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Abstract

A central question in designing server farms today is how to efficiently provision the number of
servers to extract the best performance under unpredictable demand patterns while not wasting
energy. While one would like to turn servers off when they become idle to save energy, the large
setup cost (both, in terms of setup time and energy penalty) needed to switch the server back on
can adversely affect performance. The problem is made more complex by the fact that today’s
servers provide multiple sleep or standby states which trade off the setup cost with the power
consumed while the server is ‘sleeping’. With so many controls, finding the optimal server farm
management policy is an almost intractable problem – How many servers should be on at any
given time, how many should be off, and how many should be in some sleep state?
In this paper, we employ the popular metric of Energy-Response time Product (ERP) to cap-
ture the energy-performance tradeoff, and present the first theoretical results on the optimality of
server farm management policies. For a stationary demand pattern, we prove that there exists a
very small, natural class of policies that always contains the optimal policy for a single server,
and conjecture it to contain a near-optimal policy for multi-server systems. For time-varying de-
mand patterns, we propose a simple, traffic-oblivious policy and provide analytical and empirical
evidence for its near-optimality.

Keywords: Power management, Data centers, Capacity provisioning, Setup costs,
Performance-per-Watt, Energy-Delay product

1. Introduction1

Motivation2

Server farm power consumption accounts for more than 1.5% of the total electricity usage in3

the U.S., at a cost of nearly $4.5 billion [23]. The rising cost of energy and the tremendous4
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growth of data centers will result in even more spending on power consumption. Unfortunately,5

due to over-provisioning, only 20-30% of the total server capacity is used on average [7]. This6

over-provisioning results in idle servers which can consume as much as 60% of their peak power.7

While a lot of energy can be saved by turning idle servers off, turning on an off server incurs a8

significant cost. The setup cost takes the form of both a time delay, which we refer to as the setup9

time, and an energy penalty. Another option is to put idle servers into some sleep state. While10

a server in sleep mode consumes more power than an off server, the setup cost for a sleeping11

server is lower than that for an off server. Today’s state-of-the-art servers come with an array of12

sleep states, leaving it up to the server farm manager to determine which of these is best.13

Goal and metric14

There is a clear tradeoff between leaving idle servers on, and thus minimizing mean response15

time, versus turning idle servers off (or putting them to sleep), which hurts response time but16

may save power. Optimizing this tradeoff is a difficult problem, since there are an infinite number17

of possible server farm management policies. Our goal in this paper is to find a simple class of18

server farm management policies, which optimize (or nearly optimize) the above tradeoff. We19

also seek simple rules of thumb that allow designers to choose from this class of near-optimal20

policies. In doing so, we greatly simplify the job of the server farm manager by reducing the21

search space of policies that he/she needs to choose from.22

To capture the tradeoff involved in energy and performance, and to compare different policies, we
use the Energy-Response time Product (ERP) metric, also known as the Energy-Delay Product
(EDP) [11, 17–19, 22]. For a control policy π, the ERP is given by:

ERPπ = E
[
Pπ] · E[

T π]
where E[Pπ] is the long-run average power consumed under the control policy π, and E[T π] is23

mean customer response time under policy π. Minimizing ERP can be seen as maximizing the24

“performance-per-watt”, with performance being defined as the inverse of mean response time.25

While ERP is widely accepted as a suitable metric to capture energy-performance tradeoffs, we26

believe we are the first to analytically address optimizing the metric of ERP in server farms.27

Note that there are other performance metrics that also capture the tradeoff between response time28

and energy, for example, a weighted sum of the mean response time and mean power (ERWS) [3,29

4, 24]. However, the ERWS metric implies that a reduction in mean response time from 1001 sec30

to 1000 sec is of the same value as a reduction from 2 sec to 1 sec. By contrast, the ERP implies31

that a reduction in mean response time from 2 sec to 1 sec is much better than a reduction from32

1001 sec to 1000 sec, which is more realistic. One reason for the popularity of ERWS is that it33

is a nicer metric to handle analytically, being a single expectation, and hence additive over time.34

Therefore, one can optimize the ERWS metric via Markov Decision Processes, for example.35

From the point of view of worst case sample path based analysis, this metric allows comparing36

arbitrary policies to the optimal policy via potential function arguments [15]. However, ERP,37

being a product of two expectations, does not allow a similar analysis. Other realistic metrics of38

interest include minimizing total energy given bounds on, say, the 95%tile of response times.39

Summary of Contributions40

We consider a specific set of server farm management policies (defined in Table 1) and prove41

that it contains the optimal policy for the case of a single server, and also contains a near-optimal42

policy for the case of multi-server systems, assuming a stationary demand pattern. For the case43
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Policy Single-Server Multi-Server
NEVEROFF Whenever the server goes

idle, it remains idle until a
job arrives.

A fixed optimally chosen number n∗ (with respect to ERP) of servers are
maintained in the on or idle states. If an arrival finds a server idle, it starts
serving on the idle server. Arrivals that find all n∗ servers on (busy) join a
central queue from which servers pick jobs when they become idle.

INSTANTOFF Whenever the server goes
idle, it turns off. It remains
off until there is no work to
process, and begins to turn
on as soon as work arrives.

Whenever a server goes idle, and there are no jobs in the queue, the server
turns off. Otherwise it picks a job from the queue to serve. At any moment
in time, there are some number of servers that are on (busy), and some
number of servers that are in setup. Every arrival puts a server into setup
mode, unless the number of servers in setup already exceeds the number of
jobs in the queue. A job does not necessarily wait for the full setup time
since it can be run on a different server that becomes free before the setup
time is complete, leaving its initially designated server in setup.

SLEEP(S ) Whenever a server goes
idle, it goes into the sleep
state S . It remains in sleep
state S until there is no
work to process, and be-
gins to wake up as soon as
work arrives.

A fixed optimally chosen number n∗ of servers are maintained in the on,
off or sleep states. Whenever a server goes idle, and there are no jobs in
the queue, it goes into the sleep state S . Otherwise it picks a job from the
queue to serve. Every arrival wakes a sleeping server and puts it into setup,
unless the number of servers in setup already exceeds the number of jobs
in the queue.

Table 1: A summary of the different policies considered in this paper, and their description in the single-server and
multi-server cases.

of time-varying demand patterns, we develop a traffic-oblivious policy that can auto-scale the44

server farm capacity to adapt to the incoming load, and prove that for a Poisson arrival process45

with an unknown rate, our policy is asymptotically optimal as the arrival rate becomes large.46

Further, via simulations, we show that our traffic-oblivious policy also performs well for general47

time-varying arrival processes. Throughout this paper, for analytical tractability, we make the48

assumption of Exponentially distributed job sizes and a Poisson arrival process. However, the49

setup time distribution is assumed to be Deterministic. We formally define the traffic model and50

the model for servers’ sleep state dynamics in Section 3.51

• We begin in Section 4 by considering a single-server system. The arrival process is Poisson52

with a known mean arrival rate. There is an infinite range of policies that one could consider53

for managing a single server, for example, when the server goes idle, one could immediately54

turn it off (INSTANTOFF), or alternatively, move the server to a specific sleep state (SLEEP).55

One could also just leave the server idle when it has no work to do (NEVEROFF). Another56

possibility is to turn an idle server off with some probability p, and leave it idle with probability57

(1 − p). One could also delay turning on an off server until a certain number of jobs have58

accumulated in the queue. Also, when turning on an off server, one could transition through59

sleep states, with each successive transition moving the server closer to the on state. Within60

this wide range of policies, we prove that one of the policies, NEVEROFF, INSTANTOFF or61

SLEEP, is always optimal. Refer to Table 1 for the exact definitions of these policies.62

• In Section 5, we consider the case of multi-server systems. The arrival process is Poisson63

with a known mean arrival rate. We assume that there are enough servers so that we are not64

constrained by the available capacity. In the multi-server setting, we have an even wider range65

of policies to choose from. For example, some servers could be turned off when idle, some66

could be moved to a specific sleep state, and the rest may be kept idle. One could also delay67

turning on an off server until a certain number of jobs have accumulated in the queue, or68

delay turning off an idle server until some time has elapsed. Via a combination of analysis69
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and numerical experiments, we conjecture that one of NEVEROFF, INSTANTOFF or SLEEP70

(defined in Table 1 for a multi-server system) is near-optimal.71

• In Section 6 we consider a time-varying arrival pattern with the aim of finding policies which72

can auto-scale the capacity while being oblivious to the traffic intensity. This situation is even73

more complicated than in Section 5, since a server farm management policy might now also74

take into account the history of arrivals or some predictions about the future arrivals. For the75

time-varying case, we introduce a new policy DELAYEDOFF. Under the DELAYEDOFF pol-76

icy, a server is only turned off if it does not receive any jobs to serve in time twait. If an arrival77

finds more than one server idle on arrival, it is routed to the server which was most recently78

busy (MRB). Otherwise, the arriving job turns on an off server.79

The MRB routing proposed above turns out to be crucial for the near-optimality of DELAYED-80

OFF. Intuitively, MRB routing increases the variance of the idle periods of the servers when81

compared to random or round-robin routing, and yields the property that the longer a server82

has been idle, the longer it is likely to stay idle. We prove that DELAYEDOFF is asymptoti-83

cally optimal for a stationary Poisson arrival process with an unknown arrival rate, as the load84

becomes large. Policies similar to DELAYEDOFF have been proposed in the literature but85

applied to individual devices [9, 15, 21], whereas in our case we propose to apply it to a pool86

of homogeneous interchangeable servers under MRB routing. We provide both analytical and87

simulation evidence in favor of the auto-scaling capabilities of DELAYEDOFF and show that88

it compares favorably to an offline, traffic-aware capacity provisioning policy.89

2. Prior work90

Prior analytical work in server farm management to optimize energy-performance tradeoff can91

be divided into stochastic analysis, which deals with minimizing average power/delay or the tail92

of power/delay under some probabilistic assumptions on the arrival sequence, and worst-case93

analysis, which deals with minimizing the cost of worst-case arrival sequences.94

Stochastic Analysis95

The problem of server farm management is very similar in flavor to two well studied problems in96

the stochastic analysis community: operator staffing in call centers and inventory management.97

In call center staffing, the servers are operators, who require a salary (power) when they are98

working. Similarly to our problem, these operators require a setup cost to bring an employee99

into work, however, importantly, all analysis in call center staffing has ignored this setup cost.100

The operator staffing problem involves finding the number of operators (servers) which minimize101

a weighted sum of delay costs experienced by users and the monetary cost of staffing operators.102

While this problem has received significant attention under the assumption of stationary (non-103

time-varying) demand (see [8] for recent results), there is significantly less work for the time-104

varying case, one exception being [16]. In [16], the authors consider the problem of dynamic105

staffing based on knowing the demand pattern so as to maintain a target probability of a user106

finding all servers busy on arrival.107

Within inventory management, the problem of capacity provisioning takes the form: how much108

inventory should one maintain so as to minimize the total cost of unused inventory (holding cost,109

in our case idle power) and waiting cost experienced by orders when there is no inventory in stock110

(queueing delay of users). Conceptually this problem is remarkably similar to the problem we111

consider, and the two common solution strategies employed, known as Make to Order and Make112
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to Stock, are similar in flavor to what we call INSTANTOFF and NEVEROFF, respectively113

(see [2], for example). However, in our case servers can be turned on in parallel, while in114

inventory management it is assumed that inventory is produced sequentially (this is similar to115

allowing at most one server to be in setup at any time).116

Worst-case Analysis117

The theoretical CS community has been interested in power management from the point of view118

of minimizing worst case cost, for example ERWS (See [14] for a recent survey). Again, none of119

the prior work encompasses a setup time and is more applicable to a single device than a server120

farm. The performance metrics used are also very different from ERP.121

The work can primarily be split in terms of results on speed scaling algorithms, and results122

on algorithms for powering down devices. In the realm of speed scaling, the problem flavors123

considered have been minimizing energy or maximum temperature while meeting job dead-124

lines [5, 6, 25], minimizing mean response time subject to a bound on total energy [20], and125

minimizing the ERWS [4, 24]. However, again all these papers assume that the speed level126

can be switched without any setup costs, and hence are mainly applicable to single stand-alone127

devices, since in multi-server systems setup costs are required to increase capacity.128

The work on powering down devices is more relevant to the problem we consider, and due to129

sample path guarantees, these results naturally lead to traffic-oblivious powering down schemes.130

In [15] the authors consider the problem of minimizing total energy consumed under the con-131

straint that a device must instantly turn on when a job arrives. Further, [15] assumes that there is132

no setup time while turning on a device, only an energy penalty.133

3. Model134

(t)λ

ON (BUSY)

ON (BUSY)

IDLE

SLEEP

OFF

central queue
Poisson

1

2

3

4

n

Figure 1: Illustration of our server farm model.

Figure 1 illustrates our server farm model. We assume n homogeneous servers, where each135

server can process any job, and thus the servers are interchangeable. Jobs arrive from outside136

the system, to a central queue, according to a Poisson process. In Sections 4 and 5, we consider137

a fixed arrival rate, λ. However, in Section 6, we consider a time-varying arrival rate, λ(t). We138

assume the job sizes are independent and identically distributed according to an Exponentially139

distributed random variable S , with rate µ. The quantity ρ(t) = λ(t) · E[S ] is used to denote the140

instantaneous load, or the rate at which work is entering the system at time t. In Sections 4 and141

5, where we assume λ(t) = λ, we have ρ = λE[S ]. In the case of a multi-server system with142

n servers, 0 ≤ ρ < n. Here ρ represents the minimum number of servers needed to maintain a143

stable system.144
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Each server can be in one of the following states: on (busy)1, idle, off, or any one of N − 1 sleep145

states: S 1, S 2, . . ., S N−1. For convenience, we sometimes refer to the idle state as S 0 and the146

off state as S N . The associated power values are PON , PIDLE = PS 0 , PS 1 , . . ., PS N = POFF . We147

shall assume the ordering PON > PIDLE > PS 1 > . . . > PS N−1 > POFF = 0. The server can148

only serve jobs in the on state 2. The time to transition from initial state, S i, to final state, S f ,149

is denoted by TS i→S f and is a constant (not a random variable). Rather obviously, we assume150

TON→IDLE = TIDLE→ON = 0. Further, the average power consumed while transitioning from state151

S i to S f is given by PS i→S f .152

Model Assumptions: For analytical tractability, we will relax the above model a little. We will153

assume that the time to transition from a state to any state with lower power is zero. Therefore,154

TON→OFF = TS i→OFF = 0, for all i. This assumption is justified because the time to transition155

back to a higher power state is generally considerably larger than the time to transition to the156

lower power state, and hence dominates the performance penalties. Further, we will assume that157

the time to transition from a state S i to any higher power state is only dependent on the low power158

state, and we will denote this simply as TS i . Therefore, TOFF→IDLE = TOFF→S i = TOFF , for all159

i. Note that 0 = TIDLE < TS 1 < . . . < TS N−1 < TOFF . This assumption is justified because in160

current implementations there is no way to go between two sleep states without first transitioning161

through the IDLE state. Regarding power usage, we assume that when transitioning from a lower162

power state, S i, to a higher power state S f , we consume power PS i→S f = PON .163

The results of this paper are derived under the Model Assumptions. We have validated these164

assumptions within an experimental data center in our lab.165

3.1. Simulation methodology166

We use a discrete event simulator written in the C++ language to verify our theoretical results167

for the various dynamic capacity provisioning policies used in the paper. Our simulator models168

a server farm based on the above Model Assumptions.169

Throughout the paper, we use simulation results based on the following server characteristics:170

TOFF = 200s, TS LEEP = 60s, POFF = 0W, PS LEEP = 10W, PIDLE = 150W and PON = 240W.171

These parameter values are based on measurements for the Intel Xeon E5320 server, running the172

CPU-bound LINPACK [13] workload.173

4. Optimal Single Server policies174

As the first step towards our goal of finding policies for efficiently managing server pools, we175

analyze the case of a single server system. Recall that our aim is to find the policy that minimizes176

ERP under a Poisson arrival process of known intensity. Theorem 1 below states that for a single177

server, the optimal policy is included in the set {NEVEROFF, INSTANTOFF, SLEEP} (defined178

in Section 1), and hence there is no need to consider any other capacity provisioning policy.179

1We use italicized on to denote the state when the server is busy, and without italics when we are colloquially referring
to either the busy or idle state.

2PON need not necessarily denote the peak power at which a job is served, but is used as a proxy for the average
power consumed during the service of a job. Indeed, while applying our model, we would first profile the workload to
measure the average power consumed during a job’s execution, and use it as PON .



/ Performance Evaluation 00 (2010) 1–23 7

Theorem 1. For the single server model with a Poisson(λ) arrival process and i.i.d. Exponen-180

tially distributed job sizes, the optimal policy for minimizing ERP is one of NEVEROFF, IN-181

STANTOFF or SLEEP(S), where S is the optimally chosen sleep state among the existing sleep182

states.183

Before we prove Theorem 1, we would like to point out that this is quite a non-intuitive result,184

and in general we do not expect it to hold for other metrics such as ERWS. The theorem rules185

out a large class of policies, for example those which may randomize between transitioning to186

different sleep states, or policies which move from one sleep state to another, or those which187

may wait for a few jobs to accumulate before transitioning to the on state. While ERP, being a188

product of expectations, is a difficult metric to address analytically, for the single-server case we189

are able to obtain tight optimality results by deriving explicit expressions for ERP.190

Proof of Theorem 1: We give a high-level sketch of the proof in terms of four lemmas, whose191

proofs are deferred to Appendix A. These lemmas successively narrow down the class of optimal192

policies, until we are left with only NEVEROFF, INSTANTOFF and SLEEP.193

Definition 1. Let Πmixed denote the class of randomized policies whereby a server immediately194

transitions to power state S i (i ∈ {0, . . . ,N}) with probability pi on becoming idle. Given that195

the server went into power state S i, with probability qi j it stays in S i and waits until j jobs196

accumulate in the queue, where
∑∞

j=1 qi j = 1. Once the target number of jobs have accumulated,197

the server immediately begins transitioning to the on state, and stays there until going idle.198

Lemma 1. Under a Poisson arrival process and general i.i.d. job sizes, the optimal policy lies199

in the set Πmixed.200

Lemma 2. Consider a policy π ∈ Πmixed with parameters as in Definition 1. The mean response
time for policy π under a Poisson(λ) arrival process with i.i.d. Exp(µ) job sizes is given by:

E[T ] =

∑N
i=0 pi

∑∞
j=1 qi jri j∑N

i=0 pi
∑∞

j=1 qi j
(
j + λTS i

) (1)

where,

ri j =
j + λTS i

µ − λ
+

 jTS i +
j( j − 1)

2λ
+
λT 2

S i

2

 (2)

and the average power for policy π is given by:

E[P] =

∑N
i=0 pi

∑∞
j=1 qi j

(
j(ρPON + (1 − ρ)PS i ) + λTS i PON

)∑N
i=0 pi

∑∞
j=1 qi j

(
j + λTS i

) . (3)

Lemma 3. The optimal strategy for a single server must be pure. That is, pi = 1 for some201

i ∈ {0, . . . ,N}, and qini = 1 for some integer ni ≥ 1.202

Lemma 4. The optimal pure strategy dictates that ni = 1, if the optimal sleep state is S i.203

Lemma 1 is proved using a sample path argument and crucially depends on the Poisson arrival204

process and the Model Assumptions for the sleep states of the server, and in fact holds for any205
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metric that is increasing in mean response time and mean power. Lemma 3 relies on the structure206

of ERP metric. While Lemma 3 also holds for the ERWS metric (with a much simpler proof),207

it does not necessarily hold for general metrics such as the product of the mean power and the208

square of the mean response time. Lemma 4 also relies on the structure of the ERP metric and209

does not hold for other metrics such as ERWS.210

Lemma 5. Assuming a Poisson(λ) arrival process, and Exp(µ) job sizes, the mean response time211

and mean power for NEVEROFF, INSTANTOFF and SLEEP are given by:212

213

E[T ] =
1

µ − λ
+

TS i (1 + λTS i/2)
1 + λTS i

(4)

E[P] =
ρPON + (1 − ρ)PS i + λTS i PON

1 + λTS i

(5)

where S i = IDLE for NEVEROFF, S i = OFF for INSTANTOFF, and S i is the sleep state that214

we transition to in SLEEP.215

Proof: Follows by substituting pi = 1 and qi1 = 1 in Lemma 2.216

The expressions in Lemma 5 allow us to determine regimes of load and mean job sizes for which217

each of NEVEROFF, INSTANTOFF and SLEEP policy is best with respect to ERP. Although218

not shown (for lack of space), we find that NEVEROFF is typically superior to the other policies,219

unless the load is low and the mean job size is high, resulting in very long idle periods. In the220

latter case, INSTANTOFF or one of the SLEEP policies is superior, depending on the parameters221

of the sleep and off states. Eqs. (4) and (5) are also helpful for guiding a server architect towards222

designing useful sleep states by enabling the evaluation of ERP for each candidate sleep state.223

5. Near-Optimal Multi-server policies224

In this section, we extend our results for single server systems to the multi-server systems with225

a fixed known arrival rate, with the goal of minimizing ERP. Inspired by the results in Section 4,226

where we found the best of NEVEROFF, INSTANTOFF and SLEEP to be the optimal policy,227

we intuit that in the multi-server case, one of NEVEROFF, INSTANTOFF and SLEEP will be228

close to optimal as well. We make this intuition precise in Section 5.1, and in Section 5.2, we229

provide simple guidelines for choosing the right policy from among this set, depending on the230

system parameters.231

5.1. Near-optimality conjectures232

Conjecture 1. Let ΠOFF denote the class of policies which only involve the states on, idle and233

off. The ERP of the best of NEVEROFF and INSTANTOFF is within 20% of the ERP of the234

optimal policy in ΠOFF when ρ ≥ 10. When ρ ≥ 20, the performance gap is smaller than 12%.235

Conjecture 2. Let ΠS i denote the class of policies which only involve the states on, idle and the236

S i sleep state. For arbitrary S i (that is PS i and TS i ), the ERP of the best of NEVEROFF and237

SLEEP with sleep state S i is within 30% of the ERP of the optimal policy in ΠS i when ρ ≥ 10.238

When ρ ≥ 20, the performance gap is smaller than 23%.239
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The main idea behind Conjectures 1 and 2 is obtaining reasonably good lower bounds on the240

ERP for the optimal policy, and then numerically optimizing the performance gap with respect241

to the lower bound. We present justification for Conjecture 1 in Appendix B. The justification242

for Conjecture 2 is similar, and we omit it due to lack of space (see [10]).243

We believe that in reality, the simple NEVEROFF, INSTANTOFF, and SLEEP policies are better244

than our Conjectures suggest. To justify this claim, we perform the following simulation experi-245

ment. We focus on the case in Conjecture 1 of policies involving on, idle and off states. Note that246

as we mentioned earlier, due to the metric of ERP, we can not utilize the framework of Markov247

Decision Processes/Stochastic Dynamic Programming to numerically obtain the optimal policy.248

Instead we limit ourselves to the following class of threshold policies:249

THRESHOLD(n1, n2): At least n1 servers are always maintained in on or idle state. If an arrival250

finds a server idle, it begins service. If the arrival finds all servers on (busy) or turning on, but251

this number is less than n2 ≥ n1, then the arrival turns on an off server. Otherwise the arrival252

waits in a queue. If a server becomes idle and the queue is empty, the server turns off if there are253

at least n1 other servers which are on.254
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Figure 2: Comparison of the performance of THRESHOLD policy against the best of NEVEROFF and INSTANTOFF
policies. The y-axis shows the percentage improvement in ERP afforded by the THRESHOLD policy.

The THRESHOLD policy can be seen as a mixture of NEVEROFF with n1 servers, and IN-255

STANTOFF with (n2 − n1) servers. Thus, THRESHOLD represents a broad class of policies256

(since n1 and n2 can be set arbitrarily), which includes NEVEROFF and INSTANTOFF. In Fig-257

ure 2, we show the gain in ERP afforded by the optimal THRESHOLD policy over the best of258

NEVEROFF and INSTANTOFF for various values of ρ, TOFF and PIDLE
PON

. We see that if TOFF259

is small (Figure 2 (a)), the ERP gain of the THRESHOLD policy over the best of NEVEROFF260

and INSTANTOFF is marginal (< 7%). This is because in this case, INSTANTOFF is close to261

optimal. At the other end, when TOFF is large (Figure 2 (c)), the ERP gain of the THRESHOLD262

policy over the best of NEVEROFF and INSTANTOFF are again marginal (< 6%), because now263

NEVEROFF is close to optimal. We expect the optimal THRESHOLD policy to outperform264

the best of NEVEROFF and INSTANTOFF when TOFF is moderate (comparable to PIDLE ·E[S ]
PON

).265

In Figure 2 (b), we see that this is indeed the case. However, the gains are still moderate (an266

improvement of 10% when ρ ≥ 10 and at most 7% when ρ ≥ 20 when PIDLE is high).267

5.2. Choosing the right policy268

Based on the conjectures in Section 5.1, to provision a multi-server system with a fixed known269

arrival rate, it suffices to only consider the policies NEVEROFF, INSTANTOFF and SLEEP. The270

goal of this section is to develop a series of simple rules of thumb that help a practitioner choose271

between these policies. The specific questions we answer in this section are:272
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Question 1: What is the optimal number of servers, n∗, for the NEVEROFF policy?273

Question 2: What is the optimal number of servers, n∗, for the SLEEP policy?274

Question 3: How can an administrator choose between the INSTANTOFF, NEVEROFF, and the275

various SLEEP policies?276

Before presenting the rules of thumb to answer the above questions, we present a well-known277

result regarding the M/M/K queueing system which will form the basis of further analysis.278

Lemma 6 (Halfin and Whitt [12]). Consider a sequence of M/M/sn systems with load ρn in
the nth system. Let αn denote the probability that an average customer finds all servers busy in
the nth system. Then,

lim
ρn→∞

αn = α(β) if and only if lim
ρn→∞

sn − ρn
√
ρn

= β. (6)

The function α(β) is given by

α(β) =

[
1 +
√

2πβΦ(β)e
β2

2

]−1
(7)

where Φ(·) is the c.d.f. of a standard Normal variate. Under the above conditions, the mean
number of jobs in the nth system, E

[
NM/M/sn

]
, satisfies:

lim
ρn→∞

E
[
NM/M/sn

]
− ρn

√
ρn

=
α(β)
β

. (8)

Rule of Thumb #1: Choosing n∗ for NEVEROFF
For the parameter regime where NEVEROFF is the chosen policy,

n∗ = ρ + β∗(PIDLE/PON)
√
ρ + o(

√
ρ) (9)

where β∗(·) is the following function:

β∗(x) = arg minβ>0

(
α(β)
β

+ β · x
)
. (10)

A very good approximation β∗(x) ≈ 0.4105x2+0.8606x+0.0395
x2+0.5376x+0.01413 is obtained via the MATLAB curve279

fitting toolbox, with a maximum absolute relative error of < 0.75%.280

Justification: Consider a sequence of M/M/sn systems with load ρn in the nth system. Let281

sn ∼ ρ + g(ρn) + o(g(ρn)). From [12], we have that E
[
NM/M/sn

]
∼ ρn +

ρn
g(ρn)αn where αn denotes282

the stationary probability that all sn servers are busy in the nth system. Also, E
[
PM/M/sn

]
∼283

ρPON + g(ρn)PIDLE , which gives284

E
[
NM/M/sn

]
· E

[
PM/M/sn

]
= ρ2

nPON

(
1 +

αn

g(ρn)
+

g(ρn)
ρn

PIDLE

PON
+ o() terms

)
.

When g(ρn) = ω(
√
ρn), αn → 0, and the expression in the parenthesis is 1 + ω

(
1/
√
ρn

)
. When285

g(ρn) = o(
√
ρn), αn → 1, and the expression in the parenthesis is again 1 +ω

(
1/
√
ρn

)
. Thus, the286

optimal choice is g(ρn) = β
√
ρn + o(

√
ρn) for some constant β. This yields:287

ERPNEVEROFF ∼ ρnE[S ]PON

1 +

α(β)
β

+ β PIDLE
PON

√
ρn

 (11)
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Optimizing the above yields the expression for β∗.288

For the ERWS metric, the rule n∗ = ρ + β
√
ρ is known to be near-optimal in practice. It is289

popularly known as the “square-root staffing rule”, or the Quality and Efficiency Driven regime290

because it balances the sub-optimality in the performance (Quality) and resource utilization (Ef-291

ficiency), both being Θ

(
1
√
ρ

)
, and hence optimizing the ERWS metric. Here we have shown that292

the square-root staffing rule also optimizes the ERP metric, albeit with a different β.293

294

Rule of Thumb #2: Choosing n∗ for SLEEP
For the parameter regime where SLEEP with sleep state S i is the chosen policy,

n∗ = ρ′ + β∗(PS i/PON)
√
ρ′ + o(

√
ρ′) (12)

where ρ′ = ρ
(
1 +

TS i
E[S ]

)
and β∗(·) is given by (10).295

Justification: The justification for Rule of Thumb #2 is along the same lines. We expect the296

SLEEP(Si) policy to outperform NEVEROFF when TS i is small enough so that almost all jobs297

turn on a sleeping server and get served there. This is equivalent to an M/G/∞ system with298

G ∼ S + TS i . However, since PS i > 0, we optimize the number of servers by following Rule of299

Thumb #1, but with mean job size replaced by E[S ] + TS i , or equivalently ρ′ ← ρ
(
1 +

TS i
E[S ]

)
, and300

PIDLE ← PS i . This gives us:301

ERPS LEEP(S i) ∼ ρE[S ]
(
1 +

TS i

E[S ]

)2

PON

1 +

α(β)
β

+ β
PS i
PON√

ρ
(
1 +

TS i
E[S ]

)
 (13)

302

Rule of Thumb #3: Which policy to use?
We associate each policy with an index, and choose the policy with the smallest index. The index

for INSTANTOFF is given by
(
1 +

TOFF
E[S ]

)2
. The index for NEVEROFF is given by

(
1 +

γ(PIDLE/PON )
√
ρ

)
,

and for SLEEP with state S i by
(
1 +

TS i
E[S ]

)2

1 +
γ(PS i /PON )√
ρ
(
1+

TS i
E[S ]

)
. The function γ(·) is given by

γ(x) = min
β>0

(
α(β)
β

+ β · x
)

(14)

with α(β) given by (7). A very good approximation γ(x) ≈ 5.444x2+2.136x+0.006325
x2+4.473x+0.9012 is obtained via303

the MATLAB curve fitting toolbox, with a maximum relative error of < 0.6% for x ≥ 0.025.304

Justification: We justify the heuristic rule of thumb by proposing approximations for the305

ERP metric under INSTANTOFF, NEVEROFF, and the SLEEP policies. We expect the IN-306

STANTOFF policy to outperform NEVEROFF and SLEEP when TOFF is small enough com-307

pared to E[S ], so that the penalty to turn on an off server is negligible compared to the neces-308

sary cost of serving the job. In this regime, we can approximate the ERP of INSTANTOFF by309

ERPINS T ANTOFF ≈ λPON (E[S ] + TOFF)2, which is an upper bound obtained by forcing every job310

to run on the server that it chooses to turn on on arrival. The ERP of NEVEROFF with optimal311

number of servers is approximated by Eq. (11), with ρn = ρ and β = β∗(PIDLE/PON). For SLEEP,312

we again expect SLEEP(Si) policy to outperform NEVEROFF when TS i is small enough so that313
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almost all jobs turn on a sleeping server and get served there. In this regime, we can approximate314

the ERP of SLEEP by Eq. (13), with β = β∗(PS i/PON). Using the above approximations for ERP,315

we can choose between the INSTANTOFF, NEVEROFF and SLEEP policies.316

If we compare INSTANTOFF and NEVEROFF, Rule of Thumb #3 says that if TOFF is suf-317

ficiently small compared to E[S ] and 1
√
ρ
, then one should choose INSTANTOFF. Figure 3(a)318

verifies the accuracy of the above rule of thumb. Observe that in the region where our rule of319

thumb mispredicts the better policy, the gains of choosing either policy over the other are min-320

imal. Similarly, the dashed line in Figure 3(b) indicates that the theoretically predicted split321

between the NEVEROFF and SLEEP policies is in excellent agreement with simulations.322
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Figure 3: Verifying the of accuracy Rule of Thumb #3. This figure shows the relative performance of NEVEROFF,
INSTANTOFF and SLEEP policies for a multi-server system, as a function of load, ρ, and mean job size, E[S ], based
on simulations. Figure (a) shows NEVEROFF vs. INSTANTOFF. The crosses indicate the region of superiority of
INSTANTOFF over NEVEROFF. Figure (b) shows NEVEROFF vs. SLEEP. The crosses indicate the region of superi-
ority of SLEEP over NEVEROFF. The numbers associated with each point denote the % improvement of the superior
algorithm over the inferior. The dashed lines indicate the theoretically predicted split based on Rule of Thumb #3.

6. A Traffic-oblivious dynamic capacity provisioning policy323

Thus far we have considered a stationary demand pattern. Our goal in this section is to propose a324

server farm management policy with near-optimal ERP when the demand pattern is time-varying325

and unknown. We propose a policy, DELAYEDOFF, which we prove is asymptotically optimal326

when the arrival process is Poisson, but with an unknown mean intensity. Further, we provide327

empirical evidence towards favorable performance of our proposed policy when the arrival pro-328

cess is Poisson with an unknown non-stationary arrival rate λ(t), with ρ(t) = λ(t)E[S ].329

The previous policies that we have considered, NEVEROFF, SLEEP and INSTANTOFF, do not330

satisfy our goal. NEVEROFF and SLEEP are based on a fixed number of servers n∗, and thus do331

not auto-scale to time-varying demand patterns. INSTANTOFF is actually able to scale capacity332

in the time-varying case, since it can turn on servers when the load increases, and it can turn off333

servers when there isn’t much work in the system. However, when TOFF is high, we will see that334

INSTANTOFF performs poorly with respect to ERP.335

We now define our proposed traffic-oblivious auto-scaling policy, DELAYEDOFF.336

DELAYEDOFF: DELAYEDOFF is a capacity provisioning policy similar to INSTANTOFF,337

but with two major changes. First, under DELAYEDOFF, we wait for a server to idle for some338

predetermined amount of time, twait, before turning it off. If the server gets a job to service in this339
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period, its idle time is reset to 0. The parameter twait is a constant chosen independent of load,340

and thus DELAYEDOFF is a truly traffic-oblivious policy. Second, if an arrival finds more than341

one servers idle on arrival, instead of joining a random idle server, it joins the server that was342

most recently busy (MRB). We will later see that MRB routing is crucial to the near-optimality343

of DELAYEDOFF.344

We will demonstrate the superiority of DELAYEDOFF by comparing it against two other poli-
cies, the first being INSTANTOFF, and the second being an offline, traffic-aware hypothetical
policy, LOOKAHEAD. LOOKAHEAD runs the NEVEROFF policy, with n∗ changing as a func-
tion of time. LOOKAHEAD smartly calculates n∗(t) for each time t, given the ρ(t) forecast. To
do this, we use the idea proposed in [16]. The crux of the idea in [16] is to compute what we will
call the “effective load” at time t, ρeff(t), as:

ρeff(t) =

∫ t

−∞

e−µ(t−u)λ(u)du.

The quantity ρeff(t) denotes the mean number of jobs in the system at time t under the assumption345

that every job in the system can have its own server. The number of servers to have on at time t,346

n∗(t), is then chosen to be n∗(t) = ρeff(t) + β∗
√
ρeff(t), where β∗ is given by (10).347

Figure 4 illustrates the performance of INSTANTOFF, LOOKAHEAD and DELAYEDOFF in348

the case of a time-varying arrival pattern that resembles a sine curve with a period of 6 hours. In349

all the simulations, we set E[S ] = 1sec, and TOFF = 200secs (hence TOFF is high). Figure 4(a)350

shows that INSTANTOFF auto-scales poorly as compared to the other policies, in particular351

ERPINS T ANTOFF ≈ 6.8× 105Watts · sec, with E[T ] ≈ 13.17sec and E[P] ≈ 5.19× 104Watts. By352

contrast, LOOKAHEAD, shown in Figure 4(b), scales very well with the demand pattern. The353

ERP of LOOKAHEAD is ERPLOOKAHEAD ≈ 1.64 × 104Watts · sec, with E[T ] ≈ 1.036sec and354

E[P] ≈ 1.58 × 104Watts. Unfortunately, as pointed out above, LOOKAHEAD requires knowl-355

edge of the future arrival pattern to be able to have n∗(t) servers on at time t (in particular, it356

needs knowledge of the demand curve TOFF units in advance). Thus, while LOOKAHEAD per-357

forms very well in a time-varying situation, it is not an online strategy, and is thus, not practical.358

Figure 4(c) illustrates the excellent auto-scaling capability of DELAYEDOFF for the sinusoidal359

arrival pattern. Here, twait = 320s is chosen according to Rule of Thumb #4 presented later360

in this section. For the case in Figure 4(c), ERPDELAYEDOFF ≈ 1.89 × 104Watts · sec with361

E[T ] ≈ 1.002sec and E[P] ≈ 1.89 × 104Watts. The ERP for DELAYEDOFF is only slightly362

higher than that of LOOKAHEAD, and far lower than that of INSTANTOFF. DELAYEDOFF363

slightly overprovisions capacity compared to LOOKAHEAD due to its traffic-oblivious nature.364

We verify this last observation analytically.365

While analyzing DELAYEDOFF under time-varying traffic is a formidable challenge, we justify366

its excellent auto-capacity-scaling capabilities in Corollary 1, which shows that under a Poisson367

arrival process with unknown intensity, DELAYEDOFF achieves near-optimal ERP. Thus, if the368

rate of change of the arrival rate is less than TOFF (as was the case in Figure 4(c)), we expect369

DELAYEDOFF to still achieve near-optimal ERP. This is because we are able to turn servers on370

before the queue builds up.371

Theorem 2. Consider a server farm with Poisson arrival process and Exponential job size dis-372

tribution. Let ρ denote the average load. Under DELAYEDOFF with MRB routing and any con-373

stant twait, with probability 1−o(1), the number of servers on is given by ρ+
√
ρ log ρ+o(

√
ρ log ρ),374

as ρ→ ∞.375
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(c) DELAYEDOFF
Figure 4: Dynamic capacity provisioning capabilities of INSTANTOFF, LOOKAHEAD and DELAYEDOFF. The
dashed line denotes the load at time t, ρ(t), the crosses denotes the number of servers that are busy or idle at time t,
nbusy+idle(t), and the dots represent the number of jobs in the system at time t, N(t).

Corollary 1. If TOFF = 0, then DELAYEDOFF achieves optimal ERP asymptotically as ρ→ ∞.376

Specifically, the ERPDELAYEDOFF → (ρ ∗ PON ∗ E[S ])−1 as ρ→ ∞.377

Proof of Corollary 1: From Theorem 2, we know that asymptotically with probability 1, we will378

end up with ρ +
√
ρ log ρ + o(

√
ρ log ρ) number of servers on. As mentioned in the justification379

for Rule of Thumb #1 (Section 5.2), the mean response time for DELAYEDOFF will approach380

E[S ] as ρ → ∞, since it keeps ρ + ω(
√
ρ) servers on. Further, the ratio of power consumed381

by DELAYEDOFF to the minimum power needed to serve jobs (ρ · PON), is 1 +

√
log ρ
ρ

, which382

approaches 1, as ρ→ ∞. Thus, the ERP of DELAYEDOFF, with any non-zero twait, approaches383

the theoretical lower bound of (ρ · PON · E[S ])−1 as ρ→ ∞.384

Proof of Theorem 2: We first provide an alternate way of viewing the MRB routing. Consider a385

server farm with infinitely many servers, where we assign a unique rank to each server. Whenever386

there are n jobs in the server farm, they instantaneously move to servers ranked 1 to n. We now387

claim that there are m servers on at time t under MRB routing and DELAYEDOFF if and only388

if there are m servers on at time t in the alternate model under DELAYEDOFF. To see this, let389

the rank of servers at time t under MRB be defined by the last time they were idle (rank 1 server390

has been idle the shortest and so on). Once a server goes idle and gets rank n (thus the number391

of jobs in the system drops to n − 1), its rank remains n until the number of jobs in the system392

increases to n.393

Define the idle period for server n + 1, I(n), to be the time that elapses between the instant that394

the number of jobs in the system transitions from n + 1 to n until it next reaches n + 1. It is easy395

to see that the setup delay, TOFF does not affect the distribution of I(n). A rank n + 1 server turns396

off when I(n) > twait. The next lemma implies that for any constant ε > 0, the mean idle period397

of ρ + (1 + ε)
√
ρ log ρ ranked server goes to∞, and that of the ρ + (1 − ε)

√
ρ log ρ ranked server398

goes to 0. Due to lack of space, we defer the proof of Lemma 7 to Appendix C.399

Lemma 7. Consider an M/M/∞ system with load ρ. Then, for any constant ε > 0:

lim
ρ→∞

E
[
I(ρ + (1 + ε)

√
ρ log ρ))

]
= ∞

lim
ρ→∞

E
[
I(ρ + (1 − ε)

√
ρ log ρ))

]
= 0

Further, for any constant β > 0: limρ→∞
√
ρE

[
I(ρ + β

√
ρ))

]
=
√

2πeβ
2
Φ(B).400
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Therefore, clearly, for any ε > 0, the idle period of server ρ + (1 − ε)
√
ρ log ρ converges in401

distribution to 0, and this server is on with probability 1 − o(1). It is also easy to show that the402

mean busy period of server n = ρ + δ
√
ρ log ρ for any δ > 0 is E[B(n)] = 1

λ
+ o

(
1
λ

)
→ 0.403

Thus the probability that for any ε > 0, the server n = ρ + (1 + ε)
√
ρ is on is upper bounded by404

twait+E[B(n)]
E[I(n)]+twait+E[B(n)] → 0.405

We now address the question of choosing the optimal value of twait, which we denote as t∗wait.406

Rule of Thumb #4: Choosing t∗wait.407

A good choice for the twait parameter for DELAYEDOFF is t∗wait ≈ TOFF ·
PON

PIDLE
. The rule of thumb408

is along similar lines as the power down strategy proposed in [15] and is based on an amortization409

argument. Once the server has wasted PIDLE · t∗wait units of power in idle, it amortizes the cost of410

turning the server on later and paying the penalty of PON · TOFF . 3
411
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Figure 5: (a) Verifying the accuracy of Rule of Thumb #4. The graph shows the effect of twait on ERP for the DELAYED-
OFF policy, in the case of a sinusoidal demand curve, with average ρ = 60 and E[S ] = 0.1, 1, 10s. Different values of
twait result in different ERP values. However, t∗wait = TOFF ·

PON
PIDLE

= 320s does well for all values of E[S ]. (b) The graph
shows the difference in ERP of the DELAYEDOFF and LOOKAHEAD policies. The ERP values are normalized by the
theoretical lower bound. (c) The graph shows the effect of decreasing the period of the sinusoidal demand curve on the
ERP. Results suggest that decreasing the period of the demand curve does not effect the ERP significantly.

Figure 5(a) verifies Rule of Thumb #4, for different E[S ] values. Figure 5(b) compares the ERP412

of DELAYEDOFF against the ERP of LOOKAHEAD for different TOFF values. We normal-413

ize the ERP values with the theoretical upper bound of ρPON · E[S ]. Throughout the range of414

TOFF values, we see that DELAYEDOFF, with twait chosen based on Rule of Thumb #4, per-415

forms within 10% of LOOKAHEAD, based on the ERP. The ERP of both, DELAYEDOFF and416

LOOKAHEAD are within 70-80% of the ERP values of the theoretical lower bound. Figure 5(c)417

shows the effect of decreasing the period of the sinusoidal demand curve on the ERP. We see that418

the ERP of DELAYEDOFF increases as the period decreases, but this change is not very signifi-419

cant. Thus, we can expect DELAYEDOFF to perform well for time-varying demand patterns, as420

long as the rate of change of demand is not too high.421

Trace-based simulation results:. Thus far we have only looked at simulation results for arrival422

patterns that look like a sinusoidal curve. However, not all demand patterns are sinusoidal. We423

3While a reader familiar with work on powering down scheme might find our DELAYEDOFF policy not novel, we
would like to point out a conceptual difference between the use of DELAYEDOFF in our work and in the prior literature.
The prior literature uses DELAYEDOFF type schemes for stand-alone devices, obtaining constant factor sub-optimality.
However, we are applying DELAYEDOFF to each device in a server farm, and are artificially creating an arrival process
via MRB so as to make the idle periods of the servers highly variable. This allows DELAYEDOFF to perform near-
optimally as ρ increases, that is, the competitive ratio approaches 1. This is not necessarily true under alternate routing
schemes, such as probabilistic routing, which would yield a competitive ratio bounded away from 1.
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Figure 6: DELAYEDOFF simulation results based on a subset of arrival traces collected from the Internet Traffic
Archives, representing 15 hours of bursty traffic during the 1998 Soccer world cup finals. Observe that DELAYED-
OFF scales very well even in the case of bursty traffic.

now consider a real-life demand pattern based on traces from the 1998 World Cup Soccer web-424

site, obtained from the Internet Traffic Archives [1]. The trace contains approximately 90 days425

worth of arrival data, with more than 1.3 billion arrivals. The data contains very bursty arrivals,426

with the arrival rate varying by almost a factor of 10, between periods of peak demand and427

low demand. In particular, the rate of change of arrival rate is sometimes much higher than428

TOFF = 200s. We run DELAYEDOFF on this trace, and compare our results against LOOKA-429

HEAD. Throughout, we assume Exponentially distributed job sizes, with mean 1 second.430

Figure 6 shows our simulation results for a subset of the arrival traces, corresponding to the431

most bursty traffic. We see that DELAYEDOFF (with optimally chosen twait = 320s) adapts432

extremely well to the time-varying traffic. In fact, over the entire duration of 90 days, the ERP433

of DELAYEDOFF was within 15% of the ERP of LOOKAHEAD. Thus, we conclude that DE-434

LAYEDOFF performs very well even in the case of unpredictable and bursty traffic.435

7. Conclusions436

This paper address the issue of energy-performance tradeoff in server farms. We utilize the437

metric of Energy-Response Time Product (ERP) to capture the aforementioned tradeoff. Finding438

optimal policies to minimize ERP in server farms is an almost intractable problem due to the high439

dimensionality of the search space of policies, made worse by the numerous sleep states present440

in today’s servers. Via the first analysis of the ERP metric, we prove that a very small natural441

class of server farm management policies suffices to find the optimal or near-optimal policy.442

We furthermore develop rules of thumb for choosing the best among these policies given the443

workload and server farm specifications. The impact of our results is two-fold: (i) Our results444

eliminate the complexity of finding an efficient server farm management policy, and (ii) Our445

analytical evaluation of the policies advocated in this paper with respect to ERP can guide server446

designers towards developing a smaller set of sleep states with the most impact.447

We first prove that for a single server under a Poisson arrival process, the optimal policy with448

respect to ERP is either to always keep the server on or idle (NEVEROFF), or to always turn449

a server off when idle and to turn it back on when work arrives (INSTANTOFF), or to always450

put the server in some sleep state when idle (SLEEP). Next, based on analysis and numerical451

experiments, we conjecture that for a multi-server system under a Poisson arrival process, the452



/ Performance Evaluation 00 (2010) 1–23 17

multi-server generalizations of NEVEROFF, INSTANTOFF and SLEEP suffice to find a near-453

optimal policy. Finally we consider the case of a time-varying demand pattern and propose a454

simple traffic oblivious policy, DELAYEDOFF, which turns servers on when jobs arrive, but455

waits for a specific amount of time, twait, before turning them off. Through a clever routing456

policy, DELAYEDOFF is shown to achieve asymptotic optimality for a stationary Poisson arrival457

process with an unknown arrival rate, as the load becomes large.458

In order to prove the optimality results in this paper, we have made some assumptions: (i) The459

servers are interchangeable (any job can serve on any server), (ii) The server farm is homoge-460

neous, (iii) The job-sizes are Exponentially distributed (although the asymptotic optimality of461

DELAYEDOFF extends to general job size distributions). If some or all of these assumptions462

were to be relaxed, then our optimality results might look different. For example, we might463

consider policies that treat servers based on their specific characteristics, such as PON , PIDLE464

or TOFF . Proving optimality results without the above assumptions is beyond the scope of this465

paper, and we hope to address some of these issues in a future paper.466

Appendix A. Proof of Theorem 1467

Proof of Lemma 1: We first note that if the server is in the on state and there is work in the468

system, then the optimal policy never transitions into a sleep state. Suppose, by contradiction,469

an optimal policy π transitioned into a sleep state at time t0 with work in the queue and then470

later transitioned through some sleep state until finally transitioning to the on state at time t1.471

We could transform this into a policy π′ with equivalent power consumption, but lower mean472

response time by deferring the powering down until all the work present in the system at t0 has473

finished (say at t2), and then transitioning through the same sleep states as π, finally transitioning474

to the on (or idle) state at time t2 + (t1 − t0).475

Next, we prove that the only instants at which an optimal policy takes actions will be job com-476

pletions, job arrivals, or when the server finishes transition from a low power state to a higher477

power state. Here we assume that once a transition to a sleep, idle or on state has been initi-478

ated from a lower power state, it can not be interrupted. We have already argued that no actions479

happen during a busy period when the server is in the on state. Therefore to prove that control480

actions only happen at the claimed events, it remains to show that actions do not occur while the481

server is in idle or sleep states (and not in transition or on) and an arrival has not occured. To482

achieve this, it suffices to show that there exists a Markovian optimal control for the ERP metric.483

Note that E[T ] = limT→∞
1
λT E

[∫ T
t=0 N(t)dt

]
and E[P] = limT→∞

1
T E

[∫ T
t=0 P(t)

]
, where N(t) and484

P(t) denote the number of jobs and power consumption, respectively, at time t. Thus the optimal485

decision at time t depends only on the future evolution of the system, and not on the finite history486

in [0, t]. (Note that these statements are not true if we replace E[T ] and E[P] by their discounted487

versions, e.g. E
[
Pγ

]
=

∫ ∞
t=0 γ

tP(t)dt for some 0 < γ < 1.) By the memoryless property of the488

Poisson arrival process, the claim follows.489

Finally, we will show that once a policy goes into a sleep state when the server goes idle, the490

only other state it will transition to next is on. To see this, suppose the server went into sleep491

state S i. Now, the server will not go into sleep state S j for j > i (and hence to a state with lower492

power) on a job arrival, otherwise it would have been better to transition to S j when the server493

first went idle. If the server transitions to a sleep state S k for k < i (thus a state with higher494

power) but not the on state, and later transitions to the on state, it would instead have been better495
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to transition directly to the on (since the transition times are the same by the Model Assumptions),496

finish processing the work and then transition to state S k instantaneously.497

So far, we have argued that the optimal policy must (i) immediately transition to idle or a sleep498

state when the work empties (recall that we have assumed these transitions to be instantaneous),499

(ii) immediately transition to the on state on some subsequent arrival, and (iii) is Markovian.500

However, the optimal control need not necessarily be a deterministic function of the current501

state. We therefore use pi and qi j to denote the class of possible optimal control policies Πmixed.502

503

Proof of Lemma 2: The proof proceeds via renewal reward theory. We define a renewal cycle
for the server as the time from when a server goes idle (has zero work), until it next goes idle
again. Thus we can express:

E[T ] =
E
[
total response time per cycle

]
E
[
number of jobs per cycle

] ; E[P] =
E
[
total energy per cycle

]
E
[
duration per cycle

] .

Now consider a specific case, where the server goes into sleep state S i on becoming idle, and
starts transitioning to the on state when ni jobs accumulate. There can be more arrivals while the
server is turning on. We denote the number of arrivals during transition from S i by Xi, and note
that Xi is distributed as a Poisson random variable with mean λTS i . Thus, after the server turns
on, it has ni + Xi jobs in the queue, and thus the time until the server goes idle is distributed as a
sum of ni + Xi busy periods of an M/M/1 system. The sum of the response times of jobs that are
server during this renewal cycle has two components:
1. Sum of waiting times of all jobs before the server turns on (term 1 below): The waiting time of
the jth of the first ni jobs is

∑ni
k= j+1 Tλ(k) + TS i , where {Tλ(·)} are i.i.d. Exp(λ) random variables,

and Tλ(k) denotes the time between the (k− 1)st and kth arrival of the cycle. By the properties of
the Poisson arrival process, the (unordered) waiting time of each of the Xi jobs is an independent
U([0,TS i ]) random variable. Adding an taking expectation, we get the term 1 as shown below in
(A.1).
2. Sum of the response times from when the server turns on until it goes idle (term 2 below):
Since the sum of response time of the jobs that are served during the renewal cycle is the same
for any non-preemptive size-independent scheduling policy, we will find it convenient to sched-
ule the jobs as follows: We first schedule the first of ni + Xi arrivals and do not schedule any of
the ni + Xi − 1 remaining jobs until the busy period started by the first job completes. Then we
schedule the second of the ni + Xi jobs, holding the remaining jobs until the busy period started
by this job ends, and so on. The sum of the response times is thus given by the sum of response
times in ni + Xi i.i.d. M/M/1 busy periods, and the additional waiting time experienced by the
initial ni + Xi arrivals. By renewal theory, the expectation of the sum of response times of the jobs
served in an M/M/1 busy period with arrival rate λ and service rate µ is given by the product

of the mean number of jobs served in a busy period
(

1
1− λ

µ

)
and the mean response time per job(

1
µ−λ

)
. This gives the first component of term 2. The additional waiting time of the jth of the

ni + Xi initial arrivals due to our scheduling policy is given by the sum of durations of j − 1
M/M/1 busy periods, each of expected length 1

µ−λ
. Adding this up for all the ni + Xi jobs and

taking expectation, we get the second component of term 2.

ni

(
ni − 1

2λ
+ TS i

)
+ E[Xi]

TS i

2︸                               ︷︷                               ︸
term 1

+
1

1 − ρ
·

ni + E[Xi]
µ − λ

+ E
[
(ni + Xi)(ni + Xi − 1)

2(µ − λ)

]
︸                                                       ︷︷                                                       ︸

term 2

(A.1)
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=
1

1 − ρ

ni + E[Xi]
µ − λ

+

niTS i +
ni(ni − 1)

2λ
+
λT 2

S i

2

 =
rini

1 − ρ

The final expression in (1) is obtained by combining the above with the renewal reward equation,
and noting that the mean number of jobs served in this renewal cycle is given by ni+E[Xi]

1−ρ .

E[T ] =
E
[
total response time per cycle

]
E
[
number of jobs per cycle

] =

∑N
i=0 pi

∑∞
ni=1 qini

rini
1−ρ∑N

i=0 pi
∑∞

ni=1 qini

ni+λTS i
1−ρ

=

∑N
i=0 pi

∑∞
j=1 qi jri j∑N

i=0 pi
∑∞

j=1 qi j( j + λTS i )

The proof for E[P] is analogous. The duration of a cycle is composed of three different times:504

1. Time spent waiting for ni jobs to queue up: The expected duration is ni
λ

, with expected total505

energy consumed given by ni
λ

PS i .506

2. Time to wake up the server: This is TS i , with total energy consumed by the server during this507

time as TS i PON .508

3. (ni + Xi) busy periods: The expected time it takes for the server to go idle again is the expected509

duration of ni + Xi busy periods, given by ni+λTS i
µ−λ

with total energy consumed being ni+λTS i
µ−λ

PON .510

511

Thus, we have:

E[P] =
E
[
total energy per cycle

]
E
[
duration per cycle

] =

∑N
i=0 pi

∑∞
j=1 qi j

[
j
λ
· PS i + TS i · PON +

j+λTS i
µ−λ

· PON

]
∑N

i=0 pi
∑∞

j=1 qi j

[
j
λ

+ TS i +
j+λTS i
µ−λ

]
=

∑N
i=0 pi

∑∞
j=1 qi j

(
j(ρPON + (1 − ρ)PS i ) + λTS i PON

)∑N
i=0 pi

∑∞
j=1 qi j

(
j + λTS i

) .

512

Proof of Lemma 3: To prove that the optimal strategy is pure, we only need to note that the
expressions for both the mean response time and average power are of the form

E[T ] =
q1t1 + . . . + qntn

q1m1 + . . . + qnmn
; E[P] =

q1u1 + . . . + qnun

q1m1 + . . . + qnmn
,

where n is the number of pure strategies that the optimal strategy is randomizing over. for some513

discrete probability distribution {q1. . . . , qn}. We will show that when n = 2, the optimal strategy514

is pure, and the proof will follow by induction on n. For n = 2, we consider E[T ] and E[P] as a515

function of q1 over the extended domain q1 ∈ (−∞,+∞), and show that there is no local minima516

of E[T ] · E[P] in q1 ∈ (0, 1). Further, note that both E[T ] and E[P] are of the form a + b
c+dq1

for517

some constants a, b, c, d. While the lemma would trivially follow if the product of E[T ] and E[P]518

were a concave function of q, this is not true in our case because one/both of E[T ] and E[P] may519

be convex, and hence we proceed through a case analysis:520

Case 1: Both E[T ] and E[P] are increasing or decreasing in q1, except for a shared discontinuity521

at q1 = m2
m2−m1

. In this case, trivially, E[T ]E[P] is also increasing/decreasing in the interval522

q1 ∈ [0, 1] as both the functions are positive in this interval, and thus the minimum of E[T ] ·E[P]523

is either at q1 = 0 or at q1 = 1.524

Case 2: One of E[T ] and E[P] is an increasing function and the other is a decreasing function of525

q1 (except for the shared discontinuity at q1 = m2
m2−m1

). In this case, as q1 →
m2

m2−m1
, E[T ] ·E[P]→526

−∞. Second, due to the form of E[T ] and E[P], it is easy to see that their product has at most one527
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local optimum. Finally, we can see that as q1 → ±∞, E[T ]E[P] → (t1−t2)(m1−m2)
(u1−u2)2 , which is finite.528

Combining the previous three observations, we conclude that there is no local minima in the529

interval q1 ∈ (0, 1). In other words, in the interval q1 ∈ [0, 1], the minimum is achieved at either530

q1 = 0, or q1 = 1. The inductive case for n follows by considering only two variables, qn and q′,531

where q′ is a linear combination of q1, q2, . . . , qn−1, and applying the inductive assumption.532

Proof of Lemma 4: We now know that the optimal power down strategy is of the following533

form: the server goes into a fixed sleep state, S i, on becoming idle. It then waits for some534

deterministic ni arrivals before transitioning into the on state. We will show that under optimality,535

ni = 1. The basic idea is to minimize the product of Eqs. (1) and (3). We omit the proof due to536

lack of space but mention the key steps (see [10] for details):537

• We first show that if λTS i > 1, then the policy where the server goes to idle state (recall538

TIDLE = 0) has a lower E[T ]E[P] than going into sleep state S i with any ni. Thus λTS i < 1 is539

a necessary condition for optimality of sleep state S i.540

• Next, we show that when λTS i < 1, the optimal value of ni is in fact ni = 1. The proof541

proceeds by first finding two continuous differentiable functions g(x) and h(x) that agree with542

E[T ] and E[P], respectively, at integral values of ni. Then by investigating the asymptotes,543

discontinuities, and sign changes of the second derivative of g(x)h(x), we conclude that it544

suffices to show that the derivative of g(x)h(x) at x = 1 is positive to prove that there is no545

local minima of g(x)h(x) (and hence for E[T ]E[P]) for x > 1. The last inequality is shown via546

some tedious algebra.547

548

Appendix B. Justification for Conjecture 1549

The core problem is coming up with a tight lower bound for E[T ]E[P] for the optimal policy.550

We have a trivial lower bound of E[T ] ≥ E[S ], and E[P] ≥ ρPON . However, this is very loose551

when ρ is small and TOFF is large.552

There are a few key ideas to obtaining the lower bound. The first is to give the optimal policy553

additional capability. We do so by allowing the optimal policy to turn a server on from off554

instantaneously (zero setup time). Consequently, each server is either on (busy), idle, or off.555

However there is still an energy penalty of PONTOFF . Secondly, we use an accounting method556

where we charge the energy costs to the jobs, rather than to the server. Thus, each job contributes557

towards the total response time cost and to the total energy cost. Thirdly, we obtain a lower558

bound by allowing the optimal policy to choose the state it wants an arrival to see independently559

for each arrival. This allows us to decouple the decisions taken by the optimal policy in different560

states. We make this last point clearer next.561

An arrival that finds the n jobs in the system (excluding itself) could find the system in one of the562

following states:563

1. At least one server is idle: Here, the optimal policy would schedule the arrival on the idle564

server. In this case, we charge the job E[S ] units for mean response time. Further, the server565

would have been idle for some period before the arrival, and we charge the energy spent566

during this idle period, as well as the energy to serve the arrival, to the energy cost for the567

job. However, if under the optimal policy, there is an idle server when the number of jobs568

increases from n to n + 1, there must have been a server idle when the number of servers last569

went down from n + 1 to n. Furthermore, some server must have remained idle from then570

until the new arrival which caused the number of jobs to go to n + 1 (and hence there were571
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no jobs in the queue during this period). Thus, this idle period is exactly the idle period of an572

M/M/n + 1 with load ρ, denoted by I(n), where the idle period is defined as the time for the573

number of jobs to increase from n to n + 1.574

2. No server is idle, arrival turns on an off server: Here, we charge the arrival E[S ] units for575

mean response time, and PONE[S ] + TOFF PON for energy.576

3. No server is idle, arrival waits for a server to become idle: This case is slightly non-trivial577

to handle. However, we will lower bound the response time of the job by assuming that the578

arrival found n servers busy with the n jobs. Further, until a departure, every arrival turns on a579

new server and thus increases the capacity of the system. Thus, this lower bound on queueing580

time can be expressed as the mean time until first departure in an M/M/∞ system starting581

with n jobs. We denote this by D(n). The energy cost for the job will simply be PONE[S ].582

We will give the optimal strategy the capability to choose which of the above 3 scenarios it wants583

for an arrival that occurs with n jobs in the system. Since the response time cost of scenario 1584

and 2 are the same, only one of them is used, depending on whether PIDLEE[I(n)] > PONTOFF or585

not. Let Pwaste(n) = min{PIDLEE[I(n)], PONTOFF}. Let qn denote the probability that the optimal586

policy chooses the best of scenarios 1 and 2 for an arrival finding n jobs in the system, and with587

probability 1 − qn it chooses scenario 3. Since we are interested in obtaining a lower bound, we588

will further assume that the probability of an arrival finding n jobs in the system, pn, is given by589

the pdf of a Poisson random variable with mean ρ, which is indeed a stochastic lower bound on590

the stationary number of jobs in the system. We thus obtain the following optimization problem:591

E
[
T OPT

]
E
[
POPT

]
≥ λmin

{qn}

E[S ] +
∑

n

pn(1 − qn)E[D(n)]

 PONE[S ] +
∑

n

pnqnPwaste(n)


≥ λmin

{qn}

∑
n

pn
√

(E[S ] + (1 − qn)E[D(n)])(PONE[S ] + qnPwaste(n))

2

(By Cauchy-Schwarz inequality)

= λ

∑
n

pn

√
min {PONE[S ] + Pwaste(n), PON(E[S ] + D(n))}

2

The last equality was obtained by observing that the minimum occurs at qn = 0 or qn = 1.592

The rest of the proof is numerical. We have written a program that computes the above lower593

bound for a given ρ, TOFF , PIDLE and PON values. We then compare it against the cost of594

the NEVEROFF with optimal n∗, and against the following upper bound on the cost of IN-595

STANTOFF: λPON (E[S ] + TOFF)2. This upper bound is obtained by forcing every job to run596

on the server that it chooses to setup on arrival. For each value of ρ, we then search for the597

TOFF value that maximizes the ratio of the cost of the best of NEVEROFF and INSTANTOFF598

to the above lower bound, and bound the relative performance of the best of NEVEROFF and599

INSTANTOFF against the theoretical optimal as a function of ρ and the ratio PIDLE
PON

. The above600

comparison yields the curve shown in Figure B.7 for the upper bound on the suboptimality of the601

best of NEVEROFF and INSTANTOFF versus the optimal policy as a function of ρ.602
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Figure B.7: Upper bound on the performance ratio of best of NEVEROFF and INSTANTOFF to that of the optimal
policy as function of the load ρ, obtained via Conjecture 1.

Appendix C. Proof of Lemma 7603

Without loss of generality, we assume E[S ] = 1. Thus ρ = λ. We begin by writing the recur-
rences for solving E[I(n)]:

E[I(0)] =
1
ρ

; E[I(i)] =
1

ρ + i
+

i
ρ + i

(E[I(i − 1)] + E[I(i)]) .

or equivalently,

E[I(i)] =
1
ρ

+
i
ρ
· E[I(i − 1)] =

1
ρ

+
i
ρ2 +

i(i − 1)
ρ3 +

i(i − 1)(i − 2)
ρ4 + · · · +

i!
ρi+1

=
i!
ρi+1

(
1 +

ρ

1
+
ρ2

2!
+ · · · +

ρi−2

(i − 2)!
+

ρi−1

(i − 1)!
+
ρi

i!

)
Now consider i = ρ + β

√
ρ. We get:

E[I(i)] =
(ρ + β

√
ρ)!eρ

ρi+1

ρ+β
√
ρ∑

k=0

e−ρ
ρk

k!

 ∼ (ρ + β ·
√
ρ)!eρ

ρi+1 Φ(β)

∼

√
2π
ρ

(
1 +

β
√
ρ

)ρ+β
√
ρ

e−β
√
ρΦ(β) =

√
2π
ρ

(
1 +

β
√
ρ

)β√ρ
e
ρ log

[
1+

β
√
ρ

]
e−β

√
ρΦ(β)

=

√
2π
ρ

eβ
2
eρ( β

√
ρ
−
β2

2ρ +o(1/ρ))e−β
√
ρΦ(β) ∼

√
2πeβ

2
Φ(B)

√
ρ

which proves the second part of the theorem.604

Now consider i = ρ + η
√
ρ log ρ for some constant η > 0:

E[I(i)] ∼
(ρ + η

√
ρ log ρ)!eρ

ρρ+η
√
ρ log ρ+1

∼

√
2π
ρ

1 +
η
√
ρ log ρ
ρ

ρ+η
√
ρ log ρ

e−η
√
ρ log ρ

=

√
2π
ρ

e
(ρ+η
√
ρ log ρ) log

(
1+

η
√
ρ log ρ
ρ

)
e−η
√
ρ log ρ
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=

√
2π
ρ

e
(ρ+η
√
ρ log ρ)

 η√ρ log ρ
ρ −

η2ρ log ρ
2ρ2 +θ

 (η√ρ log ρ)3

ρ3

−η√ρ log ρ
∼

√
2π
ρ

e
η2ρ log ρ

2ρ =
√

2πρ
η2−1

2

Thus for η2 > 1, E
[
I(ρ + η

√
ρ log ρ)

]
→ ∞, and for η2 < 1, E

[
I(ρ + η

√
ρ log ρ)

]
→ 0 as ρ→ ∞.605
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