-710. IEEE, 2012.

[10] A. Rumyantsev and E. Morozov. Stability criterion of
a multiserver model with simultaneous service. Annals
of Operations Research, 252(1):29-39, 2017.

[11] L. Sliwko. A taxonomy of schedulers—operating
systems, clusters and big data frameworks. Global
Journal of Computer Science and Technology, 2019.

[12] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G.
Qin, S. Hand, M. Harchol-Balter, and J. Wilkes. Borg:
The next generation. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020.

	Introduction
	Saturated System
	Single Duration Results
	Two-class Results
	Conclusion
	References

