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Server farms, consisting of a collection of hosts and a front-end router that dispatches
incoming jobs to hosts, are now commonplace. It is well known that when job ser-
vice requirements (job sizes) are highly variable, then the Size-Interval task
assignment policy is an excellent rule for assigning jobs to hosts, since it provides
isolation for short jobs by directing short jobs to one host’s queue and long jobs to
another host’s queue. What is not understood is how to classify a “short” job versus
a “long” job. For a long time it was believed that the size cutoff separating “short”
jobs from “long” ones should be chosen to balance the load at the hosts in the server
farm. However, recent literature has provided empirical evidence that load balancing
is not always optimal for minimizing mean response time. This article provides the
first analytical criteria for when it is preferable to unbalance load between two hosts
using Size-Interval task assignment and in which direction the load should be
unbalanced. Some very simple sufficient criteria are provided under which we prove
that the short job host should be underloaded, and likewise for the long job host. These
criteria are then used to prove that the direction of load imbalance depends on moment
index properties related to the job size distribution. For example, under the Bounded
Pareto (BP) job size distribution with parameter α and a sufficiently high upper bound
(the BP is well known to be a good model of empirical computer system workloads),
we show that α determines the direction of load imbalance. For α < 1, the short job
host should be underloaded; for α = 1, load should be balanced; and for α > 1, the
long job host should be underloaded. Many other job size distributions are considered
as well. We end by showing that load unbalancing can have a dramatic impact on
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performance, reducing mean response time by an order of magnitude compared to
load balancing in many common cases.

1. INTRODUCTION

Server farm architectures are ubiquitous in computing and manufacturing systems
because they are inexpensive (many slow servers are less expensive than one fast one)
and because they are easily scalable (it is easy to add servers and to take them away).
A server farm typically consists of a front-end router that receives all incoming jobs
(a.k.a., tasks) and a collection of servers (a.k.a., hosts), to which the router dispatches
incoming jobs, as shown in Figure 1. The router follows a task assignment policy,
which is a rule (a.k.a., algorithm) for assigning each incoming job to one of the hosts.
A typical goal of the task assignment policy is to minimize the overall mean response
time, where the response time of a job is the time from when it arrives until it has
completed service and the mean response time is the average per-job response time.

In the model shown in Figure 1, the jobs assigned to each host are run in first
come–first served (FCFS) order at that host. This model is consistent with service at a
supercomputing center, where preempting jobs is very expensive (see Harchol-Balter
[11]). It is also consistent with manufacturing centers, where jobs might represent
customers or products requiring service, or any other setting where “jobs” (customers)
cannot easily be preempted.

Our analysis will assume that the job sizes are independently and identically
distributed according to a general bounded job size distribution and that the arrival
process of jobs to the server farm is a Poisson process. We assume that the job size
distribution is bounded, so that its moments are finite and, hence, mean response time
is well defined. We will primarily be interested in the case in which job sizes (service
requirements) are highly variable (although most of our theorems will apply to general
job size distributions), in accordance with job sizes in computing environments.

JOBS

DISPATCHER

FCFS

FIGURE 1. Server farm model with three hosts.
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Although our results hold for general distributions, we will focus special attention
on the Pareto and bounded Pareto distributions, since these are typical in computing
workloads. A random variable, X , is distributed Pareto(α), where α > 0 (it is most
common that 0 < α < 2, since that is the infinite variance case), if

Pr(X > t) =
(

t

s

)−α

, t ≥ s.

(Here, s represents the smallest possible value.) The bounded Pareto distribution
(Harchol-Balter, Crovella, and Murta [12]) has the same shape as the Pareto, except
that there is a maximum upper bound on job sizes: b (for “biggest”). The Pareto
and bounded Pareto distributions have been shown to well characterize Unix CPU
requirements (Harchol-Balter and Downey [13]), sizes of files requested at web sites
(Crovella and Bestavros [5], Crovella, Taqqu, and Bestavros [7], Riska, Smirni, and
Ciardo [17]), and sizes of files in FTP transfers (Paxson and Floyd [16]).

The question of finding a good task assignment policy for server farms, so as
to minimize overall mean response time, has received significant attention in the
literature (Crovella, Harchol-Balter, and Murta [6], Harchol-Balter [11], Harchol-
Balter [12], Schroeder and Harchol-Balter [19], Ciardo, Riska, and Smirni [4],
Riska et al. [17], Tari, Broberg, Zomaya, and Baldoni [21], Ungureanu, Bradford,
Katehakis, and Melamed [22]). For the context of our model, research advocates
using Size-Interval task assignment, which assigns “short” jobs to one host,
“medium” jobs to another host, “long” jobs to the third host, and so on. In Harchol-
Balter [11] and Harchol-Balter et al. [12], the authors showed that when the job
size distribution is highly variable, as is the case for the bounded Pareto distribu-
tion, Size-Interval task assignment can reduce the mean response time by
orders of magnitude, compared with other common task assignment policies, like
Join-the-Shortest-Queue (which assigns each incoming job to the host with
the fewest number of jobs) and Least-Work-Left (which assigns each incoming
job to the host with the least total work, where the work at a host is the sum of the sizes
of jobs queued at that host). The advantage of using the Size-Interval policy, in
the case of a highly variable job size distribution, is that it isolates short jobs from long
ones, preventing short jobs from getting stuck behind long jobs and thereby greatly
reducing mean response time.

Harchol-Balter et al. [12] proposed a Size-Interval task assignment policy
called SITA-E with size cutoffs chosen to equalize (“E”) load between the hosts.
These equal-load cutoffs are derived in closed form for the case of the bounded
Pareto job size distribution. Variations on SITA-E have also been advocated. The
Equiload policy developed by Ciardo et al. [4] aimed to balance the load in dif-
ferent size intervals, estimating the job size distribution from previously received job
sizes. The Adaptload policy developed by Riska et al. [17] is based on Equiload,
but where the job size distribution is now known and the size-cutoff points dynam-
ically change during run time. The Least Flow-Time algorithm developed by
Tari et al. [21] uses multiple queues in the hosts for different size bands, where the



222 M. Harchol-Balter and R. Vesilo

front-end router forwards jobs to the “fittest” server in terms of lighter load and higher
processing capacity.

Although theSize-Interval task assignment policy is by now well accepted,
there are some important open questions. Most importantly,

Should the size cutoff be chosen to balance the load between the hosts or not? And
if not, then should the “small” job host be underloaded? Or, should the “large” job
host be underloaded?

Although much of the literature points to choosing a size cutoff that balances
the load between the hosts (see Harchol-Balter et al. [12], Ungureanu et al. [22],
Shin and Hou [20], Cardellini, Colajanni, and Yu [3], Hwang and Jung [15]), there
is also some work that suggests that it may be better not to balance the load (e.g.
Crovella, Harchol-Balter, and Murta [6], Harchol-Balter [11], Schroeder and Harchol-
Balter [19]). However, there is very little work on providing an analytical criterion for
when it is preferable to balance the load and when it is preferable to unbalance the
load under Size-Interval task assignment, even in the case of just two hosts.

Part of the difficulty is that, even in our simple model, it is very difficult to
analytically determine the optimal size cutoff. The case of bounded Pareto job size
distributions has been the most tractable to date. The main contributions to the anal-
ysis of the bounded Pareto distribution have been by Bachmat and Sarfati [1,2] and
by Vesilo [23]. In Bachmat and Sarfati [1,2], the authors derived asymptotic expres-
sions for the optimal size cutoffs with multiple hosts, which might be heterogeneous,
both when the maximum job size increases and when the number of hosts increases.
This analysis uses the concept of duality, first introduced by Feng, Misra, and Ruben-
stein [10], which relates results for the bounded Pareto distribution with tail index
2 − α to results derived for the bounded Pareto distribution with tail index α. In
Vesilo [23], the author derived asymptotic expressions for the proportion of load
directed toward a host at the optimal load point for a two-host system, with bounded
Pareto job size distribution.

This article differs from the above prior work in that we prove theorems for general
job size distributions rather than restricting our attention to the bounded Pareto. For
distributions other than the bounded Pareto distribution, Mathematica has been used
to iteratively try out different size cutoffs (see Harchol-Balter [11]); however, this
gives little insight into how size cutoffs depend on the underlying job size distribution.
Certain rules of thumb for choosing the cutoff have been proposed for supercomputing
workloads (Schroeder and Harchol-Balter [19]). The closest thing to an analytical
approximation, in the general case, comes from Riska et al. [17], who decided on size
cutoffs by approximating the job size distribution for a multiphase hyperexponential
distribution. Rather than trying to determine the exact size cutoff, we instead look at
the higher-level question of whether load should be balanced or unbalanced, so as to
minimize mean response time.

In this article we present theorems for Size-Interval task assignment with
two hosts and general job size distributions, stating under what conditions load should
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be unbalanced and whether the unbalancing should favor the small job host or the large
job host. Below we provide an outline of the results in this article.

Section 3 provides simple sufficient conditions for load unbalancing, described
in Theorem 3.1. These imbalance conditions consist of two tests involving truncated
normalized moments of the job size distribution, whereby if both tests are satisfied,
then load should be unbalanced in favor of the lighter load for the short job host, and if
both tests fail, then load should be unbalanced in favor of the long job host. Although
Theorem 3.1 leaves some unknown territory, we show that it is very powerful in that
it allows us to analyze common job size distributions. In particular, in Section 3.2
we apply Theorem 3.1 to the bounded Pareto distribution to evaluate the parameters
under which load should be unbalanced and in which direction. Theorem 3.1 is also
useful in helping to prove the later theorems in Section 4.

The proof of Theorem 3.1 is also interesting in its own right. It begins by forming
a low-load approximation for the mean response time in the original problem. This
low-load approximation is far simpler than the expression for mean response time
in the original problem. Although assuming low load might seem limiting, we prove
that the direction of imbalance for the original problem is the same as that in the low-
load approximation. Hence, it suffices to derive imbalance conditions for the low-load
approximation, which is the approach we follow in proving Theorem 3.1.

In Section 4 we look at an even simpler criterion for load unbalancing, based on
simply evaluating the moment index of the extended job size distribution. The extended
job size distribution is an infinite-support version of the original (bounded) job size
distribution: Specifically, the original job size distribution, having upper bound b, is
equivalent to the extended job size distribution conditioned on the extended distribu-
tion being less than b. For example, if the job size distribution is a bounded Pareto,
then the corresponding extended job size distribution is the (unbounded) Pareto. Our
results are stated in terms of the moment index of the extended job size distribution.
For a random variable, Z , the moment index, κZ , is defined by (see Daley [8])

κZ = sup{r > 0 : E[Zr] < ∞}. (1)

(For example, for an unbounded Pareto distribution with index, α, the moment index
equals α.) We present two theorems:

1. (Theorem 4.1) If the first moment of the extended job size distribution is finite
and the second moment is infinite, then, for job size distributions with large
enough b, the large host should be underloaded.

2. (Theorem 4.2) If the moment index of the extended job size distribution
satisfies 0 < κZ < 1 and the density function of the extended distribution
satisfies some additional regularity conditions (given later), then, for job size
distributions with large enough b, the small host should be underloaded.

The proofs of both Theorems 4.1 and Theorem 4.2 use the earlier Theorem 3.1.
In Section 4.2 we apply Theorems 4.1 and 4.2 to fully classify a range of job

size distributions that have been shown to be good empirical models of computer
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system workloads. Table 1 lists these distributions and their moment index. Table 2
then describes the condition under which the small job host should be underloaded for
each of these distributions. It is interesting to note that the direction of load imbalance
is, in many cases, simply determined by the tail parameter α and can flip as α goes
from low to high.

Finally, in Section 5 we consider the detrimental effect on performance that comes
from unwittingly balancing load, when one should be unbalancing load. We find that

TABLE 1. Extended Distributions with Heavy Tails

Moment
Distribution 1 − R(t) r(t) Parameters Support Index

Pareto (I) (t/s)−α α

s
(t/s)−α−1 s > 0, α > 0 (s, ∞) α

Pareto (II) (1 + (t/s))−α α

s
(1 + (t/s))−α−1 s > 0, α > 0 (0, ∞) α

Burr

(
κ

κ + tτ

)α
ατ

κ
tτ−1

(
κ

κ + tτ

)α+1

α, κ , τ > 0 (0, ∞) τα

Log-Gamma
αβ

�(β)
(log t)β−1t−α−1 α, β > 0 (1, ∞) α

Truncated
α-stable

Pr(|Z| > t),
where Z is
an α-stable
random
variable

0 < α < 2 (0, ∞) α

Regularly
varying with
index of
variation −α

(*)

Pr(Z > t),
where Z is
regularly
varying with
index of
variation −α

α (0, ∞) α

TABLE 2. Corresponding Bounded Job Size Distributions. Sufficient Conditions for
Underloading the Small/Large Host

Distribution Underload Small Host Underload Large Host

Bounded Pareto (I) 0 < α < 1 1 < α < 2
Bounded Pareto (II) 0 < α < 1 1 < α < 2
Bounded Burr 0 < ατ < 1 1 < ατ < 2
Bounded log-Gamma 0 < α < 1 1 < α < 2
Bounded truncated α-stable 0 < α < 1 1 < α < 2
Bounded regularly varying
with index of variation −α (*) 0 < α < 1 and (**) 1 < α < 2
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there can be orders of magnitude difference in mean response time between balancing
and unbalancing load. This underscores the importance of our problem.

2. FORMAL PROBLEM STATEMENT

Jobs arrive into the system according to a Poisson process of rate λ and job sizes are
independent of each other and the arrival process. Let the service time of a generic
job be represented by the random variable X . It is assumed that job sizes are defined
by an absolutely continuous distribution function, F(t), with continuous density, f (t).
It is further assumed that f (t) has support1 (s, b), where 0 ≤ s < b ≤ ∞.

The size-cutoff value used in the system is denoted by c, with jobs smaller than c
directed to the small host and jobs larger than c directed to the large host. The full ith
moment of the service time (Mi), truncated ith moment (Mi(c)) and the normalized
truncated ith moment (mi(c)) are defined as follows, for i = 1, 2 and s ≤ c ≤ b:

M1 =
∫ ∞

s
tf (t) dt, M2 =

∫ ∞

s
t2f (t) dt,

M1(c) =
∫ c

s
tf (t) dt, M2(c) =

∫ c

s
t2f (t) dt,

m1(c) = M1(c)

M1
= 1

M1

∫ c

s
tf (t) dt, m2(c) = M2(c)

M2
= 1

M2

∫ c

s
t2f (t) dt. (2)

Define the full and truncated loads on the small host, respectively, by

ρ = λM1 = λ

∫ ∞

s
tf (t) dt and ρ(c) = λM1(c) = λ

∫ c

s
tf (t) dt = ρm1(c).

Observe that 0 < ρ < 2 . Define the normalized truncated load on the small host by
q(c) ≡ ρ(c)/ρ.

Because q(c) and m2(c) are defined as normalized functions, they satisfy 0 ≤
q(c) ≤ 1 and 0 ≤ m2(c) ≤ 1. Observe that q(c) < 1

2 whenever the cutoff c is chosen
such that the small host is underloaded, whereas q(c) > 1

2 means that the cutoff is
chosen so that the large host is underloaded.

Let TQ be the waiting time of a job and E[TQ] be the expected waiting time. By
splitting the arrival stream of jobs according to size, which are independent of arrival
times, the arrival streams to each of the two hosts is Poisson. Denote corresponding
quantities for the small and large host by the suffixes S and L, respectively. The system
then consists of two M/G/1 queues, with the expected waiting time in each case given
by the Pollaczek–Khinchine formula:

E[T i
Q] = λiE[X2

i ]
2(1 − ρi)

, i = S, L, (3)

where Xi is the job size going to queue i, λi is the arrival rate for queue i, and ρi is
the load on host i. The expected waiting time for the entire system is obtained by
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conditioning on the size of jobs:

E[TQ] = Pr(X ≤ c)E[T S
Q] + Pr(X > c)E[T L

Q] = F(c)E[T S
Q] + F(c)E[T L

Q].
After some manipulation, this equation can be expressed as

E[TQ] = M2λ

2ρ
h(c), (4)

where

h(c) = m2(c)F(c)

a + 1 − q(c)
+ (1 − m2(c))(1 − F(c))

a + q(c)
, (5)

with

a = 1 − ρ

ρ
. (6)

Observe that a > − 1
2 . We will use this fact later.

The above quantities are expressed in terms of the cutoff parameter c (e.g., h(c),
m2(c), F(c), etc.). There are times when we will wish to write these quantities instead
as a function of the normalized truncated load on the small host, q(c). We define
h̃(q(c)) ≡ h(c) and likewise for m̃(q(c)) and other functions. We then abuse notation
a bit by simply writing h̃(q) and likewise for the other functions, where the c is
implicit.2

Using these definitions of F̃(q), m̃2(q), and h̃(q), Eq. (5) can be transformed into

h̃(q) = m̃2(q)F̃(q)

a + 1 − q
+ (1 − m̃2(q))(1 − F̃(q))

a + q
. (7)

Equation (7) is the function that we are trying to minimize in order to minimize the
expected waiting time. We refer to Eq. (7) as the original minimization problem.

Lemma 2.1: The function h̃(q) has a unique minimum point. We denote this point by
q∗ and let the cutoff value corresponding to q∗ be c∗.

Proof: By taking derivatives of F̃(q) and m̃2(q) and applying the formulas given
in Appendix A, it can be shown that m̃2(q) and F̃(q) are increasing functions of q,
that F̃(q) is concave, and that m̃2(q), m̃2(q)F̃(q), (1 − F̃(q)), (1 − m̃2(q))(1 − F̃(q)),
m̃2(q)F̃(q)/(a + 1 − q), and (1 − m̃2(q))(1 − F̃(q))/(a + q) are all convex (we skip
this straightforward proof). Using these results and the fact that m2(0) = F(0) = 0
and m2(1) = F̃(1) = 1, it follows that h̃(q) is the sum of two convex functions, and
because f (t) is nonzero in its region of support, there is a unique minimum point. �

For finite mean waiting times, the denominators in both terms on the right in
Eq. (7) must be positive. Hence, for stability, we must have a + 1 − q > 0 and
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a + q > 0. This implies, if 0 ≤ ρ < 1, that q must satisfy 0 ≤ q ≤ 1, and if 1 ≤ ρ < 2,
that q must satisfy 1 − 1/ρ < q < 1/ρ.

The obvious approach for finding the minimum point of h̃(q) is to take its
derivative and set it to zero. This gives

0 = h̃′(q) = m̃2(q)F̃(q)

(a + 1 − q)2
+ m̃′

2(q)F̃(q)

a + 1 − q
+ m̃2(q)F̃ ′(q)

a + 1 − q
− (1 − m̃2(q))(1 − F̃(q))

(a + q)2

− m̃′
2(q)(1 − F̃(q))

a + q
− (1 − m̃2(q))F̃ ′(q)

a + q
. (8)

Unfortunately, solving Eq. (8) does not seem tractable.

3. CONDITIONS FOR UNBALANCED LOAD

The question of which host to underload can be determined by examining some simple
sufficient imbalance conditions that are defined in terms of the truncated moment func-
tions of the job size distribution and the derivatives of the truncated moment functions,
all evaluated at q = 1

2 .

Theorem 3.1: If

m̃2(1/2) − (1 − F̃(1/2)) > 0, (9)

m̃′
2(1/2) − F̃ ′(1/2) > 0, (10)

then q∗ < 1
2 and, hence, the small job host should be underloaded. This result is also

true if all the inequalities are reversed, with the consequence being that q∗ > 1
2 , so

that the large job host is underloaded.

In Section 3.1 we prove Theorem 3.1 and in Section 3.2 we provide an example
of how the theorem can be applied when the job size distribution is Bounded Pareto.

3.1. Proof of Theorem 3.1

In order to prove Theorem 3.1, we introduce the low-load approximation, which
approximates the original system for ρ ≈ 0. In the low-load approximation, we
have, from Eq. (6), a ≈ 1/ρ, 1/(a + 1 − q) ≈ ρ and 1/(a + q) ≈ ρ. Applying these
approximations to Eq. (7), the equation to be minimized becomes, in the low-load
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approximation,

h̃0(q) = ρ

[
m̃2(q)F̃(q) + (1 − m̃2(q))(1 − F̃(q))

]
.

From here on, we will ignore the ρ factor (since it does not affect the minimization
point) and simply define

h̃0(q) ≡ m̃2(q)F̃(q) + (1 − m̃2(q))(1 − F̃(q)) , (11)

where the subscript 0 denotes low load. This is called the low-load approximation and
the optimal load point for the low-load approximation is denoted by q∗

0. Observe that
h̃0(q) is a convex function, as was h̃(q), using the same arguments as in the proof of
Lemma 2.1.

The key idea in the proof of Theorem 3.1 is that we will prove that, assuming (9)
and (10),

q∗ <
1

2
⇐⇒ q∗

0 <
1

2
(12)

Hence, it suffices to determine the direction of load imbalance in the low-load
approximation, and that gives us the direction of load imbalance for the original
problem.

Proof of Theorem 3.1: We first show that the optimal load point of the low-load
approximation, q∗

0, in Eq. (11) satisfies q∗
0 < 1/2.

To prove this, differentiate Eq. (11) to get

h̃′
0(q) = m̃′

2(q)(2F̃(q) − 1) + F̃ ′(q)(2m̃2(q) − 1).

Now, set q = 1/2 in this equation. From Appendix A, F̃(1/2) ≥ 1/2. Furthermore,
by inequality (10), m̃′

2(1/2) > F̃ ′(1/2), and by Appendix A, F̃ ′(1/2) > 0; hence,

h̃′
0(1/2) ≥ F̃ ′(1/2)(2F̃(1/2) − 1) + F̃ ′(1/2)(2m̃2(1/2) − 1)

= 2F̃ ′(1/2)(m̃2(1/2) − (1 − F̃(1/2))). (13)

By inequality (9), m̃2(1/2) − (1 − F̃(1/2)) > 0. Thus, Eq. (13) implies that

h̃′
0(1/2) > 0. (14)

Finally, since h̃0(q) is a convex function, h̃′
0(q) is nondecreasing over the domain.

Since h̃′
0(q) is furthermore continuous, we have that the minimum value of h̃0(q)

occurs at q = q∗
0 < 1

2 .
Knowing that q∗

0 < 1/2, we now show that the optimal load point of the original
system, q∗, satisfies q∗ ≤ 1/2.
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To simplify notation, define g̃0(q) = m̃2(q)F̃(q) and k̃0(q) = (1 − F̃(q))(1 −
m̃2(q)). Using these definitions, moment condition (9), m̃2(1/2) − (1 − F̃(1/2)) ≥ 0,
can be expressed as

g̃0(1/2) ≥ k̃0(1/2). (15)

Using these definitions of g̃0(q) and k̃0(q), the low-load approximation (Eq. (11))
can be expressed as

h̃0(q) = g̃0(q) + k̃0(q), (16)

and the original system equation (Eq. (7)) can be expressed as

h̃(q) = g̃0(q)

a + 1 − q
+ k̃0(q)

a + q
. (17)

Differentiating this equation gives

h̃′(q) = g̃′
0(q)

a + 1 − q
+ g̃0(q)

(a + 1 − q)2
+ k̃′

0(q)

a + q
− k̃0(q)

(a + q)2
. (18)

Now, setting q = 1
2 , all denominators become a + 1

2 , which is positive, since a > − 1
2 .

Now since

g̃0(1/2) − k̃0(1/2) ≥ 0 by (15),

g̃′
0(1/2) + k̃′

0(1/2) = h̃′
0(1/2) > 0 by (14),

we see from Eq. (18) that

h̃′(1/2) > 0. (19)

Thus, it follows as in Eq. (14) (by convexity arguments) that q∗ < 1/2. The proof with
inequalities reversed is similar (hence the if and only if in relation (12). �

3.2. Bounded Pareto Example

We now apply Theorem 3.1 to the case of the bounded Pareto job size distribution,
BP(s, b, α). In the bounded Pareto distribution, BP(s, b, α), α is the tail index, s is the
minimum job size, and b is the maximum job size. We will show that, for sufficiently
large b, if 0 < α < 1, the small host should be underloaded, and if 1 < α < 2, the
large host should be underloaded (we refer to this as the large b approximation). We
will later see that these same results can be obtained from Theorems 4.2 and 4.1. To
complete our analysis, we also consider the case α = 1 and show that in this case, for
sufficiently high b, the load should be equally balanced.

The fact that we require a high b value is not unrealistic. In computing workloads,
b is often seven orders of magnitude higher than s (e.g., web file sizes can range from
10B to 100MB).
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For t ∈ [s, b], the bounded Pareto distribution has density function given by

f (t) = αt−α−1

(1 − (b/s)−α)s−α
.

The density is zero elsewhere. For s ≤ c ≤ b, the moments and truncated moments of
the bounded Pareto distribution are as follows:

F(c) = 1 − (c/s)−α

1 − (b/s)−α
, 1 − F(c) = (c/s)−α − (b/s)−α

1 − (b/s)−α
, α > 0. (20)

For α �= 1,

M1 = sα(1 − (b/s)1−α)

(α − 1)(1 − (b/s)−α)
, q(c) = 1 − (c/s)1−α

1 − (b/s)1−α
. (21)

For α = 1,

M1 = s log(b/s)

1 − (b/s)−1
, q(c) = log(c/s)

log(b/s)
. (22)

For α �= 2,3

M2 = s2α(1 − (b/s)2−α)

(α − 2)(1 − (b/s)−α)
,

m2(c) = 1 − (c/s)2−α

1 − (b/s)2−α
, 1 − m2(c) = (c/s)2−α − (b/s)2−α

1 − (b/s)2−α
. (23)

3.2.1. Large b Approximation. To derive the large b approximation, the
following assumptions are made for s and b.
[A1] For 0 < α < 2, assume

(b/s)−α 
 1, (24)

(b/s)2−α � 1, (25)

(b/s)1−α � 1 (0 < α < 1) and (b/s)1−α 
 1 (1 < α < 2). (26)

Applying assumptions A1, the truncated moment functions, Eqs. (20) and (23),
become, for 0 < α < 1 and 1 < α < 2,

1 − F(c) ≈ (c/s)−α − (b/s)−α , (27)

q(c) ≈
⎧⎨
⎩

(c/s)1−α − 1

(b/s)1−α
, 0 < α < 1

1 − (c/s)1−α , 1 < α < 2,
(28)

m2(c) ≈ (c/s)2−α − 1

(b/s)2−α
. (29)

We, now, proceed to analyze different cases of α.
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3.2.2. Bounded Pareto: 0 < α < 1. From Eq. (28), the large b approxima-
tion for c/s is given by

c/s ≈ (1 + q(c)(b/s)1−α)1/(1−α) = (b/s)
(
(b/s)α−1 + q(c)

)1/(1−α)
. (30)

Inserting this equation into Eqs. (27) and (29) respectively, we get the following
approximations for the truncated moment functions:

1 − F̃(q) ≈ (b/s)−α
(
(b/s)α−1 + q

)−α/(1−α) − (b/s)−α ,

m̃2(q) ≈ (
(b/s)α−1 + q

)(2−α)/(1−α) − (b/s)α−2.

From Appendix A we have that F̃ ′(q) = M1/c and m̃′(q) = cM1/M2. In addition,
under assumptions A1, M1 ≈ sα(b/s)1−α/(1 − α) and M2 ≈ s2α(b/s)2−α/(2 − α).
These results together with Eq. (30) give

F̃ ′(q) ≈
(

α

1 − α

)
(b/s)−α

(
(b/s)α−1 + q

)−1/(1−α)
,

m̃′
2(q) ≈

(
2 − α

1 − α

) (
(b/s)α−1 + q

)1/(1−α)
.

The imbalance conditions evaluate to (setting q = 1/2)

m̃2(1/2) − (1 − F(1/2)) ≈ (
(b/s)α−1 + 1/2

)(2−α)/(1−α)
(31)

− (b/s)−α
(
(b/s)α−1 + 1/2

)−α/(1−α)
,

m̃′
2(1/2) − F ′(1/2) ≈

(
2 − α

1 − α

) (
(b/s)α−1 + 1/2

)1/(1−α)
(32)

−
(

α

1 − α

)
(b/s)−α

(
(b/s)α−1 + 1/2

)−1/(1−α)
.

Since (b/s)−α → 0 (b → ∞), the second term on the right in both Eqs. (31) and
(32) becomes zero (b → ∞), whereas the first term on the right in Eqs. (31) and
(32) remains bounded below by a positive value. Hence, Eqs. (31) and (32) will both
be positive for b large enough. Thus, using Theorem 3.1, the small host should be
underloaded in the original system, for b large enough.

3.2.3. Bounded Pareto: 1 < α < 2. From Eq. (28), the large b approxima-
tion for c/s is given by

c/s ≈ (1 − q(c))1/(1−α). (33)
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Inserting this equation into Eqs. (27) and (29) respectively, we get the following
approximations for the truncated moment functions:

1 − F̃(q) ≈ (1 − q)α/(α−1) − (b/s)−α ,

m̃2(q) ≈ (1 − q)−(2−α)/(α−1) − 1

(b/s)2−α
.

As earlier, we have from Appendix A that F̃ ′(q) = M1/c and m̃′(q) = cM1/M2. In
addition, under assumptions A1, M1 ≈ sα/(α − 1) and M2 ≈ s2α(b/s)2−α/(2 − α).
These results together with Eq. (33) give

F̃ ′(q) ≈
(

α

α − 1

)
(1 − q)1/(α−1) ,

m̃′
2(q) ≈

(
2 − α

α − 1

)
(b/s)α−2(1 − q)−1/(α−1).

The imbalance conditions evaluate to (setting q = 1/2)

m̃2(1/2) − (1 − F(1/2)) ≈ (1/2)−(2−α)/(α−1)(b/s)α−2

− (1/2)α/(α−1) − (b/s)α−2 + (b/s)−α , (34)

m̃′
2(1/2) − F ′(1/2) ≈

(
2 − α

α − 1

)
(1/2)−1/(α−1)(b/s)α−2

−
(

α

α − 1

)
(1/2)1/(α−1). (35)

Since (b/s)−α , (b/s)α−2 → 0 (b → ∞), the first, third, and fourth terms on the
right in Eq. (34) and the first term on the right in Eq. (35) become zero (b → ∞).
On the other hand, the second term on the right in both Eqs. (34) and (35) remains
bounded above by a negative value. Hence, Eqs. (34) and (35) will both be negative
for b large enough. Thus, using Theorem 3.1, the large host should be underloaded in
the original system, for b large enough.

3.2.4. Bounded Pareto: α = 1. We will show that if α = 1, then the load
is balanced at the optimal load point. To show this, we need to make the following
additional assumptions:
[A2] For 0 < α < 2 and c in the region of the optimal point, c∗, assume

(b/s)−α 
 (c/s)−α 
 1, (36)

(b/s)2−α � (c/s)2−α � 1. (37)

Assumptions A2 cannot be made a priori. We make these assumptions, simplify,
and solve the minimization problem, Eq. (7), and then verify that the assumptions are
correct.
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Applying assumptions A2 to Eqs. (27) and (29), the truncated moment functions
become

1 − F(c) ≈ (c/s)−1, (38)

m2(c) ≈ c/s

b/s
. (39)

For α = 1, we can compute an explicit expression for c(q) directly from Eq. (22),
giving c(q)/s = (b/s)q. Inserting this into Eqs. (38) and (39) gives

1 − F(c) ≈ (b/s)−q and m̃2(q) ≈ (b/s)q−1. (40)

Hence, the minimization problem, Eq. (7), becomes

h̃(q) ≈ (b/s)q−1(1 − (b/s)−q)

a + 1 − q
+ (b/s)−q(1 − (b/s)q−1)

a + q
≡ g̃(1 − q) + g̃(q), (41)

where g̃(q) = (b/s)−q(1 − (b/s)−(1−q))/(a + q). By symmetry, q∗ ≈ 1/2 is an
optimal point. Substituting q∗ ≈ 1/2 into Eq. (40) gives the optimal cutoff point

c∗ ≈ (bs)1/2. (42)

We now verify assumptions A2. At the optimal point, (b/s)−1 
 (c/s)−α =
((bs)1/2/s)−1 = (b/s)−1/2 
 1 and (b/s)2−1 = b/s � (c/s)2−α = ((bs)1/2/s)2−1 =
(b/s)1/2 � 1. Hence, provided b is large enough, both inequalities (36) and (37) in
assumptions A2 are satisfied.

4. HOWTHE MOMENT INDEX OFTHE EXTENDED JOB SIZE
DISTRIBUTION DETERMINESTHE DIRECTION OF IMBALANCE

In this section we will specify broad classes of job size distributions under which
the small job host should be underloaded and vice versa. To do this, we begin, in
Section 4.1, by demonstrating a very simple relationship between the moment index
of the extended job size distribution and the direction of load imbalance. In Section 4.2
we then apply this moment index property to a range of distributions.

4.1. Moment Index Property

All job size distributions in this article, F(t), are assumed to be bounded from above
by some bounding level b and from below by s ≥ 0. Recall that it is necessary that the
job size distribution be bounded from above, so that its moments are finite, allowing
for a finite mean response time.

Let X be a random variable denoting the job size distribution and let F(t) be its
distribution function. Corresponding to any such bounded job size distribution, F(t),
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one can define an extended distribution function, R(t), with support (s, ∞) and density
r(t), as follows, by means of conditioning: Suppose Z is a random variable that has
distribution function R(t), then the random variable, X, is equal to Z conditioned on
Z being less than or equal to b.4 This gives F(t) = Pr(X ≤ t) = Pr(Z ≤ t | Z ≤ b) =
R(t)/R(b). Likewise, the density function of X is given by f (t) = r(t)/R(b).

The results in this section require that the bounding level, b, becomes large. We
show in Theorem 4.1 that when the first moment of the extended distribution is finite
but the second moment is infinite, the large host should be underloaded. We show in
Theorem 4.2 that when the first moment of the extended distribution is infinite and the
extended density function satisfies some regularity conditions, the small host should
be underloaded.

Theorem 4.1: Let X be a random variable denoting job size, with distribution function
F(t), where s < t < b. Let Z be a random variable denoting the extended job size.
Suppose that Z satisfies E[Z] < ∞ and E[Z2] = ∞ and that Z has density function
r(t) with support (s, ∞). Then, in a server farm with job sizes drawn from X , for b
large enough, the large job host should be underloaded (i.e., q∗ > 1

2 ).

The proof of this theorem is given in Appendix C.
Theorem 4.2 examines the case when the extended distribution function, R(t),

has moment index 0 < κZ < 1 (where the random variable Z is distributed according
to R(t)). However, unlike the case when E[Z] < ∞, where the cutoff, cq(b), was
bounded, in this case, the cutoff, cq(b), increases without bound as b → ∞. To obtain
bounds on m̃2(q, b) in this situation, we need to introduce into Theorem 4.2 some
extra regularity conditions on r(t).

We note that the condition 0 < κZ < 1 places very few restrictions on distribution
functions for which E[Z] = ∞. The only cases excluded occur when κZ = 0 or 1. The
case κZ = 0 occurs if E[Zδ] = ∞, for any δ > 0, and so, there are extremely heavy
tails. We do not consider this case in the article. The case κZ = 1 and E[Z] = ∞ occurs
if E[Zγ ] < ∞, for any 0 ≤ γ < 1, but E[Z] = ∞. We do not consider this case either
in the article. The other way κZ = 1 can occur is if E[Zγ ] < ∞ (0 ≤ γ ≤ 1) and
E[Zδ] > ∞ (δ > 1), but this case is included in Theorem 4.1.

Theorem 4.2: Suppose the random variable Z has density function r(t) with support
(s, ∞) and

(a) the moment index of Z satisfies 0 < κZ < 1,

(b) r(t) is ultimately a decreasing function of t,

(c) r′(t) exists and is continuous for t ≥ s,

(d) limt→∞ −tr′(t)/r(t) exists (or, equivalently, limt→∞ −t(d/dt) log r(t)
exists).

Then, for b large enough, the optimal load point in the original system optimal, q∗, is
less than or equal to 1/2.
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Conditions (b), (c), and (d) are introduced to make f (t) regular enough so that
a lower bound on m̃2(1/2) can be found. The proof of this theorem is given in
Appendix D.

4.2. Application of Moment IndexTheorems to Distributions

In this subsection we consider several distributions,5 listed in Table 1, which have been
the focus of many Internet traffic studies and computer workload characterizations.
The distributions we consider all have a tail index α between zero and 2 and have
the property that their moment index depends on α. By applying the theorems in
Section 4.1 to the extended distributions in Table 1, we can determine the direction of
imbalance for the bounded versions of these distributions, which we list in Table 2,
assuming that the bounding level, b, is sufficiently high.

The condition (*) for regularly varying distributions denotes that the result is
limited to those distribution functions satisfying regularity conditions (b), (c), and (d)
in Theorem 4.2. The truncated α-stable distribution is a special case of a regularly
varying distribution and the regularity conditions (b), (c), and (d) in Theorem 4.2 are
shown to be satisfied in Harchol-Balter and Vesilo [14].

5. NUMERICAL RESULTS:THE BENEFITS OF UNBALANCING LOAD

This section uses numerical studies, in the case of the bounded Pareto distribution,
to compare the performance of a balanced system with one that is optimally loaded.
After applying our theorems to determine the optimal direction of load imbalance, we
use Newtonian search to iterate to find the optimal size-cutoff point.

In all cases, the mean, M1, of the distribution was set to 3000 and the ratio b/s
was set to the value 1014/9 (these parameter values correspond to those used in the
example given in Harchol-Balter et al. [12]). The lower limit of the distribution, s,
was calculated knowing the values of M1 and b/s and using Eq. (21) for α �= 1 and
Eq. (22) for α = 1. The upper limit b was then computed knowing s and b/s.

Table 3 compares the optimal value of the expected waiting time, E[TQ(q∗)], with
the value of the expected waiting time, E[TQ(1/2)], evaluated at the equally loaded
point as α varies, for very light load (ρ = 0.01). For α = 1, the optimal value of
E[TQ(q∗)] equals E[TQ(1/2)], since, in this case, the optimal load point is at q∗ = 1/2.
For other values of α, E[TQ(1/2)] is orders of magnitude larger than the optimal value
E[TQ(q∗)]. For α = 1.25, which is a typical value encountered in computing and
networking systems, there is approximately a 21,060-fold increase in expected waiting
time caused by balancing the load instead of optimally unbalancing the load. At the
optimal load point, the load is unbalanced very heavily toward the small server, with
approximately 94.4% of the load directed toward that server. As α approaches 2, the
ratio E[TQ(1/2)]/E[TQ(q∗)] decreases. Similar results are seen when α < 1, except
that the load is unbalanced very heavily toward the large server. In fact, we see that
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TABLE 3. Optimal Load Point, q∗, and Comparison of Optimal Value of E[TQ(q∗)]
Against E[TQ(1/2)], for ρ = 0.01 (Low Load)

α q∗ E[TQ(q∗)] E[TQ(1/2)] E[TQ(1/2)]/E[TQ(q∗)]
0.25 0.02898 52.99 7021 132.5
0.5 0.01783 372.6 2.094e+06 5619
0.75 0.05568 9110 1.919e+08 2.106e+04
1 0.5 1.114e+05 1.114e+05 1
1.25 0.9443 9110 1.919e+08 2.106e+04
1.5 0.9822 372.6 2.094e+06 5619
1.75 0.971 52.99 7021 132.5
2 0.8634 18.71 59.22 3.165

α and 2 − α, 0 < α < 1, give identical results except that if q∗ denotes the optimal
load point for α, then 1 − q∗ is the optimal load point for 2 − α.

For a medium load (ρ = 1.0) and a higher load (ρ = 1.6), similar results compar-
ing E[TQ(q∗)] to E[TQ(1/2)] are observed in Tables 4 and 5, respectively. The main
difference is that the penalties for not unbalancing the load become smaller as the
load increases. Note, for ρ = 1.6, that we require that 0.375 < q < 0.625 for a stable
system.

TABLE 4. Optimal Load Point, q∗, and Comparison of Optimal Value of E[TQ(q∗)]
Against E[TQ(1/2)], for ρ = 1.0 (Medium Load)

α q∗ E[TQ(q∗)] E[TQ(1/2)] E[TQ(1/2)]/E[TQ(q∗)]
0.25 0.09504 4.009e+04 1.397e+06 34.85
0.5 0.04497 3.948e+05 4.167e+08 1055
0.75 0.07851 4.62e+06 3.818e+10 8265
1 0.5 2.216e+07 2.216e+07 1
1.25 0.9215 4.62e+06 3.818e+10 8265
1.5 0.955 3.948e+05 4.167e+08 1055
1.75 0.905 4.009e+04 1.397e+06 34.85
2 0.7147 5487 1.178e+04 2.148

TABLE 5. Optimal Load Point, q∗, and Comparison of Optimal Value of E[TQ(q∗)]
Against E[TQ(1/2)], for ρ = 1.6 (High Load)

α q∗ E[TQ(q∗)] E[TQ(1/2)] E[TQ(1/2)]/E[TQ(q∗)]
0.25 0.3816 1.626e+06 5.589e+06 3.438
0.5 0.3754 3.552e+08 1.667e+09 4.692
0.75 0.3751 1.82e+10 1.527e+11 8.391
1 0.5 8.866e+07 8.866e+07 1
1.25 0.6249 1.82e+10 1.527e+11 8.391
1.5 0.6246 3.552e+08 1.667e+09 4.692
1.75 0.6184 1.626e+06 5.589e+06 3.438
2 0.5698 3.014e+04 4.714e+04 1.564
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6. MORETHANTWO HOSTS

We briefly outline how our results might be extended to more than two hosts. Suppose
that there are K > 2 hosts in the system. In that case, there are K + 1 size cutoffs c0 ≡
s < c1 < · · · < cK−1 < cK ≡ b, so that a job in the interval (ck−1, ck], k = 1, . . . , K
is directed to host k (for completeness, a job of size s is directed toward host 1).
By splitting incoming jobs into K independent streams and using the Pollaczek–
Khinchine formula, Eq. (5) can be rewritten as a sum of K terms, with each term
representing the weighted contribution to the mean waiting time from a different host.
The normalized load on host k, qk , is defined to be the load on host k, ρk , divided
by the total load, ρ, that is, qk is the fraction of load directed toward host k, with
qk = 1/K representing the equally loaded case. The pair of imbalance conditions in
Theorem 3.1 can then be replaced by K − 1 pairs of conditions. Theorem 4.1 can be
modified to show that the host serving the largest jobs should be underloaded and
Theorem 4.2 can be modified to show that the host serving the smallest jobs should
be underloaded. Our current work is on developing this approach.

7. CONCLUSION

This article has examined load distribution in a two-host system employing size-
interval task assignment. We prove very simple sufficient criteria (“imbalance
conditions”) for when the load should be unbalanced in favor of the short job host
and for when the load should be unbalanced in favor of the long job host. These
imbalance conditions depend on truncated moments of the job size distribution and
derivatives thereof. We also prove a beautiful result showing that the direction of load
imbalance can be determined directly by the moment index properties of the extended
job size distribution. This result allowed us to immediately determine the direction
of load imbalance for a wide range of bounded distributions including the bounded
Pareto, Burr, log-Gamma, and bounded regularly varying distributions. Finally, we
investigated the impact of not unbalancing the load, finding that balancing the load
can result in a 100-fold increase in mean response time over load unbalancing.

Although the theorems in this article are limited to just two hosts, we have pre-
liminary analytical results along the same lines for the case of three hosts, and we
believe that we can extend these results even further. In addition, we are looking into
generalizing the theorems herein to the case of heterogeneous hosts (with different
speeds).

Notes

1. We define the support of the density, f (t), as the region where f (t) is strictly positive.
2. Here’s an alternative explanation that might be preferable to some readers: Since f (c) is nonzero for

s < c < b, q(c) is an increasing function of c for s ≤ c ≤ b. Hence, a unique inverse function q−1(q) can be
defined such that if q = q(c), then c = q−1(q). Using this inverse function, any function of c, for s ≤ c ≤ b,
can be replaced by an equivalent function of the normalized load on the small host, q. In particular, define
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the functions F̃(q) = F(q−1(q)), m̃2(q) = m2(q−1(q)), and h̃(q) = h(q−1(q)). (In general, we will use the
tilde symbol over a function (e.g., h̃(q)) to denote functions whose argument is the normalized load, q.
Functions without the tilde symbol (e.g., h(c)) will denote functions whose argument is the cutoff, c).

3. Note: We have not included equations for M2, M2(c), and m2(c) for the case α = 2. We also define
the function c(q) = q−1(q), which gives the size cutoff needed to achieve a given normalized load, q.

4. A more satisfactory description for some readers might be to consider repeated trials, Zn, from
distribution function R(t) and let X equal the first value of Zn that is less than or equal to b.

5. We give brief introductions to the α-stable and regularly varying distributions in Appendix B to
help the reader who is not familiar with these distributions.
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APPENDIX A

Derivatives ofTruncated Moment Functions

Taking derivatives of q(c) and m2(c) in Eq. (2) gives the following equations:

d

dc
q(c) = cf (c)

M1
and

d

dc
m2(c) = c2f (c)

M2
.

Since f (c) > 0 in the region of support (which ensures that the inverse function is uniquely
defined), we have q(c(q)) = q. Taking derivatives of this identity, using the above results and
applying the chain rule gives

d

dq
F̃(q) = M1

c
and

d

dq
m̃2(q) = cM1

M2
.

From this, we see that as q increases, dm̃2(q)/dq increases and so m̃2(q) is a convex function
of q. Since m̃2(0) = 0 and m̃2(1) = 1, it is straightforward to show that m̃2(q) ≤ q. Similarly,
we can show that F̃(q) is a concave function of q and F̃(q) ≥ q.

APPENDIX B

Overview of Regularly Varying and α-Stable Distributions

A positive function, k(t), is said to be regularly varying with index β, as t → ∞ (we say
k(t) ∈ Rβ ), if, for λ > 0, limt→∞ k(λt)/k(t) = λβ . If k(t) ∈ Rβ , then it can be represented
as k(t) = L(t)tβ , where L(t) is a slowly varying function, defined by limt→∞ L(λt)/L(t) = 1,
λ > 0. Suppose X is a nonnegative random variable with distribution R(t) function whose
tail is regularly varying such that 1 − R(t) ∈ R−α (α > 0). The moments of X satisfy (see,
e.g., Embrechts, Kluppelberg, and Mikosch [9, Prop A3.8(d)]) E[X]p < ∞ if 0 < p < α and
E[X]p = ∞ if p > α. Hence, the moment index of X is α.

The density function g(t; α, β, γ , μ), where 0 < α ≤ 2 is the index of the distribution,
−1 ≤ β ≤ 1 is the skewness parameter, 0 < γ is the scale parameter (or dispersion) and
−∞ < μ < ∞ is the location parameter, is said to be α-stable if it has the characteristic
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function (see Samorodnitsky and Taqqu [18])

φ(x) =
∫ ∞

−∞
eixtg(t; α, β, γ , μ) dt = exp(ixμ − |γ xα |(1 − iβ sgn(x))�),

where sgn(x) is the sign of x and � = tan(πα/2), for α �= 1, and � = −(2/π) log |t|), for α =
1. The name “stable” comes from the following stability property for g(t; α, β, γ , μ). If Xi ∼
g(t; α, β, γ , μ) for 1 ≤ i ≤ n and n ≥ 1, then

∑n
i=1 ki(Xi − μ) has density g(t/k; α, β, γ , 0)/k,

where k = (
∑n

i=1 |ki|α)1/α . For the case μ = 0, if α < 1 and β = 1, then the support of G(t)
is the positive half-axis, and if α < 1 and β = −1, then the support of G(t) is the negative
half-axis, otherwise, the support of G(t) is the whole real line (e.g., see Zolotarev [24, Remark
4, pp. 79–80]). As a consequence, if X is a random variable with distribution function G(t),
there is the possibility of negative values of X, in general. It is for this reason that we use |X|
as the job size distribution. The moments of |X| satisfy the following property (see Property
1.2.16 of Samorodnitsky and Taqqu [18]):

E[|X|]p < ∞, 0 < p < α,

E[|X|]p = ∞, p ≥ α.

Hence, the moment index of |X| is α.

APPENDIX C

Proof of Theorem 4.1

We begin by introducing some notation needed in the proof. Define cq(b) to be the size cutoff
needed to give a normalized load, q, on the small host, when the maximum job size is b < ∞;
that is, cq(b) is defined by

q =
∫ cq(b)

s tr(t) dt∫ b
s tr(t) dt

. (C.1)

Analogous to Eq. (C.1), define the cutoff point, cq(∞), when the normalized load is q and the
bounding level is ∞, by the following:

q =
∫ cq(∞)

s tr(t) dt∫ ∞
s tr(t) dt

. (C.2)

Note that E[Z] < ∞ ensures in Eq. (C.2) that cq(∞) is finite for 0 ≤ q < 1.
Define parameterized versions of the truncated moments, when the maximum job size

is b, by

M1(b) =
∫ b

s
tr(t) dt, M2(b) =

∫ b

s
t2r(t) dt,

and define parameterized versions of the truncated moment functions, when the normalized
load on the small host is q and the maximum job size is b, by

F̃(q, b) =
∫ cq(b)

s r(t) dt∫ b
s r(t) dt

, m̃2(q, b) =
∫ cq(b)

s t2r(t) dt

M2(b)
.
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To prove the theorem, we will use the moment conditions in the theorem statement to
show, for large enough b, that the following imbalance conditions are satisfied:

m̃(1/2, b) − (1 − F̃(1/2, b)) < 0, (C.3)

m̃′
2(1/2, b) − F̃ ′(1/2, b) < 0. (C.4)

Inequalities (C.3) and (C.4) fulfill the conditions for Theorem 3.1 and so the optimal load
point of the original system equation satisfies q∗ ≥ 1/2.

We first prove inequality (C.3) and then we prove inequality (C.4).
The idea behind proving inequality (C.4) is as follows. Because E[Z] < ∞, the integral∫ b

s tr(t) dt converges to a finite limit as b approaches infinity. We use this to show that c1/2(b)

will be bounded above, for all values of b > 0. As a consequence, 1 − F̃(1/2, b) is lower
bounded by a nonzero value for all b > 0. On the other hand, in the expression m̃2(1/2, b) =∫ c1/2(b)

s t2r(t) dt/
∫ b

s t2r(t) dt, the denominator increases without bound because E[Z2] = ∞,
but the numerator will be bounded above. Hence, m̃2(1/2, b) approaches zero as b increases.
This means that for large b, we expect m̃(1/2, b) < 1 − F̃(1/2, b). We now make this this
intuition precise.

We will now show that cq(b) is bounded above for 0 ≤ q < 1 and for all values of b > 0.
From Eq. (C.2) we get

0 =
∫ cq(∞)

s tr(t) dt∫ ∞
s tr(t) dt

− q = 1∫ ∞
s tr(t) dt

[∫ cq(∞)

s
tr(t) dt − q

∫ ∞

s
tr(t) dt

]
. (C.5)

Because E[Z] = ∫ ∞
s tr(t) < ∞, we can multiply Eq. (C.5)) by

∫ ∞
s tr(t) < ∞ to give

0 =
∫ cq(∞)

s
tr(t) dt − q

∫ ∞

s
tr(t) dt.

Adding and subtracting
∫ cq(b)

s tr(t) dt in this equation and rearranging gives

0 =
∫ cq(∞)

s
tr(t) dt −

∫ cq(b)

s
tr(t) dt +

∫ cq(b)

s
tr(t) dt − q

∫ ∞

s
tr(t) dt

=
∫ cq(∞)

cq(b)

tr(t) dt + q

(
1

q

∫ cq(b)

s
tr(t) dt −

∫ ∞

s
tr(t) dt

)

=
∫ cq(∞)

cq(b)

tr(t) dt + q

( ∫ b
s tr(t) dt∫ cq(b)

s tr(t) dt

∫ cq(b)

s
tr(t) dt −

∫ ∞

s
tr(t) dt

)

=
∫ cq(∞)

cq(b)

tr(t) dt − q
∫ ∞

b
tr(t) dt. (C.6)

Since limb→∞
∫ ∞

b r(t) = 0, it follows from Eq. (C.6) that

lim
b→∞

∫ cq(∞)

cq(b)

tr(t) dt = 0. (C.7)

We conclude from Eq. (C.7), together with cq(∞) < ∞, that cq(b) is bounded above. Suppose
the contrary. In that case, lim supb→∞ cq(b) = ∞. This means there is a sequence of points
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{bn, n = 1, 2, . . .} such that limn→∞ bn = ∞ for which limn→∞ cq(bn) = ∞. Since r(t) has

support (s, ∞), that must entail that limn→∞
∫ cq(∞)

cq(bn)
tr(t) dt < 0, which contradicts Eq. (C.7).

Therefore, there is a fixed bound, ĉq < ∞ such that cq(b) ≤ ĉq, for b > 0. Applying this
bound to the definition of F̃(q, b) gives

1 − F̃(q, b) =
∫ b

cq(b) r(t) dt∫ b
s r(t) dt

≥
∫ b

ĉq
r(t) dt∫ b

s r(t) dt
=

∫ ∞
ĉq

r(t) dt − ∫ ∞
b r(t) dt∫ b

s r(t) dt
. (C.8)

Since
∫ b

s r(t) dt ≤ 1, it follows from Eq. (C.8) that

1 − F̃(q, b) ≥
∫ ∞

ĉq

r(t) dt −
∫ ∞

b
r(t) dt. (C.9)

Since
∫ ∞

ĉq
r(t) dt > 0 and

∫ ∞
b r(t) dt approaches zero, we conclude from Eq. (C.9) that there

is a value b0(q) such that

1 − F̃(q, b) ≥ 1

2

∫ ∞

ĉq

r(t) dt > Kq > 0 , b ≥ b0(q),

for some constant Kq > 0. On the other hand, applying the bound cq(b) ≤ ĉq to the definition
of m̃2(q, b) gives

m̃2(q, b) =
∫ cq(b)

s t2r(t) dt∫ b
s t2r(t) dt

<

∫ ĉq
s t2r(t) dt∫ b
s t2r(t) dt

.

Since E[Z2] = ∞, it follows that
∫ b

s t2r(t) dt → ∞, and so we obtain

m̃2(q, b) <

∫ ĉq
s t2r(t) dt∫ b
s t2r(t) dt

→ 0 (b → ∞). (C.10)

Hence, setting q = 1/2 in Eqs. (C.9) and (C.10), we can find a b large enough such that
m̃2(1/2, b) − (1 − F̃(1/2, b)) < 0.

To prove the imbalance property given in Eq. (C.4), take derivatives of F̃(q, b) and m̃2(q, b)

and use the results in Appendix A to give

F̃ ′(q, b) − m̃′
2(q, b) = M1(b)

cq(b)

(
1 − cq(b)2

M2(b)

)
. (C.11)

Applying the upper bound cq(b) ≤ ĉq gives

F̃ ′(q, b) − m̃′
2(q, b) ≥ M1(b)

cq(b)

(
1 − ĉ2

q

M2(b)

)
. (C.12)

Since ĉq is a fixed value and M2(b) = ∫ b
s t2r(t) dt increases to infinity, a large enough value of

b can be found such that the right-hand side of Eq. (C.12) is greater than zero. Setting q = 1/2
proves the result.
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APPENDIX D

Proof of Theorem 4.2

This appendix is devoted to proving Theorem 4.2. We require the following lemmas, which are
proved in Harchol-Balter and Vesilo [14].

Lemma D.1: Suppose that the random variable Z has a density function r(t) that is ultimately
decreasing and that E[Z] = ∞. Then

(i) lim
b→∞

∫ b
s tr(t) dt

b
= 0, (D.1)

(ii) lim
b→∞

∫ b
s t2r(t) dt

b2 = 0. (D.2)

Lemma D.2: Suppose that the random variable Z has a density function r(t) that is dif-
ferentiable and ultimately decreasing, that Z has moment index 0 < κZ < 1, and that
limb→∞ −br′(b)/r(b) exists. Then

(i) lim
b→∞ b2r(b) = ∞, (D.3)

(ii) if γ < κZ , then bγ+1r(b) ultimately decreases monotonically to zero, (D.4)

(iii) lim
b→∞

∫ b
s tr(t) dt

b2r(b)
= 1

(1 − κZ )
, (D.5)

(iv) lim
b→∞

b
∫ ∞

b r(t) dt∫ b
s tr(t) dt

= 1 − κZ

κZ
. (D.6)

Additionally, there exists a fixed value r̂ > 0 such that

1 > c1/2(b)/b > r̂ > 0 for b large enough, (D.7)

and the following limit applies:

lim
b→∞

2b
∫ c1/2(b)

s t2f (t) dt

c1/2(b)
∫ b

s t2f (t) dt
= 1. (D.8)

Proof of Theorem 4.2: To prove the theorem we will show, for b large enough, that

m̃(1/2, b) − (1 − F̃(1/2, b)) > 0, (D.9)

m̃′
2(1/2, b) − F̃ ′(1/2, b) > 0. (D.10)

Inequalities (D.9) and (D.10) fulfill the conditions for Theorem 3.1 and so the optimal point of
the original system equation satisfies q∗ < 1/2. We do this by showing that m̃2(1/2, b) is lower
bounded by a positive (nonzero) value.
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Since r(t) is a probability density with support (s, ∞), we have, for b large enough, that∫ b
s r(t) dt > 1/2. Applying this inequality to the definition of F̃(q, b) gives the bounds

1 − F̃(q, b) =
∫ b

cq(b) r(t) dt∫ b
s r(t) dt

<

∫ b
cq(b) r(t) dt

1/2
< 2

∫ ∞

cq(b)

r(t) dt. (D.11)

The last integral in Eq. (D.11) satisfies the following identity:

∫ ∞

cq(b)

r(t) dt =
(

cq(b)
∫ ∞

cq(b) r(t) dt∫ cq(b)
s tr(t) dt

) (∫ cq(b)
s tr(t) dt∫ b

s tr(t) dt

) (
b

cq(b)

) (∫ b
s tr(t) dt

b

)
.

Set q = 1/2 in this identity and insert it into Eq. (D.11) to give the bound

1 − F̃(1/2, b) <
1

2

(
c1/2(b)

∫ ∞
c1/2(b) r(t) dt∫ c1/2(b)

s tr(t) dt

) (
b

c1/2(b)

) (∫ b
s tr(t) dt

b

)
.

Combining this bound with the definition of m̃2(q, b) gives the following bound for m̃(1/2, b) −
(1 − F̃(1/2, b)):

m̃(1/2, b) − (1 − F̃(1/2, b))

>

∫ c1/2(b)
s t2f (t) dt∫ b

s t2f (t) dt
− 1

2

(
c1/2(b)

∫ ∞
c1/2(b) r(t) dt∫ c1/2(b)

s tr(t) dt

) (
b

c1/2(b)

) (∫ b
s tr(t) dt

b

)

= c1/2(b)

2b

[
2b

∫ c1/2(b)
s t2f (t) dt

c1/2(b)
∫ b

s t2f (t) dt
−

(
c1/2(b)

∫ ∞
c1/2(b) r(t) dt∫ c1/2(b)

s tr(t) dt

) (
b

c1/2(b)

)2
(∫ b

s tr(t) dt

b

)]
.

(D.12)

Since cb(1/2) → ∞, we have from Eq. (D.6), that

lim
b→∞

c1/2(b)
∫ ∞

c1/2(b) r(t) dt∫ c1/2(b)
s tr(t) dt

= 1 − κZ

κZ
. (D.13)

Inserting Eqs. (D.7), (D.8), and (D.13) into Eq. (D.12) gives the lower bound

lim
b→∞

[
m̃(1/2, b) − (1 − F̃(1/2, b))

]
>

r̂

2

[
1 −

(
1 − κZ

κZ

) (
1

r̂

)2
(∫ b

s tr(t) dt

b

)]
.

However, by Eq. (D.1), limb→∞
∫ b

s tr(t) dt/b = 0 and so limb→∞
[

m̃(1/2, b) − (1 −

F̃(1/2, b))

]
> 0. Hence, for b large enough, Eq. (D.9) is satisfied.

To prove Eq. (D.9), we use Eq. (C.11). Inserting bound c1/2(b) > r̂b into this equation
gives

m̃′
2(1/2, b) − F̃ ′

2(1/2, b) >
M1(b)

c1/2(b)

(
b2 r̂2

M2(b)
− 1

)
. (D.14)

From Eq. (D.2), limb→∞ b2/M2(b) = ∞ and so, for b large enough, the right-hand side
of Eq. (D.14) can be made positive, proving Eq. (D.10). �
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