

Performance Evaluation

Performance Evaluation 00 (2010) 1-23

Optimality Analysis of Energy-Performance Trade-off for Server Farm Management

Anshul Gandhi^a, Varun Gupta^a, Mor Harchol-Balter^a, Michael A. Kozuch^b

^aComputer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA. ^bIntel Research, Pittsburgh, PA 15213, USA.

Abstract

A central question in designing server farms today is how to efficiently provision the number of servers to extract the best performance under unpredictable demand patterns while not wasting energy. While one would like to turn servers off when they become idle to save energy, the large setup cost (both, in terms of setup time and energy penalty) needed to switch the server back on can adversely affect performance. The problem is made more complex by the fact that today's servers provide multiple sleep or standby states which trade off the setup cost with the power consumed while the server is 'sleeping'. With so many controls, finding the optimal server farm management policy is an almost intractable problem – How many servers should be on at any given time, how many should be off, and how many should be in some sleep state? In this paper, we employ the popular metric of Energy-Response time Product (ERP) to capture the energy-performance tradeoff, and present the first theoretical results on the optimality of server farm management policies. For a stationary demand pattern, we prove that there exists a very small, natural class of policies that always contains the optimal policy for a single server, and conjecture it to contain a near-optimal policy for multi-server systems. For time-varying demand patterns, we propose a simple, traffic-oblivious policy and provide analytical and empirical

Keywords: Power management, Data centers, Capacity provisioning, Setup costs, Performance-per-Watt, Energy-Delay product

1. Introduction

evidence for its near-optimality.

- 2 Motivation
- 3 Server farm power consumption accounts for more than 1.5% of the total electricity usage in
- the U.S., at a cost of nearly \$4.5 billion [23]. The rising cost of energy and the tremendous

growth of data centers will result in even more spending on power consumption. Unfortunately, due to over-provisioning, only 20-30% of the total server capacity is used on average [7]. This over-provisioning results in idle servers which can consume as much as 60% of their peak power. While a lot of energy can be saved by turning *idle* servers *off*, turning on an *off* server incurs a significant cost. The *setup cost* takes the form of both a time delay, which we refer to as the *setup time*, and an *energy penalty*. Another option is to put *idle* servers into some *sleep* state. While a server in *sleep* mode consumes more power than an *off* server, the setup cost for a sleeping server is lower than that for an *off* server. Today's state-of-the-art servers come with an array of *sleep* states, leaving it up to the server farm manager to determine which of these is best.

14 Goal and metric

There is a clear tradeoff between leaving *idle* servers on, and thus minimizing mean response time, versus turning *idle* servers *off* (or putting them to *sleep*), which hurts response time but may save power. Optimizing this tradeoff is a difficult problem, since there are an infinite number of possible server farm management policies. Our goal in this paper is to find a simple class of server farm management policies, which optimize (or nearly optimize) the above tradeoff. We also seek simple rules of thumb that allow designers to choose from this class of near-optimal policies. In doing so, we greatly simplify the job of the server farm manager by reducing the search space of policies that he/she needs to choose from.

To capture the tradeoff involved in energy and performance, and to compare different policies, we use the Energy-Response time Product (ERP) metric, also known as the Energy-Delay Product (EDP) [11, 17–19, 22]. For a control policy π, the ERP is given by:

$$ERP^{\pi} = \mathbf{E}[P^{\pi}] \cdot \mathbf{E}[T^{\pi}]$$

where $\mathbf{E}[P^{\pi}]$ is the long-run average power consumed under the control policy π , and $\mathbf{E}[T^{\pi}]$ is mean customer response time under policy π . Minimizing ERP can be seen as maximizing the 24 "performance-per-watt", with performance being defined as the inverse of mean response time. While ERP is widely accepted as a suitable metric to capture energy-performance tradeoffs, we believe we are the first to analytically address optimizing the metric of ERP in server farms. 27 Note that there are other performance metrics that also capture the tradeoff between response time and energy, for example, a weighted sum of the mean response time and mean power (ERWS) [3, 4, 24]. However, the ERWS metric implies that a reduction in mean response time from 1001 sec to 1000 sec is of the same value as a reduction from 2 sec to 1 sec. By contrast, the ERP implies that a reduction in mean response time from 2 sec to 1 sec is much better than a reduction from 1001 sec to 1000 sec, which is more realistic. One reason for the popularity of ERWS is that it is a nicer metric to handle analytically, being a single expectation, and hence additive over time. 34 Therefore, one can optimize the ERWS metric via Markov Decision Processes, for example. From the point of view of worst case sample path based analysis, this metric allows comparing arbitrary policies to the optimal policy via potential function arguments [15]. However, ERP, being a product of two expectations, does not allow a similar analysis. Other realistic metrics of interest include minimizing total energy given bounds on, say, the 95%tile of response times.

40 Summary of Contributions

We consider a specific set of server farm management policies (defined in Table 1) and prove that it contains the optimal policy for the case of a single server, and also contains a near-optimal policy for the case of multi-server systems, assuming a stationary demand pattern. For the case

Policy	Single-Server	Multi-Server
NEVEROFF	Whenever the server goes <i>idle</i> , it remains <i>idle</i> until a job arrives.	A fixed optimally chosen number n^* (with respect to ERP) of servers are maintained in the <i>on</i> or <i>idle</i> states. If an arrival finds a server <i>idle</i> , it starts serving on the <i>idle</i> server. Arrivals that find all n^* servers <i>on</i> (busy) join a central queue from which servers pick jobs when they become <i>idle</i> .
INSTANTOFF	Whenever the server goes idle, it turns off. It remains off until there is no work to process, and begins to turn on as soon as work arrives.	Whenever a server goes <i>idle</i> , and there are no jobs in the queue, the server turns <i>off</i> . Otherwise it picks a job from the queue to serve. At any moment in time, there are some number of servers that are <i>on</i> (busy), and some number of servers that are in <i>setup</i> . Every arrival puts a server into <i>setup</i> mode, unless the number of servers in <i>setup</i> already exceeds the number of jobs in the queue. A job does not necessarily wait for the full setup time since it can be run on a different server that becomes free before the setup time is complete, leaving its initially designated server in <i>setup</i> .
SLEEP(S)	Whenever a server goes <i>idle</i> , it goes into the <i>sleep</i> state <i>S</i> . It remains in <i>sleep</i> state <i>S</i> until there is no work to process, and begins to wake up as soon as work arrives.	A fixed optimally chosen number n^* of servers are maintained in the on , off or $sleep$ states. Whenever a server goes $idle$, and there are no jobs in the queue, it goes into the $sleep$ state S . Otherwise it picks a job from the queue to serve. Every arrival wakes a sleeping server and puts it into $setup$, unless the number of servers in $setup$ already exceeds the number of jobs in the queue.

Table 1: A summary of the different policies considered in this paper, and their description in the single-server and multi-server cases.

of time-varying demand patterns, we develop a traffic-oblivious policy that can auto-scale the server farm capacity to adapt to the incoming load, and prove that for a Poisson arrival process with an unknown rate, our policy is asymptotically optimal as the arrival rate becomes large. Further, via simulations, we show that our traffic-oblivious policy also performs well for general time-varying arrival processes. Throughout this paper, for analytical tractability, we make the assumption of Exponentially distributed job sizes and a Poisson arrival process. However, the setup time distribution is assumed to be Deterministic. We formally define the traffic model and the model for servers' *sleep* state dynamics in Section 3.

- We begin in Section 4 by considering a single-server system. The arrival process is Poisson with a known mean arrival rate. There is an infinite range of policies that one could consider for managing a single server, for example, when the server goes *idle*, one could immediately turn it *off* (INSTANTOFF), or alternatively, move the server to a specific *sleep* state (SLEEP). One could also just leave the server *idle* when it has no work to do (NEVEROFF). Another possibility is to turn an *idle* server *off* with some probability *p*, and leave it *idle* with probability (1 − *p*). One could also delay turning on an *off* server until a certain number of jobs have accumulated in the queue. Also, when turning on an *off* server, one could transition through *sleep* states, with each successive transition moving the server closer to the *on* state. Within this wide range of policies, we prove that one of the policies, NEVEROFF, INSTANTOFF or SLEEP, is always optimal. Refer to Table 1 for the exact definitions of these policies.
- In Section 5, we consider the case of multi-server systems. The arrival process is Poisson with a known mean arrival rate. We assume that there are enough servers so that we are not constrained by the available capacity. In the multi-server setting, we have an even wider range of policies to choose from. For example, some servers could be turned *off* when *idle*, some could be moved to a specific *sleep* state, and the rest may be kept *idle*. One could also delay turning on an *off* server until a certain number of jobs have accumulated in the queue, or delay turning *off* an *idle* server until some time has elapsed. Via a combination of analysis

- and numerical experiments, we conjecture that one of NEVEROFF, INSTANTOFF or SLEEP (defined in Table 1 for a multi-server system) is near-optimal.
- In Section 6 we consider a time-varying arrival pattern with the aim of finding policies which can auto-scale the capacity while being oblivious to the traffic intensity. This situation is even more complicated than in Section 5, since a server farm management policy might now also take into account the history of arrivals or some predictions about the future arrivals. For the time-varying case, we introduce a new policy DELAYEDOFF. Under the DELAYEDOFF policy, a server is only turned *off* if it does not receive any jobs to serve in time t_{wait} . If an arrival finds more than one server *idle* on arrival, it is routed to the server which was *most recently busy* (MRB). Otherwise, the arriving job turns *on* an *off* server.
- The MRB routing proposed above turns out to be crucial for the near-optimality of DELAYED-OFF. Intuitively, MRB routing increases the variance of the idle periods of the servers when compared to random or round-robin routing, and yields the property that the longer a server has been idle, the longer it is likely to stay idle. We prove that DELAYEDOFF is asymptotically optimal for a stationary Poisson arrival process with an unknown arrival rate, as the load becomes large. Policies similar to DELAYEDOFF have been proposed in the literature but applied to individual devices [9, 15, 21], whereas in our case we propose to apply it to a pool of homogeneous interchangeable servers under MRB routing. We provide both analytical and simulation evidence in favor of the auto-scaling capabilities of DELAYEDOFF and show that it compares favorably to an offline, traffic-aware capacity provisioning policy.

90 2. Prior work

- Prior analytical work in server farm management to optimize energy-performance tradeoff can be divided into *stochastic analysis*, which deals with minimizing average power/delay or the tail of power/delay under some probabilistic assumptions on the arrival sequence, and *worst-case* analysis, which deals with minimizing the cost of worst-case arrival sequences.
- 95 Stochastic Analysis
- The problem of server farm management is very similar in flavor to two well studied problems in 96 the stochastic analysis community: operator staffing in call centers and inventory management. 97 In call center staffing, the servers are operators, who require a salary (power) when they are working. Similarly to our problem, these operators require a setup cost to bring an employee into work, however, importantly, all analysis in call center staffing has ignored this setup cost. 100 The operator staffing problem involves finding the number of operators (servers) which minimize 101 a weighted sum of delay costs experienced by users and the monetary cost of staffing operators. While this problem has received significant attention under the assumption of stationary (non-103 time-varying) demand (see [8] for recent results), there is significantly less work for the time-104 varying case, one exception being [16]. In [16], the authors consider the problem of dynamic 105 staffing based on knowing the demand pattern so as to maintain a target probability of a user finding all servers busy on arrival. 107
- Within inventory management, the problem of capacity provisioning takes the form: how much inventory should one maintain so as to minimize the total cost of unused inventory (holding cost, in our case *idle* power) and waiting cost experienced by orders when there is no inventory in stock (queueing delay of users). Conceptually this problem is remarkably similar to the problem we consider, and the two common solution strategies employed, known as Make to Order and Make

to Stock, are similar in flavor to what we call INSTANTOFF and NEVEROFF, respectively (see [2], for example). However, in our case servers can be turned on in parallel, while in 114 inventory management it is assumed that inventory is produced sequentially (this is similar to 115 allowing at most one server to be in *setup* at any time). 116

Worst-case Analysis 117

The theoretical CS community has been interested in power management from the point of view 118 of minimizing worst case cost, for example ERWS (See [14] for a recent survey). Again, none of 119 the prior work encompasses a setup time and is more applicable to a single device than a server 120 farm. The performance metrics used are also very different from ERP. 121 The work can primarily be split in terms of results on speed scaling algorithms, and results 122 on algorithms for powering down devices. In the realm of speed scaling, the problem flavors 123 considered have been minimizing energy or maximum temperature while meeting job dead-124 lines [5, 6, 25], minimizing mean response time subject to a bound on total energy [20], and 125 minimizing the ERWS [4, 24]. However, again all these papers assume that the speed level 126 can be switched without any setup costs, and hence are mainly applicable to single stand-alone 127 devices, since in multi-server systems setup costs are required to increase capacity. 128 The work on powering down devices is more relevant to the problem we consider, and due to sample path guarantees, these results naturally lead to traffic-oblivious powering down schemes. 130 In [15] the authors consider the problem of minimizing total energy consumed under the con-131 straint that a device must instantly turn on when a job arrives. Further, [15] assumes that there is 132 no setup time while turning on a device, only an energy penalty.

3. Model

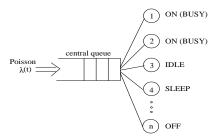


Figure 1: Illustration of our server farm model.

Figure 1 illustrates our server farm model. We assume n homogeneous servers, where each server can process any job, and thus the servers are interchangeable. Jobs arrive from outside 136 the system, to a central queue, according to a Poisson process. In Sections 4 and 5, we consider 137 a fixed arrival rate, λ . However, in Section 6, we consider a time-varying arrival rate, $\lambda(t)$. We 138 assume the job sizes are independent and identically distributed according to an Exponentially 139 distributed random variable S, with rate μ . The quantity $\rho(t) = \lambda(t) \cdot \mathbf{E}[S]$ is used to denote the 140 instantaneous load, or the rate at which work is entering the system at time t. In Sections 4 and 141 5, where we assume $\lambda(t) = \lambda$, we have $\rho = \lambda \mathbf{E}[S]$. In the case of a multi-server system with 142 n servers, $0 \le \rho < n$. Here ρ represents the minimum number of servers needed to maintain a stable system.

Each server can be in one of the following states: on (busy)¹, idle, off, or any one of N-1 sleep states: $S_1, S_2, ..., S_{N-1}$. For convenience, we sometimes refer to the *idle* state as S_0 and the 146 off state as S_N . The associated power values are P_{ON} , $P_{IDLE} = P_{S_0}$, P_{S_1} , ..., $P_{S_N} = P_{OFF}$. We 147 shall assume the ordering $P_{ON} > P_{IDLE} > P_{S_1} > \dots > P_{S_{N-1}} > P_{OFF} = 0$. The server can only serve jobs in the *on* state ². The time to transition from initial state, S_i , to final state, S_f , is denoted by $T_{S_i \to S_f}$ and is a constant (not a random variable). Rather obviously, we assume 150 $T_{ON \to IDLE} = T_{IDLE \to ON} = 0$. Further, the average power consumed while transitioning from state 151 S_i to S_f is given by $P_{S_i \to S_f}$. Model Assumptions: For analytical tractability, we will relax the above model a little. We will 153 assume that the time to transition from a state to any state with lower power is zero. Therefore, 154 $T_{ON \to OFF} = T_{S_i \to OFF} = 0$, for all i. This assumption is justified because the time to transition 155 back to a higher power state is generally considerably larger than the time to transition to the lower power state, and hence dominates the performance penalties. Further, we will assume that 157 the time to transition from a state S_i to any higher power state is only dependent on the low power 158 state, and we will denote this simply as T_{S_i} . Therefore, $T_{OFF \to IDLE} = T_{OFF \to S_i} = T_{OFF}$, for all 159 i. Note that $0 = T_{IDLE} < T_{S_1} < \ldots < T_{S_{N-1}} < T_{OFF}$. This assumption is justified because in current implementations there is no way to go between two sleep states without first transitioning 161 through the IDLE state. Regarding power usage, we assume that when transitioning from a lower 162 power state, S_i , to a higher power state S_f , we consume power $P_{S_i \to S_f} = P_{ON}$. The results of this paper are derived under the Model Assumptions. We have validated these 164 assumptions within an experimental data center in our lab. 165

166 3.1. Simulation methodology

We use a discrete event simulator written in the C++ language to verify our theoretical results for the various dynamic capacity provisioning policies used in the paper. Our simulator models a server farm based on the above *Model Assumptions*.

Throughout the paper, we use simulation results based on the following server characteristics: $T_{OFF} = 200s$, $T_{SLEEP} = 60s$, $P_{OFF} = 0W$, $P_{SLEEP} = 10W$, $P_{IDLE} = 150W$ and $P_{ON} = 240W$. These parameter values are based on measurements for the Intel Xeon E5320 server, running the CPU-bound LINPACK [13] workload.

4. Optimal Single Server policies

174

As the first step towards our goal of finding policies for efficiently managing server pools, we analyze the case of a single server system. Recall that our aim is to find the policy that minimizes ERP under a Poisson arrival process of known intensity. Theorem 1 below states that for a single server, the optimal policy is included in the set {NEVEROFF, INSTANTOFF, SLEEP} (defined in Section 1), and hence there is no need to consider any other capacity provisioning policy.

¹We use italicized *on* to denote the state when the server is busy, and without italics when we are colloquially referring to either the busy or idle state.

 $^{^2}P_{ON}$ need not necessarily denote the peak power at which a job is served, but is used as a proxy for the average power consumed during the service of a job. Indeed, while applying our model, we would first profile the workload to measure the average power consumed during a job's execution, and use it as P_{ON} .

Theorem 1. For the single server model with a Poisson(λ) arrival process and i.i.d. Exponentially distributed job sizes, the optimal policy for minimizing ERP is one of NEVEROFF, INSTANTOFF or SLEEP(S), where S is the optimally chosen sleep state among the existing sleep states.

Before we prove Theorem 1, we would like to point out that this is quite a non-intuitive result, and in general we do not expect it to hold for other metrics such as ERWS. The theorem rules out a large class of policies, for example those which may randomize between transitioning to different *sleep* states, or policies which move from one *sleep* state to another, or those which may wait for a few jobs to accumulate before transitioning to the *on* state. While *ERP*, being a product of expectations, is a difficult metric to address analytically, for the single-server case we are able to obtain tight optimality results by deriving explicit expressions for ERP.

Proof of Theorem 1: We give a high-level sketch of the proof in terms of four lemmas, whose proofs are deferred to Appendix A. These lemmas successively narrow down the class of optimal policies, until we are left with only NEVEROFF, INSTANTOFF and SLEEP.

Definition 1. Let Π_{mixed} denote the class of randomized policies whereby a server immediately transitions to power state S_i ($i \in \{0, ..., N\}$) with probability p_i on becoming idle. Given that the server went into power state S_i , with probability q_{ij} it stays in S_i and waits until j jobs accumulate in the queue, where $\sum_{j=1}^{\infty} q_{ij} = 1$. Once the target number of jobs have accumulated, the server immediately begins transitioning to the on state, and stays there until going idle.

Lemma 1. Under a Poisson arrival process and general i.i.d. job sizes, the optimal policy lies in the set Π_{mixed} .

Lemma 2. Consider a policy $\pi \in \Pi_{mixed}$ with parameters as in Definition 1. The mean response time for policy π under a Poisson(λ) arrival process with i.i.d. $\text{Exp}(\mu)$ job sizes is given by:

$$\mathbf{E}[T] = \frac{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} r_{ij}}{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} (j + \lambda T_{S_i})}$$
(1)

where,

191

$$r_{ij} = \frac{j + \lambda T_{S_i}}{\mu - \lambda} + \left[jT_{S_i} + \frac{j(j-1)}{2\lambda} + \frac{\lambda T_{S_i}^2}{2} \right]$$
 (2)

and the average power for policy π is given by:

$$\mathbf{E}[P] = \frac{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} \left(j(\rho P_{ON} + (1 - \rho) P_{S_i}) + \lambda T_{S_i} P_{ON} \right)}{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} \left(j + \lambda T_{S_i} \right)}.$$
 (3)

Lemma 3. The optimal strategy for a single server must be pure. That is, $p_i = 1$ for some $i \in \{0, ..., N\}$, and $q_{in_i} = 1$ for some integer $n_i \ge 1$.

Lemma 4. The optimal pure strategy dictates that $n_i = 1$, if the optimal sleep state is S_i .

Lemma 1 is proved using a sample path argument and crucially depends on the Poisson arrival process and the *Model Assumptions* for the *sleep* states of the server, and in fact holds for any

metric that is increasing in mean response time and mean power. Lemma 3 relies on the structure of ERP metric. While Lemma 3 also holds for the ERWS metric (with a much simpler proof), 207 it does not necessarily hold for general metrics such as the product of the mean power and the 208 square of the mean response time. Lemma 4 also relies on the structure of the ERP metric and 209 does not hold for other metrics such as ERWS. 210

Lemma 5. Assuming a Poisson(λ) arrival process, and $\text{Exp}(\mu)$ job sizes, the mean response time 211 and mean power for NEVEROFF, INSTANTOFF and SLEEP are given by: 212

$$\mathbf{E}[T] = \frac{1}{\mu - \lambda} + \frac{T_{S_i}(1 + \lambda T_{S_i}/2)}{1 + \lambda T_{S_i}}$$

$$\mathbf{E}[P] = \frac{\rho P_{ON} + (1 - \rho)P_{S_i} + \lambda T_{S_i}P_{ON}}{1 + \lambda T_{S_i}}$$
(5)

$$\mathbf{E}[P] = \frac{\rho P_{ON} + (1 - \rho) P_{S_i} + \lambda T_{S_i} P_{ON}}{1 + \lambda T_{S_i}}$$
 (5)

where $S_i = IDLE$ for NEVEROFF, $S_i = OFF$ for INSTANTOFF, and S_i is the sleep state that we transition to in SLEEP. 215

Proof: Follows by substituting $p_i = 1$ and $q_{i1} = 1$ in Lemma 2. 216 The expressions in Lemma 5 allow us to determine regimes of load and mean job sizes for which 217 each of NEVEROFF, INSTANTOFF and SLEEP policy is best with respect to ERP. Although not shown (for lack of space), we find that NEVEROFF is typically superior to the other policies, 219 unless the load is low and the mean job size is high, resulting in very long idle periods. In the 220 latter case, INSTANTOFF or one of the SLEEP policies is superior, depending on the parameters 221 of the sleep and off states. Eqs. (4) and (5) are also helpful for guiding a server architect towards 222 designing useful sleep states by enabling the evaluation of ERP for each candidate sleep state. 223

5. Near-Optimal Multi-server policies

213

224

232

In this section, we extend our results for single server systems to the multi-server systems with a fixed known arrival rate, with the goal of minimizing ERP. Inspired by the results in Section 4, 226 where we found the best of NEVEROFF, INSTANTOFF and SLEEP to be the optimal policy, 227 we intuit that in the multi-server case, one of NEVEROFF, INSTANTOFF and SLEEP will be close to optimal as well. We make this intuition precise in Section 5.1, and in Section 5.2, we 229 provide simple guidelines for choosing the right policy from among this set, depending on the 230 system parameters. 231

5.1. Near-optimality conjectures

Conjecture 1. Let Π_{OFF} denote the class of policies which only involve the states on, idle and 233 off. The ERP of the best of NEVEROFF and INSTANTOFF is within 20% of the ERP of the optimal policy in Π_{OFF} when $\rho \geq 10$. When $\rho \geq 20$, the performance gap is smaller than 12%. 235

Conjecture 2. Let Π_{S_i} denote the class of policies which only involve the states on, idle and the S_i sleep state. For arbitrary S_i (that is P_{S_i} and T_{S_i}), the ERP of the best of NEVEROFF and 237 SLEEP with sleep state S_i is within 30% of the ERP of the optimal policy in Π_{S_i} when $\rho \geq 10$. 238 When $\rho \geq 20$, the performance gap is smaller than 23%.

The main idea behind Conjectures 1 and 2 is obtaining reasonably good lower bounds on the ERP for the optimal policy, and then numerically optimizing the performance gap with respect to the lower bound. We present justification for Conjecture 1 in Appendix B. The justification 242 for Conjecture 2 is similar, and we omit it due to lack of space (see [10]).

We believe that in reality, the simple NEVEROFF, INSTANTOFF, and SLEEP policies are better than our Conjectures suggest. To justify this claim, we perform the following simulation experiment. We focus on the case in Conjecture 1 of policies involving on, idle and off states. Note that as we mentioned earlier, due to the metric of ERP, we can not utilize the framework of Markov Decision Processes/Stochastic Dynamic Programming to numerically obtain the optimal policy. Instead we limit ourselves to the following class of threshold policies:

THRESHOLD (n_1, n_2) : At least n_1 servers are always maintained in *on* or *idle* state. If an arrival finds a server idle, it begins service. If the arrival finds all servers on (busy) or turning on, but this number is less than $n_2 \ge n_1$, then the arrival turns on an off server. Otherwise the arrival waits in a queue. If a server becomes *idle* and the queue is empty, the server turns off if there are at least n_1 other servers which are on.

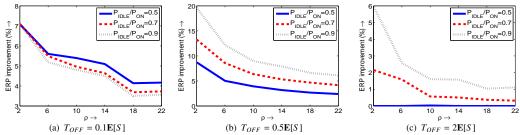


Figure 2: Comparison of the performance of THRESHOLD policy against the best of NEVEROFF and INSTANTOFF policies. The y-axis shows the percentage improvement in ERP afforded by the THRESHOLD policy.

The THRESHOLD policy can be seen as a mixture of NEVEROFF with n_1 servers, and IN-STANTOFF with $(n_2 - n_1)$ servers. Thus, THRESHOLD represents a broad class of policies (since n_1 and n_2 can be set arbitrarily), which includes NEVEROFF and INSTANTOFF. In Figure 2, we show the gain in ERP afforded by the optimal THRESHOLD policy over the best of NEVEROFF and INSTANTOFF for various values of ρ , T_{OFF} and $\frac{P_{IDLE}}{P_{ON}}$. We see that if T_{OFF} is small (Figure 2 (a)), the ERP gain of the THRESHOLD policy over the best of NEVEROFF and INSTANTOFF is marginal (< 7%). This is because in this case, INSTANTOFF is close to optimal. At the other end, when T_{OFF} is large (Figure 2 (c)), the ERP gain of the THRESHOLD policy over the best of NEVEROFF and INSTANTOFF are again marginal (< 6%), because now NEVEROFF is close to optimal. We expect the optimal THRESHOLD policy to outperform the best of NEVEROFF and INSTANTOFF when T_{OFF} is moderate (comparable to $\frac{P_{IDLE} \cdot \mathbf{E}[S]}{P_{OV}}$). In Figure 2 (b), we see that this is indeed the case. However, the gains are still moderate (an improvement of 10% when $\rho \ge 10$ and at most 7% when $\rho \ge 20$ when P_{IDLE} is high).

5.2. Choosing the right policy

241

244

245

246

247

248

249

250

252

253

254

256

257

258

259 260

261

262

263

264

265

267

268

270

271

Based on the conjectures in Section 5.1, to provision a multi-server system with a fixed known arrival rate, it suffices to only consider the policies NEVEROFF, INSTANTOFF and SLEEP. The goal of this section is to develop a series of simple rules of thumb that help a practitioner choose between these policies. The specific questions we answer in this section are:

Question 1: What is the optimal number of servers, n^* , for the NEVEROFF policy?

Question 2: What is the optimal number of servers, n^* , for the SLEEP policy?

Question 3: How can an administrator choose between the INSTANTOFF, NEVEROFF, and the various SLEEP policies?

Before presenting the rules of thumb to answer the above questions, we present a well-known result regarding the M/M/K queueing system which will form the basis of further analysis.

Lemma 6 (Halfin and Whitt [12]). Consider a sequence of $M/M/s_n$ systems with load ρ_n in the nth system. Let α_n denote the probability that an average customer finds all servers busy in the nth system. Then,

$$\lim_{\rho_n \to \infty} \alpha_n = \alpha(\beta) \text{ if and only if } \lim_{\rho_n \to \infty} \frac{s_n - \rho_n}{\sqrt{\rho_n}} = \beta.$$
 (6)

The function $\alpha(\beta)$ *is given by*

$$\alpha(\beta) = \left[1 + \sqrt{2\pi}\beta\Phi(\beta)e^{\frac{\beta^2}{2}}\right]^{-1} \tag{7}$$

where $\Phi(\cdot)$ is the c.d.f. of a standard Normal variate. Under the above conditions, the mean number of jobs in the nth system, $\mathbf{E}[N^{M/M/s_n}]$, satisfies:

$$\lim_{\rho_n \to \infty} \frac{\mathbf{E}\left[N^{M/M/s_n}\right] - \rho_n}{\sqrt{\rho_n}} = \frac{\alpha(\beta)}{\beta}.$$
 (8)

Rule of Thumb #1: Choosing n^* for NEVEROFF

For the parameter regime where NEVEROFF is the chosen policy,

$$n^* = \rho + \beta^* (P_{IDLE}/P_{ON}) \sqrt{\rho} + o(\sqrt{\rho})$$
(9)

where $\beta^*(\cdot)$ is the following function:

$$\beta^*(x) = \arg\min_{\beta > 0} \left(\frac{\alpha(\beta)}{\beta} + \beta \cdot x \right). \tag{10}$$

A very good approximation $\beta^*(x) \approx \frac{0.4105x^2 + 0.8606x + 0.0395}{x^2 + 0.5376x + 0.01413}$ is obtained via the MATLAB curve fitting toolbox, with a maximum absolute relative error of < 0.75%.

Justification: Consider a sequence of $M/M/s_n$ systems with load ρ_n in the nth system. Let $s_n \sim \rho + g(\rho_n) + o(g(\rho_n))$. From [12], we have that $\mathbf{E}\left[N^{M/M/s_n}\right] \sim \rho_n + \frac{\rho_n}{g(\rho_n)}\alpha_n$ where α_n denotes the stationary probability that all s_n servers are busy in the nth system. Also, $\mathbf{E}\left[P^{M/M/s_n}\right] \sim \rho P_{ON} + g(\rho_n) P_{IDLE}$, which gives

$$\mathbf{E}\left[N^{M/M/s_n}\right] \cdot \mathbf{E}\left[P^{M/M/s_n}\right] = \rho_n^2 P_{ON} \left(1 + \frac{\alpha_n}{g(\rho_n)} + \frac{g(\rho_n)}{\rho_n} \frac{P_{IDLE}}{P_{ON}} + o() \text{ terms}\right).$$

When $g(\rho_n) = \omega(\sqrt{\rho_n})$, $\alpha_n \to 0$, and the expression in the parenthesis is $1 + \omega(1/\sqrt{\rho_n})$. When $g(\rho_n) = o(\sqrt{\rho_n})$, $\alpha_n \to 1$, and the expression in the parenthesis is again $1 + \omega(1/\sqrt{\rho_n})$. Thus, the optimal choice is $g(\rho_n) = \beta\sqrt{\rho_n} + o(\sqrt{\rho_n})$ for some constant β . This yields:

$$ERP^{NEVEROFF} \sim \rho_n \mathbf{E}[S] P_{ON} \left(1 + \frac{\frac{\alpha(\beta)}{\beta} + \beta \frac{P_{IDLE}}{P_{ON}}}{\sqrt{\rho_n}} \right)$$
 (11)

Optimizing the above yields the expression for β^* .

For the ERWS metric, the rule $n^* = \rho + \beta \sqrt{\rho}$ is known to be near-optimal in practice. It is 289 popularly known as the "square-root staffing rule", or the Quality and Efficiency Driven regime because it balances the sub-optimality in the performance (Quality) and resource utilization (Efficiency), both being $\Theta\left(\frac{1}{\sqrt{\rho}}\right)$, and hence optimizing the ERWS metric. Here we have shown that 292 the square-root staffing rule also optimizes the ERP metric, albeit with a different β . 293

Rule of Thumb #2: Choosing n^* for SLEEP

For the parameter regime where SLEEP with sleep state S_i is the chosen policy,

$$n^* = \rho' + \beta^* (P_{S_i} / P_{ON}) \sqrt{\rho'} + o(\sqrt{\rho'})$$
 (12)

where $\rho' = \rho \left(1 + \frac{T_{S_i}}{\mathbb{E}[S]}\right)$ and $\beta^*(\cdot)$ is given by (10). **Justification:** The justification for Rule of Thumb #2 is along the same lines. We expect the SLEEP(S_i) policy to outperform NEVEROFF when T_{S_i} is small enough so that almost all jobs turn on a sleeping server and get served there. This is equivalent to an $M/G/\infty$ system with $G \sim S + T_{S_i}$. However, since $P_{S_i} > 0$, we optimize the number of servers by following Rule of Thumb #1, but with mean job size replaced by $\mathbf{E}[S] + T_{S_i}$, or equivalently $\rho' \leftarrow \rho \left(1 + \frac{T_{S_i}}{\mathbf{E}[S]}\right)$, and $P_{IDLE} \leftarrow P_{S_i}$. This gives us:

$$ERP^{SLEEP(S_i)} \sim \rho \mathbf{E}[S] \left(1 + \frac{T_{S_i}}{\mathbf{E}[S]} \right)^2 P_{ON} \left(1 + \frac{\frac{\alpha(\beta)}{\beta} + \beta \frac{P_{S_i}}{P_{ON}}}{\sqrt{\rho \left(1 + \frac{T_{S_i}}{\mathbf{E}[S]} \right)}} \right)$$
(13)

Rule of Thumb #3: Which policy to use?

306

307

310

311

We associate each policy with an index, and choose the policy with the smallest index. The index for INSTANTOFF is given by $\left(1 + \frac{\gamma_{OFF}}{\mathbf{E}[S]}\right)^2$. The index for NEVEROFF is given by $\left(1 + \frac{\gamma(P_{IDLE}/P_{ON})}{\sqrt{\rho}}\right)$,

and for SLEEP with state S_i by $\left(1 + \frac{T_{S_i}}{\mathbf{E}[S]}\right)^2 \left(1 + \frac{\gamma(P_{S_i}/P_{ON})}{\sqrt{\rho\left(1 + \frac{T_{S_i}}{\mathbf{E}[S]}\right)^2}}\right)$. The function $\gamma(\cdot)$ is given by

$$\gamma(x) = \min_{\beta > 0} \left(\frac{\alpha(\beta)}{\beta} + \beta \cdot x \right) \tag{14}$$

with $\alpha(\beta)$ given by (7). A very good approximation $\gamma(x) \approx \frac{5.444x^2 + 2.136x + 0.006325}{x^2 + 4.473x + 0.9012}$ is obtained via the MATLAB curve fitting toolbox, with a maximum relative error of < 0.6% for $x \ge 0.025$. We justify the heuristic rule of thumb by proposing approximations for the ERP metric under INSTANTOFF, NEVEROFF, and the SLEEP policies. We expect the IN-STANTOFF policy to outperform NEVEROFF and SLEEP when T_{OFF} is small enough compared to E[S], so that the penalty to turn on an off server is negligible compared to the necessary cost of serving the job. In this regime, we can approximate the ERP of INSTANTOFF by $ERP^{INSTANTOFF} \approx \lambda P_{ON} (\mathbf{E}[S] + T_{OFF})^2$, which is an upper bound obtained by forcing every job to run on the server that it chooses to turn on on arrival. The ERP of NEVEROFF with optimal number of servers is approximated by Eq. (11), with $\rho_n = \rho$ and $\beta = \beta^*(P_{IDLE}/P_{ON})$. For SLEEP, we again expect SLEEP(S_i) policy to outperform NEVEROFF when T_{S_i} is small enough so that

almost all jobs turn on a sleeping server and get served there. In this regime, we can approximate the ERP of SLEEP by Eq. (13), with $\beta = \beta^*(P_{S_i}/P_{ON})$. Using the above approximations for ERP, 315 we can choose between the INSTANTOFF, NEVEROFF and SLEEP policies. 316 If we compare INSTANTOFF and NEVEROFF, Rule of Thumb #3 says that if T_{OFF} is suf-317 ficiently small compared to E[S] and $\frac{1}{\sqrt{\rho}}$, then one should choose INSTANTOFF. Figure 3(a) 318 verifies the accuracy of the above rule of thumb. Observe that in the region where our rule of 319 thumb mispredicts the better policy, the gains of choosing either policy over the other are min-320 imal. Similarly, the dashed line in Figure 3(b) indicates that the theoretically predicted split 321 between the NEVEROFF and SLEEP policies is in excellent agreement with simulations.

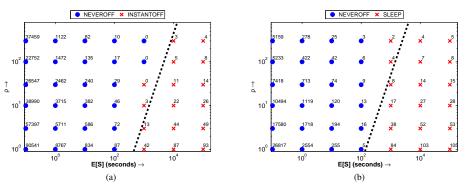


Figure 3: Verifying the of accuracy Rule of Thumb #3. This figure shows the relative performance of NEVEROFF, INSTANTOFF and SLEEP policies for a multi-server system, as a function of load, ρ , and mean job size, $\mathbf{E}[S]$, based on simulations. Figure (a) shows NEVEROFF vs. INSTANTOFF. The crosses indicate the region of superiority of INSTANTOFF over NEVEROFF. Figure (b) shows NEVEROFF vs. SLEEP. The crosses indicate the region of superiority of SLEEP over NEVEROFF. The numbers associated with each point denote the % improvement of the superior algorithm over the inferior. The dashed lines indicate the theoretically predicted split based on Rule of Thumb #3.

6. A Traffic-oblivious dynamic capacity provisioning policy

322

324

325

327

328

329

331

332

333

334

335

336

337

Thus far we have considered a stationary demand pattern. Our goal in this section is to propose a server farm management policy with near-optimal ERP when the demand pattern is time-varying and unknown. We propose a policy, DELAYEDOFF, which we prove is asymptotically optimal when the arrival process is Poisson, but with an unknown mean intensity. Further, we provide empirical evidence towards favorable performance of our proposed policy when the arrival process is Poisson with an unknown non-stationary arrival rate $\lambda(t)$, with $\rho(t) = \lambda(t) \mathbf{E}[S]$. The previous policies that we have considered, NEVEROFF, SLEEP and INSTANTOFF, do not satisfy our goal. NEVEROFF and SLEEP are based on a fixed number of servers n^* , and thus do not auto-scale to time-varying demand patterns. INSTANTOFF is actually able to scale capacity in the time-varying case, since it can turn on servers when the load increases, and it can turn off servers when there isn't much work in the system. However, when T_{OFF} is high, we will see that INSTANTOFF performs poorly with respect to ERP. We now define our proposed traffic-oblivious auto-scaling policy, DELAYEDOFF. **DELAYEDOFF:** DELAYEDOFF is a capacity provisioning policy similar to INSTANTOFF, but with two major changes. First, under DELAYEDOFF, we wait for a server to idle for some

predetermined amount of time, t_{wait} , before turning it off. If the server gets a job to service in this

period, its idle time is reset to 0. The parameter t_{wait} is a constant chosen independent of load, and thus DELAYEDOFF is a truly traffic-oblivious policy. Second, if an arrival finds more than one servers *idle* on arrival, instead of joining a random *idle* server, it joins the server that was most recently busy (MRB). We will later see that MRB routing is *crucial* to the near-optimality of DELAYEDOFF.

341

372

373

374

We will demonstrate the superiority of DELAYEDOFF by comparing it against two other policies, the first being INSTANTOFF, and the second being an offline, traffic-aware hypothetical policy, LOOKAHEAD. LOOKAHEAD runs the NEVEROFF policy, with n^* changing as a function of time. LOOKAHEAD smartly calculates $n^*(t)$ for each time t, given the $\rho(t)$ forecast. To do this, we use the idea proposed in [16]. The crux of the idea in [16] is to compute what we will call the "effective load" at time t, $\rho_{\rm eff}(t)$, as:

$$\rho_{\text{eff}}(t) = \int_{-\infty}^{t} e^{-\mu(t-u)} \lambda(u) du.$$

The quantity $\rho_{\text{eff}}(t)$ denotes the mean number of jobs in the system at time t under the assumption that every job in the system can have its own server. The number of servers to have on at time t, $n^*(t)$, is then chosen to be $n^*(t) = \rho_{\text{eff}}(t) + \beta^* \sqrt{\rho_{\text{eff}}(t)}$, where β^* is given by (10). Figure 4 illustrates the performance of INSTANTOFF, LOOKAHEAD and DELAYEDOFF in 348 the case of a time-varying arrival pattern that resembles a sine curve with a period of 6 hours. In 349 all the simulations, we set E[S] = 1 sec, and $T_{OFF} = 200$ secs (hence T_{OFF} is high). Figure 4(a) 350 shows that INSTANTOFF auto-scales poorly as compared to the other policies, in particular 351 $ERP^{INSTANTOFF} \approx 6.8 \times 10^5 Watts \cdot sec$, with $\mathbf{E}[T] \approx 13.17 sec$ and $\mathbf{E}[P] \approx 5.19 \times 10^4 Watts$. By 352 contrast, LOOKAHEAD, shown in Figure 4(b), scales very well with the demand pattern. The 353 ERP of LOOKAHEAD is $ERP^{LOOKAHEAD} \approx 1.64 \times 10^4 Watts \cdot sec$, with $\mathbf{E}[T] \approx 1.036 sec$ and $\mathbf{E}[P] \approx 1.58 \times 10^4 Watts$. Unfortunately, as pointed out above, LOOKAHEAD requires knowl-355 edge of the future arrival pattern to be able to have $n^*(t)$ servers on at time t (in particular, it 356 needs knowledge of the demand curve T_{OFF} units in advance). Thus, while LOOKAHEAD per-357 forms very well in a time-varying situation, it is not an online strategy, and is thus, not practical. Figure 4(c) illustrates the excellent auto-scaling capability of DELAYEDOFF for the sinusoidal 359 arrival pattern. Here, $t_{wait} = 320s$ is chosen according to Rule of Thumb #4 presented later 360 in this section. For the case in Figure 4(c), $ERP^{DELAYEDOFF} \approx 1.89 \times 10^4 Watts \cdot sec$ with 361 $\mathbf{E}[T] \approx 1.002 sec$ and $\mathbf{E}[P] \approx 1.89 \times 10^4 Watts$. The ERP for DELAYEDOFF is only slightly 363 higher than that of LOOKAHEAD, and far lower than that of INSTANTOFF. DELAYEDOFF slightly overprovisions capacity compared to LOOKAHEAD due to its traffic-oblivious nature. 364 We verify this last observation analytically. 365 While analyzing DELAYEDOFF under time-varying traffic is a formidable challenge, we justify its excellent auto-capacity-scaling capabilities in Corollary 1, which shows that under a Poisson 367 arrival process with unknown intensity, DELAYEDOFF achieves near-optimal ERP. Thus, if the 368 rate of change of the arrival rate is less than T_{OFF} (as was the case in Figure 4(c)), we expect DELAYEDOFF to still achieve near-optimal ERP. This is because we are able to turn servers on before the queue builds up. 371

Theorem 2. Consider a server farm with Poisson arrival process and Exponential job size distribution. Let ρ denote the average load. Under DELAYEDOFF with MRB routing and any constant t_{wait} , with probability 1-o(1), the number of servers on is given by $\rho + \sqrt{\rho \log \rho} + o(\sqrt{\rho \log \rho})$, as $\rho \to \infty$.

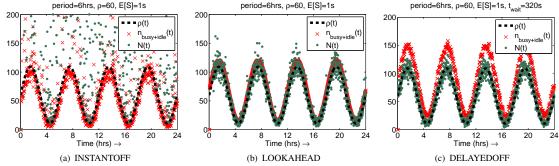


Figure 4: Dynamic capacity provisioning capabilities of INSTANTOFF, LOOKAHEAD and DELAYEDOFF. The dashed line denotes the load at time t, $\rho(t)$, the crosses denotes the number of servers that are busy or idle at time t, $n_{busy+idle}(t)$, and the dots represent the number of jobs in the system at time t, N(t).

Corollary 1. If $T_{OFF}=0$, then DELAYEDOFF achieves optimal ERP asymptotically as $\rho \to \infty$.

Specifically, the ERP^{DELAYEDOFF} $\to (\rho * P_{ON} * \mathbf{E}[S])^{-1}$ as $\rho \to \infty$.

Proof of Corollary 1: From Theorem 2, we know that asymptotically with probability 1, we will end up with $\rho + \sqrt{\rho \log \rho} + o(\sqrt{\rho \log \rho})$ number of servers on. As mentioned in the justification for Rule of Thumb #1 (Section 5.2), the mean response time for DELAYEDOFF will approach $\mathbf{E}[S]$ as $\rho \to \infty$, since it keeps $\rho + \omega(\sqrt{\rho})$ servers on. Further, the ratio of power consumed by DELAYEDOFF to the minimum power needed to serve jobs $(\rho \cdot P_{ON})$, is $1 + \sqrt{\frac{\log \rho}{\rho}}$, which approaches 1, as $\rho \to \infty$. Thus, the ERP of DELAYEDOFF, with any non-zero t_{wait} , approaches the theoretical lower bound of $(\rho \cdot P_{ON} \cdot \mathbf{E}[S])^{-1}$ as $\rho \to \infty$.

Proof of Theorem 2: We first provide an alternate way of viewing the MRB routing. Consider a server farm with infinitely many servers, where we assign a unique rank to each server. Whenever there are n jobs in the server farm, they instantaneously move to servers ranked 1 to n. We now claim that there are m servers on at time t under MRB routing and DELAYEDOFF if and only if there are m servers on at time t in the alternate model under DELAYEDOFF. To see this, let the rank of servers at time t under MRB be defined by the last time they were idle (rank 1 server has been idle the shortest and so on). Once a server goes idle and gets rank n (thus the number of jobs in the system drops to n-1), its rank remains n until the number of jobs in the system increases to n.

Define the idle period for server n+1, I(n), to be the time that elapses between the instant that the number of jobs in the system transitions from n+1 to n until it next reaches n+1. It is easy to see that the setup delay, T_{OFF} does not affect the distribution of I(n). A rank n+1 server turns off when $I(n) > t_{wait}$. The next lemma implies that for any constant $\epsilon > 0$, the mean idle period of $\rho + (1 + \epsilon) \sqrt{\rho \log \rho}$ ranked server goes to ∞ , and that of the $\rho + (1 - \epsilon) \sqrt{\rho \log \rho}$ ranked server goes to 0. Due to lack of space, we defer the proof of Lemma 7 to Appendix C.

Lemma 7. Consider an $M/M/\infty$ system with load ρ . Then, for any constant $\epsilon > 0$:

$$\lim_{\rho \to \infty} \mathbf{E} \Big[I(\rho + (1 + \epsilon) \sqrt{\rho \log \rho})) \Big] = \infty$$

$$\lim_{\rho \to \infty} \mathbf{E} \Big[I(\rho + (1 - \epsilon) \sqrt{\rho \log \rho})) \Big] = 0$$

Further, for any constant $\beta > 0$: $\lim_{\rho \to \infty} \sqrt{\rho} \mathbf{E} \left[I(\rho + \beta \sqrt{\rho}) \right] = \sqrt{2\pi} e^{\beta^2} \Phi(B)$.

Therefore, clearly, for any $\epsilon > 0$, the idle period of server $\rho + (1 - \epsilon) \sqrt{\rho \log \rho}$ converges in 401 distribution to 0, and this server is on with probability 1 - o(1). It is also easy to show that the 402 mean busy period of server $n = \rho + \delta \sqrt{\rho \log \rho}$ for any $\delta > 0$ is $\mathbf{E}[B(n)] = \frac{1}{\lambda} + o(\frac{1}{\lambda}) \to 0$. 403 Thus the probability that for any $\epsilon > 0$, the server $n = \rho + (1 + \epsilon) \sqrt{\rho}$ is on is upper bounded by 404 $\frac{t_{wait} + \mathbf{E}[B(n)]}{\mathbf{E}[I(n)] + t_{wait} + \mathbf{E}[B(n)]} \to 0.$ 405 406

We now address the question of choosing the optimal value of t_{wait} , which we denote as t_{wait}^* .

Rule of Thumb #4: Choosing t_{wait}^* . 407

408

410 411

412

414

415

416

417

418

419

420

421

A good choice for the t_{wait} parameter for DELAYEDOFF is $t_{wait}^* \approx T_{OFF} \cdot \frac{P_{ON}}{P_{IDLE}}$. The rule of thumb is along similar lines as the power down strategy proposed in [15] and is based on an amortization argument. Once the server has wasted $P_{IDLE} \cdot t_{wait}^*$ units of power in *idle*, it amortizes the cost of turning the server on later and paying the penalty of $P_{ON} \cdot T_{OFF}$.

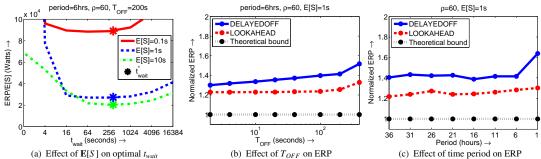


Figure 5: (a) Verifying the accuracy of Rule of Thumb #4. The graph shows the effect of twait on ERP for the DELAYED-OFF policy, in the case of a sinusoidal demand curve, with average $\rho = 60$ and $\mathbf{E}[S] = 0.1, 1, 10s$. Different values of t_{wait} result in different ERP values. However, $t_{wait}^* = T_{OFF} \cdot \frac{P_{ON}}{P_{IDLE}} = 320s$ does well for all values of **E**[S]. (b) The graph shows the difference in ERP of the DELAYEDOFF and LOOKAHEAD policies. The ERP values are normalized by the theoretical lower bound. (c) The graph shows the effect of decreasing the period of the sinusoidal demand curve on the ERP. Results suggest that decreasing the period of the demand curve does not effect the ERP significantly.

Figure 5(a) verifies Rule of Thumb #4, for different E[S] values. Figure 5(b) compares the ERP of DELAYEDOFF against the ERP of LOOKAHEAD for different T_{OFF} values. We normalize the ERP values with the theoretical upper bound of $\rho P_{ON} \cdot \mathbf{E}[S]$. Throughout the range of T_{OFF} values, we see that DELAYEDOFF, with t_{wait} chosen based on Rule of Thumb #4, performs within 10% of LOOKAHEAD, based on the ERP. The ERP of both, DELAYEDOFF and LOOKAHEAD are within 70-80% of the ERP values of the theoretical lower bound. Figure 5(c) shows the effect of decreasing the period of the sinusoidal demand curve on the ERP. We see that the ERP of DELAYEDOFF increases as the period decreases, but this change is not very significant. Thus, we can expect DELAYEDOFF to perform well for time-varying demand patterns, as long as the rate of change of demand is not too high.

Trace-based simulation results:. Thus far we have only looked at simulation results for arrival 422 patterns that look like a sinusoidal curve. However, not all demand patterns are sinusoidal. We

³While a reader familiar with work on powering down scheme might find our DELAYEDOFF policy not novel, we would like to point out a conceptual difference between the use of DELAYEDOFF in our work and in the prior literature. The prior literature uses DELAYEDOFF type schemes for stand-alone devices, obtaining constant factor sub-optimality. However, we are applying DELAYEDOFF to each device in a server farm, and are artificially creating an arrival process via MRB so as to make the idle periods of the servers highly variable. This allows DELAYEDOFF to perform nearoptimally as ρ increases, that is, the competitive ratio approaches 1. This is not necessarily true under alternate routing schemes, such as probabilistic routing, which would yield a competitive ratio bounded away from 1.

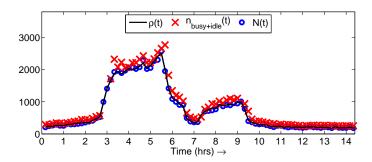


Figure 6: DELAYEDOFF simulation results based on a subset of arrival traces collected from the Internet Traffic Archives, representing 15 hours of bursty traffic during the 1998 Soccer world cup finals. Observe that DELAYEDOFF scales very well even in the case of bursty traffic.

now consider a real-life demand pattern based on traces from the 1998 World Cup Soccer website, obtained from the Internet Traffic Archives [1]. The trace contains approximately 90 days 425 worth of arrival data, with more than 1.3 billion arrivals. The data contains very bursty arrivals, 426 with the arrival rate varying by almost a factor of 10, between periods of peak demand and 427 low demand. In particular, the rate of change of arrival rate is sometimes much higher than $T_{OFF} = 200s$. We run DELAYEDOFF on this trace, and compare our results against LOOKA-429 HEAD. Throughout, we assume Exponentially distributed job sizes, with mean 1 second. 430 Figure 6 shows our simulation results for a subset of the arrival traces, corresponding to the 431 most bursty traffic. We see that DELAYEDOFF (with optimally chosen $t_{wait} = 320s$) adapts 432 extremely well to the time-varying traffic. In fact, over the entire duration of 90 days, the ERP 433 of DELAYEDOFF was within 15% of the ERP of LOOKAHEAD. Thus, we conclude that DE-434 LAYEDOFF performs very well even in the case of unpredictable and bursty traffic.

7. Conclusions

436

This paper address the issue of energy-performance tradeoff in server farms. We utilize the metric of Energy-Response Time Product (ERP) to capture the aforementioned tradeoff. Finding 438 optimal policies to minimize ERP in server farms is an almost intractable problem due to the high 439 dimensionality of the search space of policies, made worse by the numerous sleep states present 440 in today's servers. Via the first analysis of the ERP metric, we prove that a very small natural 441 class of server farm management policies suffices to find the optimal or near-optimal policy. 442 We furthermore develop rules of thumb for choosing the best among these policies given the 443 workload and server farm specifications. The impact of our results is two-fold: (i) Our results 444 eliminate the complexity of finding an efficient server farm management policy, and (ii) Our analytical evaluation of the policies advocated in this paper with respect to ERP can guide server 446 designers towards developing a smaller set of sleep states with the most impact. 447 We first prove that for a single server under a Poisson arrival process, the optimal policy with 448 respect to ERP is either to always keep the server on or idle (NEVEROFF), or to always turn a server off when idle and to turn it back on when work arrives (INSTANTOFF), or to always 450 put the server in some sleep state when idle (SLEEP). Next, based on analysis and numerical 451 experiments, we conjecture that for a multi-server system under a Poisson arrival process, the

multi-server generalizations of NEVEROFF, INSTANTOFF and SLEEP suffice to find a nearoptimal policy. Finally we consider the case of a time-varying demand pattern and propose a 454 simple traffic oblivious policy, DELAYEDOFF, which turns servers on when jobs arrive, but 455 waits for a specific amount of time, t_{wait} , before turning them off. Through a clever routing policy, DELAYEDOFF is shown to achieve asymptotic optimality for a stationary Poisson arrival 457 process with an unknown arrival rate, as the load becomes large. 458 In order to prove the optimality results in this paper, we have made some assumptions: (i) The 459 servers are interchangeable (any job can serve on any server), (ii) The server farm is homoge-460 neous, (iii) The job-sizes are Exponentially distributed (although the asymptotic optimality of 461 DELAYEDOFF extends to general job size distributions). If some or all of these assumptions 462 were to be relaxed, then our optimality results might look different. For example, we might 463 consider policies that treat servers based on their specific characteristics, such as P_{ON} , P_{IDLE} or T_{OFF} . Proving optimality results without the above assumptions is beyond the scope of this 465 paper, and we hope to address some of these issues in a future paper. 466

467 Appendix A. Proof of Theorem 1

Proof of Lemma 1: We first note that if the server is in the *on* state and there is work in the 468 system, then the optimal policy never transitions into a sleep state. Suppose, by contradiction, 469 an optimal policy π transitioned into a sleep state at time t_0 with work in the queue and then 470 later transitioned through some sleep state until finally transitioning to the on state at time t_1 . 471 We could transform this into a policy π' with equivalent power consumption, but lower mean 472 response time by deferring the powering down until all the work present in the system at t_0 has 473 474 finished (say at t_2), and then transitioning through the same sleep states as π , finally transitioning to the *on* (or *idle*) state at time $t_2 + (t_1 - t_0)$. 475 Next, we prove that the only instants at which an optimal policy takes actions will be job com-476 pletions, job arrivals, or when the server finishes transition from a low power state to a higher 477 power state. Here we assume that once a transition to a sleep, idle or on state has been initi-478 ated from a lower power state, it can not be interrupted. We have already argued that no actions 479 happen during a busy period when the server is in the on state. Therefore to prove that control 480 actions only happen at the claimed events, it remains to show that actions do not occur while the 481 server is in *idle* or *sleep* states (and not in transition or *on*) and an arrival has not occured. To 482 achieve this, it suffices to show that there exists a Markovian optimal control for the ERP metric. Note that $\mathbf{E}[T] = \lim_{T \to \infty} \frac{1}{\lambda T} \mathbf{E} \left[\int_{t=0}^{T} N(t) dt \right]$ and $\mathbf{E}[P] = \lim_{T \to \infty} \frac{1}{T} \mathbf{E} \left[\int_{t=0}^{T} P(t) \right]$, where N(t) and 483 P(t) denote the number of jobs and power consumption, respectively, at time t. Thus the optimal 485 decision at time t depends only on the future evolution of the system, and not on the finite history 486 in [0, t]. (Note that these statements are not true if we replace $\mathbf{E}[T]$ and $\mathbf{E}[P]$ by their discounted 487 versions, e.g. $\mathbf{E}[P_{\gamma}] = \int_{t=0}^{\infty} \gamma^t P(t) dt$ for some $0 < \gamma < 1$.) By the memoryless property of the 488 Poisson arrival process, the claim follows. 489 Finally, we will show that once a policy goes into a *sleep* state when the server goes *idle*, the 490 only other state it will transition to next is on. To see this, suppose the server went into sleep 491 state S_i . Now, the server will not go into sleep state S_j for j > i (and hence to a state with lower 492 power) on a job arrival, otherwise it would have been better to transition to S_i when the server 493 first went idle. If the server transitions to a sleep state S_k for k < i (thus a state with higher power) but not the on state, and later transitions to the on state, it would instead have been better to transition directly to the *on* (since the transition times are the same by the *Model Assumptions*), finish processing the work and then transition to state S_k instantaneously.

So far, we have argued that the optimal policy must (i) immediately transition to *idle* or a *sleep* state when the work empties (recall that we have assumed these transitions to be instantaneous), (ii) immediately transition to the *on* state on some subsequent arrival, and (iii) is Markovian. However, the optimal control need not necessarily be a deterministic function of the current state. We therefore use p_i and q_{ij} to denote the class of possible optimal control policies Π_{mixed} .

Proof of Lemma 2: The proof proceeds via renewal reward theory. We define a renewal cycle for the server as the time from when a server goes *idle* (has zero work), until it next goes *idle* again. Thus we can express:

$$\mathbf{E}[T] = \frac{\mathbf{E}[\text{total response time per cycle}]}{\mathbf{E}[\text{number of jobs per cycle}]} \quad ; \qquad \mathbf{E}[P] = \frac{\mathbf{E}[\text{total energy per cycle}]}{\mathbf{E}[\text{duration per cycle}]}.$$

Now consider a specific case, where the server goes into *sleep* state S_i on becoming *idle*, and starts transitioning to the *on* state when n_i jobs accumulate. There can be more arrivals while the server is turning on. We denote the number of arrivals during transition from S_i by X_i , and note that X_i is distributed as a Poisson random variable with mean λT_{S_i} . Thus, after the server turns on, it has $n_i + X_i$ jobs in the queue, and thus the time until the server goes *idle* is distributed as a sum of $n_i + X_i$ busy periods of an M/M/1 system. The sum of the response times of jobs that are server during this renewal cycle has two components:

1. Sum of waiting times of all jobs before the server turns on (term 1 below): The waiting time of the *j*th of the first n_i jobs is $\sum_{k=j+1}^{n_i} T_{\lambda}(k) + T_{S_i}$, where $\{T_{\lambda}(\cdot)\}$ are *i.i.d.* Exp(λ) random variables, and $T_{\lambda}(k)$ denotes the time between the (k-1)st and kth arrival of the cycle. By the properties of the Poisson arrival process, the (unordered) waiting time of each of the X_i jobs is an independent $U([0, T_{S_i}])$ random variable. Adding an taking expectation, we get the term 1 as shown below in (A.1).

2. Sum of the response times from when the server turns on until it goes idle (term 2 below): Since the sum of response time of the jobs that are served during the renewal cycle is the same for any non-preemptive size-independent scheduling policy, we will find it convenient to schedule the jobs as follows: We first schedule the first of $n_i + X_i$ arrivals and do not schedule any of the $n_i + X_i - 1$ remaining jobs until the busy period started by the first job completes. Then we schedule the second of the $n_i + X_i$ jobs, holding the remaining jobs until the busy period started by this job ends, and so on. The sum of the response times is thus given by the sum of response times in $n_i + X_i$ i.i.d. M/M/1 busy periods, and the additional waiting time experienced by the initial $n_i + X_i$ arrivals. By renewal theory, the expectation of the sum of response times of the jobs served in an M/M/1 busy period with arrival rate λ and service rate μ is given by the product of the mean number of jobs served in a busy period $\left(\frac{1}{1-\frac{1}{\mu}}\right)$ and the mean response time per job

 $\left(\frac{1}{\mu-\lambda}\right)$. This gives the first component of term 2. The additional waiting time of the jth of the n_i+X_i initial arrivals due to our scheduling policy is given by the sum of durations of j-1 M/M/1 busy periods, each of expected length $\frac{1}{\mu-\lambda}$. Adding this up for all the n_i+X_i jobs and taking expectation, we get the second component of term 2.

$$\underbrace{n_i \left(\frac{n_i - 1}{2\lambda} + T_{S_i}\right) + \mathbf{E}[X_i] \frac{T_{S_i}}{2}}_{\text{term 1}} + \underbrace{\frac{1}{1 - \rho} \cdot \frac{n_i + \mathbf{E}[X_i]}{\mu - \lambda} + \mathbf{E}\left[\frac{(n_i + X_i)(n_i + X_i - 1)}{2(\mu - \lambda)}\right]}_{\text{term 2}}$$
(A.1)

497

498

499

500

501

502 503

$$=\frac{1}{1-\rho}\left(\frac{n_i+\mathbf{E}[X_i]}{\mu-\lambda}+\left[n_iT_{S_i}+\frac{n_i(n_i-1)}{2\lambda}+\frac{\lambda T_{S_i}^2}{2}\right]\right)=\frac{r_{in_i}}{1-\rho}$$

The final expression in (1) is obtained by combining the above with the renewal reward equation, and noting that the mean number of jobs served in this renewal cycle is given by $\frac{n_i + \mathbf{E}[X_i]}{1-\rho}$.

$$\mathbf{E}[T] = \frac{\mathbf{E}[\text{total response time per cycle}]}{\mathbf{E}[\text{number of jobs per cycle}]} = \frac{\sum_{i=0}^{N} p_i \sum_{n_i=1}^{\infty} q_{in_i} \frac{r_{in_i}}{1-\rho}}{\sum_{i=0}^{N} p_i \sum_{n_i=1}^{\infty} q_{in_i} \frac{n_i + \lambda T_{S_i}}{1-\rho}} = \frac{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} r_{ij}}{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} (j + \lambda T_{S_i})}$$

The proof for $\mathbf{E}[P]$ is analogous. The duration of a cycle is composed of three different times:

- 1. Time spent waiting for n_i jobs to queue up: The expected duration is $\frac{n_i}{\lambda}$, with expected total energy consumed given by $\frac{n_i}{\lambda} P_{S_i}$.
- 2. Time to wake up the server: This is T_{S_i} , with total energy consumed by the server during this time as $T_{S_i}P_{ON}$.
 - 3. $(n_i + X_i)$ busy periods: The expected time it takes for the server to go idle again is the expected duration of $n_i + X_i$ busy periods, given by $\frac{n_i + \lambda T_{S_i}}{\mu \lambda}$ with total energy consumed being $\frac{n_i + \lambda T_{S_i}}{\mu \lambda} P_{ON}$.

Thus, we have:

510 511

512

513

514

515

516

517

518

519

520

521

524

525

$$\mathbf{E}[P] = \frac{\mathbf{E}[\text{total energy per cycle}]}{\mathbf{E}[\text{duration per cycle}]} = \frac{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} \left[\frac{j}{\lambda} \cdot P_{S_i} + T_{S_i} \cdot P_{ON} + \frac{j + \lambda T_{S_i}}{\mu - \lambda} \cdot P_{ON} \right]}{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} \left[\frac{j}{\lambda} + T_{S_i} + \frac{j + \lambda T_{S_i}}{\mu - \lambda} \right]}$$
$$= \frac{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} \left(j(\rho P_{ON} + (1 - \rho) P_{S_i}) + \lambda T_{S_i} P_{ON} \right)}{\sum_{i=0}^{N} p_i \sum_{j=1}^{\infty} q_{ij} \left(j + \lambda T_{S_i} \right)}.$$

Proof of Lemma 3: To prove that the optimal strategy is pure, we only need to note that the expressions for both the mean response time and average power are of the form

$$\mathbf{E}[T] = \frac{q_1 t_1 + \ldots + q_n t_n}{q_1 m_1 + \ldots + q_n m_n}; \quad \mathbf{E}[P] = \frac{q_1 u_1 + \ldots + q_n u_n}{q_1 m_1 + \ldots + q_n m_n},$$

where n is the number of pure strategies that the optimal strategy is randomizing over. for some discrete probability distribution $\{q_1, \ldots, q_n\}$. We will show that when n = 2, the optimal strategy is pure, and the proof will follow by induction on n. For n = 2, we consider $\mathbf{E}[T]$ and $\mathbf{E}[P]$ as a function of q_1 over the extended domain $q_1 \in (-\infty, +\infty)$, and show that there is no local minima of $\mathbf{E}[T] \cdot \mathbf{E}[P]$ in $q_1 \in (0, 1)$. Further, note that both $\mathbf{E}[T]$ and $\mathbf{E}[P]$ are of the form $a + \frac{b}{c + dq_1}$ for some constants a, b, c, d. While the lemma would trivially follow if the product of $\mathbf{E}[T]$ and $\mathbf{E}[P]$ were a concave function of q, this is not true in our case because one/both of $\mathbf{E}[T]$ and $\mathbf{E}[P]$ may be convex, and hence we proceed through a case analysis:

Case 1: Both $\mathbf{E}[T]$ and $\mathbf{E}[P]$ are increasing or decreasing in q_1 , except for a shared discontinuity at $q_1 = \frac{m_2}{m_2 - m_1}$. In this case, trivially, $\mathbf{E}[T]\mathbf{E}[P]$ is also increasing/decreasing in the interval $q_1 \in [0, 1]$ as both the functions are positive in this interval, and thus the minimum of $\mathbf{E}[T] \cdot \mathbf{E}[P]$ is either at $q_1 = 0$ or at $q_1 = 1$.

Case 2: One of E[T] and E[P] is an increasing function and the other is a decreasing function of q_1 (except for the shared discontinuity at $q_1 = \frac{m_2}{m_2 - m_1}$). In this case, as $q_1 \to \frac{m_2}{m_2 - m_1}$, $E[T] \cdot E[P] \to -\infty$. Second, due to the form of E[T] and E[P], it is easy to see that their product has at most one

local optimum. Finally, we can see that as $q_1 \to \pm \infty$, $\mathbf{E}[T]\mathbf{E}[P] \to \frac{(t_1-t_2)(m_1-m_2)^2}{(u_1-u_2)^2}$, which is finite. Combining the previous three observations, we conclude that there is no local minima in the interval $q_1 \in (0,1)$. In other words, in the interval $q_1 \in [0,1]$, the minimum is achieved at either $q_1 = 0$, or $q_1 = 1$. The inductive case for n follows by considering only two variables, q_n and q', where q' is a linear combination of $q_1, q_2, \ldots, q_{n-1}$, and applying the inductive assumption.

Proof of Lemma 4: We now know that the optimal power down strategy is of the following form: the server goes into a fixed *sleep* state, S_i , on becoming *idle*. It then waits for some deterministic n_i arrivals before transitioning into the *on* state. We will show that under optimality, $n_i = 1$. The basic idea is to minimize the product of Eqs. (1) and (3). We omit the proof due to lack of space but mention the key steps (see [10] for details):

- We first show that if $\lambda T_{S_i} > 1$, then the policy where the server goes to *idle* state (recall $T_{IDLE} = 0$) has a lower $\mathbf{E}[T]\mathbf{E}[P]$ than going into *sleep* state S_i with any n_i . Thus $\lambda T_{S_i} < 1$ is a necessary condition for optimality of *sleep* state S_i .
- Next, we show that when $\lambda T_{S_i} < 1$, the optimal value of n_i is in fact $n_i = 1$. The proof proceeds by first finding two continuous differentiable functions g(x) and h(x) that agree with $\mathbf{E}[T]$ and $\mathbf{E}[P]$, respectively, at integral values of n_i . Then by investigating the asymptotes, discontinuities, and sign changes of the second derivative of g(x)h(x), we conclude that it suffices to show that the derivative of g(x)h(x) at x = 1 is positive to prove that there is no local minima of g(x)h(x) (and hence for $\mathbf{E}[T]\mathbf{E}[P]$) for x > 1. The last inequality is shown via some tedious algebra.

Appendix B. Justification for Conjecture 1

The core problem is coming up with a tight lower bound for $\mathbf{E}[T]\mathbf{E}[P]$ for the optimal policy. We have a trivial lower bound of $\mathbf{E}[T] \ge \mathbf{E}[S]$, and $\mathbf{E}[P] \ge \rho P_{ON}$. However, this is very loose when ρ is small and T_{OFF} is large.

There are a few **key ideas** to obtaining the lower bound. The first is to give the optimal policy additional capability. We do so by allowing the optimal policy to turn a server on from *off* instantaneously (zero setup time). Consequently, each server is either *on* (busy), *idle*, or *off*. However there is still an energy penalty of $P_{ON}T_{OFF}$. Secondly, we use an accounting method where we charge the energy costs to the jobs, rather than to the server. Thus, each job contributes towards the total response time cost and to the total energy cost. Thirdly, we obtain a lower bound by allowing the optimal policy to choose the state it wants an arrival to see independently for each arrival. This allows us to decouple the decisions taken by the optimal policy in different states. We make this last point clearer next.

An arrival that finds the n jobs in the system (excluding itself) could find the system in one of the following states:

1. At least one server is *idle*: Here, the optimal policy would schedule the arrival on the *idle* server. In this case, we charge the job $\mathbf{E}[S]$ units for mean response time. Further, the server would have been *idle* for some period before the arrival, and we charge the energy spent during this idle period, as well as the energy to serve the arrival, to the energy cost for the job. However, if under the optimal policy, there is an *idle* server when the number of jobs increases from n to n + 1, there must have been a server *idle* when the number of servers last went down from n + 1 to n. Furthermore, some server must have remained *idle* from then until the new arrival which caused the number of jobs to go to n + 1 (and hence there were

no jobs in the queue during this period). Thus, this idle period is exactly the idle period of an M/M/n + 1 with load ρ , denoted by I(n), where the idle period is defined as the time for the number of jobs to increase from n to n + 1.

- 2. No server is *idle*, arrival turns on an *off* server: Here, we charge the arrival $\mathbf{E}[S]$ units for mean response time, and $P_{ON}\mathbf{E}[S] + T_{OFF}P_{ON}$ for energy.
- 3. No server is *idle*, arrival waits for a server to become idle: This case is slightly non-trivial to handle. However, we will lower bound the response time of the job by assuming that the arrival found n servers busy with the n jobs. Further, until a departure, every arrival turns on a new server and thus increases the capacity of the system. Thus, this lower bound on queueing time can be expressed as the mean time until first departure in an $M/M/\infty$ system starting with n jobs. We denote this by D(n). The energy cost for the job will simply be $P_{ON}E[S]$.

We will give the optimal strategy the capability to choose which of the above 3 scenarios it wants for an arrival that occurs with n jobs in the system. Since the response time cost of scenario 1 and 2 are the same, only one of them is used, depending on whether $P_{IDLE}\mathbf{E}[I(n)] > P_{ON}T_{OFF}$ or not. Let $P_{waste}(n) = \min\{P_{IDLE}\mathbf{E}[I(n)], P_{ON}T_{OFF}\}$. Let q_n denote the probability that the optimal policy chooses the best of scenarios 1 and 2 for an arrival finding n jobs in the system, and with probability $1 - q_n$ it chooses scenario 3. Since we are interested in obtaining a lower bound, we will further assume that the probability of an arrival finding n jobs in the system, p_n , is given by the pdf of a Poisson random variable with mean ρ , which is indeed a stochastic lower bound on the stationary number of jobs in the system. We thus obtain the following optimization problem:

$$\mathbf{E}[T^{OPT}]\mathbf{E}[P^{OPT}] \ge \lambda \min_{\{q_n\}} \left(\mathbf{E}[S] + \sum_{n} p_n (1 - q_n) \mathbf{E}[D(n)] \right) \left(P_{ON} \mathbf{E}[S] + \sum_{n} p_n q_n P_{waste}(n) \right)$$

$$\ge \lambda \min_{\{q_n\}} \left(\sum_{n} p_n \sqrt{(\mathbf{E}[S] + (1 - q_n) \mathbf{E}[D(n)]) (P_{ON} \mathbf{E}[S] + q_n P_{waste}(n))} \right)^2$$
(By Cauchy-Schwarz inequality)
$$= \lambda \left(\sum_{n} p_n \sqrt{\min \{P_{ON} \mathbf{E}[S] + P_{waste}(n), P_{ON} (\mathbf{E}[S] + D(n))\}} \right)^2$$

The last equality was obtained by observing that the minimum occurs at $q_n = 0$ or $q_n = 1$. The rest of the proof is numerical. We have written a program that computes the above lower bound for a given ρ , T_{OFF} , P_{IDLE} and P_{ON} values. We then compare it against the cost of the NEVEROFF with optimal n^* , and against the following upper bound on the cost of IN-STANTOFF: $\lambda P_{ON} (\mathbf{E}[S] + T_{OFF})^2$. This upper bound is obtained by forcing every job to run on the server that it chooses to *setup* on arrival. For each value of ρ , we then search for the T_{OFF} value that maximizes the ratio of the cost of the best of NEVEROFF and INSTANTOFF to the above lower bound, and bound the relative performance of the best of NEVEROFF and INSTANTOFF against the theoretical optimal as a function of ρ and the ratio $\frac{P_{IDLE}}{P_{ON}}$. The above comparison yields the curve shown in Figure B.7 for the upper bound on the suboptimality of the best of NEVEROFF and INSTANTOFF versus the optimal policy as a function of ρ .

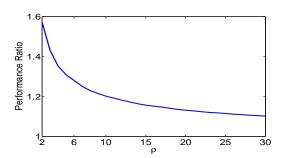


Figure B.7: Upper bound on the performance ratio of best of NEVEROFF and INSTANTOFF to that of the optimal policy as function of the load ρ , obtained via Conjecture 1.

Appendix C. Proof of Lemma 7

Without loss of generality, we assume $\mathbf{E}[S] = 1$. Thus $\rho = \lambda$. We begin by writing the recurrences for solving $\mathbf{E}[I(n)]$:

$$\mathbf{E}[I(0)] = \frac{1}{\rho}$$
; $\mathbf{E}[I(i)] = \frac{1}{\rho + i} + \frac{i}{\rho + i} (\mathbf{E}[I(i-1)] + \mathbf{E}[I(i)])$.

or equivalently,

$$\mathbf{E}[I(i)] = \frac{1}{\rho} + \frac{i}{\rho} \cdot \mathbf{E}[I(i-1)] = \frac{1}{\rho} + \frac{i}{\rho^2} + \frac{i(i-1)}{\rho^3} + \frac{i(i-1)(i-2)}{\rho^4} + \dots + \frac{i!}{\rho^{i+1}}$$

$$= \frac{i!}{\rho^{i+1}} \left(1 + \frac{\rho}{1} + \frac{\rho^2}{2!} + \dots + \frac{\rho^{i-2}}{(i-2)!} + \frac{\rho^{i-1}}{(i-1)!} + \frac{\rho^i}{i!} \right)$$

Now consider $i = \rho + \beta \sqrt{\rho}$. We get:

$$\begin{split} \mathbf{E}[I(i)] &= \frac{(\rho + \beta \sqrt{\rho})! e^{\rho}}{\rho^{i+1}} \left(\sum_{k=0}^{\rho + \beta \sqrt{\rho}} e^{-\rho} \frac{\rho^{k}}{k!} \right) \sim \frac{(\rho + \beta \cdot \sqrt{\rho})! e^{\rho}}{\rho^{i+1}} \Phi(\beta) \\ &\sim \sqrt{\frac{2\pi}{\rho}} \left(1 + \frac{\beta}{\sqrt{\rho}} \right)^{\rho + \beta \sqrt{\rho}} e^{-\beta \sqrt{\rho}} \Phi(\beta) = \sqrt{\frac{2\pi}{\rho}} \left(1 + \frac{\beta}{\sqrt{\rho}} \right)^{\beta \sqrt{\rho}} e^{\rho \log\left[1 + \frac{\beta}{\sqrt{\rho}}\right]} e^{-\beta \sqrt{\rho}} \Phi(\beta) \\ &= \sqrt{\frac{2\pi}{\rho}} e^{\beta^{2}} e^{\rho\left(\frac{\beta}{\sqrt{\rho}} - \frac{\beta^{2}}{2\rho} + o(1/\rho)\right)} e^{-\beta \sqrt{\rho}} \Phi(\beta) \sim \frac{\sqrt{2\pi} e^{\beta^{2}} \Phi(B)}{\sqrt{\rho}} \end{split}$$

which proves the second part of the theorem. Now consider $i = \rho + \eta \sqrt{\rho \log \rho}$ for some constant $\eta > 0$:

$$\begin{split} \mathbf{E}[I(i)] &\sim \frac{(\rho + \eta \sqrt{\rho \log \rho})! e^{\rho}}{\rho^{\rho + \eta \sqrt{\rho \log \rho} + 1}} \sim \sqrt{\frac{2\pi}{\rho}} \left(1 + \frac{\eta \sqrt{\rho \log \rho}}{\rho} \right)^{\rho + \eta \sqrt{\rho \log \rho}} e^{-\eta \sqrt{\rho \log \rho}} \\ &= \sqrt{\frac{2\pi}{\rho}} e^{(\rho + \eta \sqrt{\rho \log \rho}) \log \left(1 + \frac{\eta \sqrt{\rho \log \rho}}{\rho} \right)} e^{-\eta \sqrt{\rho \log \rho}} \end{split}$$

$$= \sqrt{\frac{2\pi}{\rho}} e^{(\rho + \eta \sqrt{\rho \log \rho}) \left(\frac{\eta \sqrt{\rho \log \rho}}{\rho} - \frac{\eta^2 \rho \log \rho}{2\rho^2} + \theta \left(\frac{(\eta \sqrt{\rho \log \rho})^3}{\rho^3}\right)\right) - \eta \sqrt{\rho \log \rho}} \sim \sqrt{\frac{2\pi}{\rho}} e^{\frac{\eta^2 \rho \log \rho}{2\rho}} = \sqrt{2\pi} \rho^{\frac{\eta^2 - 1}{2}}$$

Thus for $\eta^2 > 1$, $\mathbf{E} \left[I(\rho + \eta \sqrt{\rho \log \rho}) \right] \to \infty$, and for $\eta^2 < 1$, $\mathbf{E} \left[I(\rho + \eta \sqrt{\rho \log \rho}) \right] \to 0$ as $\rho \to \infty$.

606 References

608

614

615

616

618

621

622

- [1] The internet traffic archives: WorldCup98. Available at http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
 - [2] I. Adan and J. v. d. Wal. Combining make to order and make to stock. OR Spektrum, 20:73-81, 1998.
- [3] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms,
 3(4):49, 2007.
- [4] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function. In SODA '09: Proceedings of the Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms, pages 693–701, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.
 - [5] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage energy and temperature. In FOCS '04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 520–529, Washington, DC, USA, 2004. IEEE Computer Society.
- 617 [6] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature. J. ACM, 54(1):1–39, 2007.
 - [7] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. *Computer*, 40(12):33–37, 2007.
- [8] S. C. Borst, A. Mandelbaum, M. I. Reiman, and M. Centrum. Dimensioning large call centers. *Operations Research*, 52:17–34, 2000.
 - [9] L. Eggert and J. D. Touch. Idletime scheduling with preemption intervals. SIGOPS Oper. Syst. Rev., 39(5):249–262, 2005.
- 623 [10] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch. Energy-efficient dynamic capacity provisioning in server farms. Technical Report CMU-CS-10-108, School of Computer Science, Carnegie Mellon University, 2010.
- [11] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose microprocessors. *IEEE Journal of Solid-State Circuits*, 31(9):1277–1284, 1996.
- 627 [12] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers. *Operations Research*, 29(3):567–588, 1981.
- 629 [13] Intel Corp. Intel Math Kernel Library 10.0 LINPACK. http://www.intel.com/cd/software/products/asmo-na/eng/266857.htm, 2007.
- 631 [14] S. Irani and K. R. Pruhs. Algorithmic problems in power management. SIGACT News, 36(2):63-76, 2005.
- 632 [15] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. ACM Trans. Algorithms, 3(4):41, 2007.
- 633 [16] O. B. Jennings, A. M, W. A. Massey, and W. Whitt. Server staffing to meet time-varying demand. *Management Science*, 42:1383–1394, 1996.
- [17] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark. Coordinated, distributed, formal energy management of
 chip multiprocessors. In *ISLPED '05: Proceedings of the 2005 international symposium on Low power electronics* and design, pages 127–130, New York, NY, USA, 2005. ACM.
- [18] C. W. Kang, S. Abbaspour, and M. Pedram. Buffer sizing for minimum energy-delay product by using an approximating polynomial. In GLSVLSI '03: Proceedings of the 13th ACM Great Lakes symposium on VLSI, pages
 112–115, New York, NY, USA, 2003. ACM.
- [19] J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache: an energy efficient memory structure. *Microarchitecture, IEEE/ACM International Symposium on*, 0:184, 1997.
- [20] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the best response for your erg. ACM Trans. Algorithms,
 4(3):1–17, 2008.
- [21] A. Riska, N. Mi, E. Smirni, and G. Casale. Feasibility regions: exploiting tradeoffs between power and performance
 in disk drives. SIGMETRICS Perform. Eval. Rev., 37(3):43–48, 2009.
- 647 [22] M. R. Stan and K. Skadron. Power-aware computing: Guest editorial. *IEEE Computer*, 36(12):35–38, December 2003.
- [23] U.S. Environmental Protection Agency. EPA Report on server and data center energy efficiency. 2007.
- [24] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor sharing systems. *INFOCOM*,
 2009.
- [25] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. Foundations of Computer Science,
 Annual IEEE Symposium on, 0:374, 1995.