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Abstract
We study delay of jobs that consist of multiple parallel tasks, which is a critical
performance metric in a wide range of applications such as data file retrieval in coded
storage systems and parallel computing. In this problem, each job is completed only
when all of its tasks are completed, so the delay of a job is the maximum of the delays
of its tasks. Despite the wide attention this problem has received, tight analysis is still
largely unknown since analyzing job delay requires characterizing the complicated
correlation among task delays, which is hard to do. We first consider an asymptotic
regime where the number of servers, n, goes to infinity, and the number of tasks in
a job, k(n), is allowed to increase with n. We establish the asymptotic independence
of any k(n) queues under the condition k(n) = o(n1/4). This greatly generalizes the
asymptotic independence type of results in the literature, where asymptotic indepen-
dence is shown only for a fixed constant number of queues. As a consequence of
our independence result, the job delay converges to the maximum of independent
task delays. We next consider the non-asymptotic regime. Here, we prove that inde-
pendence yields a stochastic upper bound on job delay for any n and any k(n) with
k(n) ≤ n. The key component of our proof is a new technique we develop, called
“Poisson oversampling.” Our approach converts the job delay problem into a cor-
responding balls-and-bins problem. However, in contrast with typical balls-and-bins
problems where there is a negative correlation among bins, we prove that our variant
exhibits positive correlation.
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1 Introduction

1.1 The problem

We consider a system with n servers, each with its own queue. Jobs arrive over time
according to a Poisson process, and each job consists of some number of tasks, k,
where k ≤ n. Upon arrival, each job chooses k distinct servers uniformly at random
and sends one task to each server. Each server serves the tasks in its queue in a First-In,
First-Out (FIFO) manner. A job is considered to be completed only when all of its
tasks are completed. Our goal is to compute the distribution of job delay, namely the
time fromwhen a job arrives until the whole job completes. If a job’s tasks experienced
independent delays, then computing the distribution of job delay would be easy: take
the maximum of the independent task delays. Unfortunately, the task delays are not
independent in general.

Our model is a generalization of the classic fork–join model, which is identical
to our model except that it assumes that k = n: every job is forked to all n servers.
In contrast, in our model, the fork is limited to k servers with k ≤ n. So we will
refer to our model as the limited fork–join model. Obtaining tight analytical job delay
characterizations for fork–join systems is known to be notoriously difficult: exact
analysis of fork–join remains an open problem except for the two-server case [1,11].

1.2 Motivation

Delay of jobs, rather than delay of individual tasks, is a more critical performance
metric in systems with parallelism, yet a fundamental understanding of job delay is
still lacking. One example application is data file retrieval in coded storage systems
[21,25,26,39,40]. Here, a job is the retrieval of a data file, which is stored as multiple
data chunks. The data chunks are in a coded form such that any k-sized subset of them
is enough to reconstruct the file. Coded file retrieval can be modeled via the so-called
(n, r , k)model [22,39], where a job can request r data chunks with r ≥ k and the job is
completed as long as k of them are completed. Existing analysis of the (n, r , k) model
is usually not tight except for the light load regime [21,26]. The special case where
r = d and k = 1, called the Redundancy-d model, is also highly non-trivial and was
solved just last year [15]. Job delay in general (n, r , k) models remains wide open.
Within the coded file retrieval setting, our limited fork–join model can be viewed as
the (n, k, k) problem.

Another application is parallel computing systems such as the “map” phase of the
popular MapReduce framework [8], where a job is divided into tasks that can run
in parallel. A few papers have been written to analytically approximate the delay of
MapReduce jobs. See Sect. 2 for more details of related work.

In the above applications, load-balancing policies (see, for example, [25,26,40,49,
52] are usually used for assigning tasks to servers. For scenarios where either low-
overhead is desired or information accessibility is constrained (such as in a distributed
setting), workload agnostic assignment policies [25,40,49] can be preferred. Our lim-
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ited fork–join model assumes a random task assignment policy, which is suitable for
such application scenarios.

1.3 Our approach and what makes this problem hard

The root of the hardness of analyzing job delay in our model is the complicated
correlation among queues, which leads to the correlation among the delays of a job’s
tasks. If the task delays were independent, then the probability distribution of job delay
would have a simple form. In this paper, we are interested in developing conditions
and quantifying in what sense the job delay can be approximated by the job delay
under the independence assumption.

Asymptotic regime We first study a regime where we prove that a job’s tasks
can be viewed as being independent: We focus on the asymptotic regime where the
number of servers, n, goes to infinity. Here, we are specifically interested in developing
conditions under which the delays of a job’s tasks are asymptotically independent, i.e.,
their joint distribution converges to the product distribution of their marginals.

Asymptotic independence of a number of queues in large systems is often called
“chaoticity” and studied under the name “propagation of chaos” [4,16,17,52]. In many
papers [13,14,46,51], asymptotic independence is simply assumed to simplify analy-
sis. In some load-balancing settings, asymptotic independence has been proven (for
example, [4,16,52]). One strong restriction of the existing proofs is that only a constant
number of queues are proven to be asymptotically independent. In contrast, our goal is
to establish asymptotic independence for any k queues where k may grow with n; we
write k as k(n) to explicitly indicate its dependence on n. The asymptotic independence
of any k(n) queues implies the asymptotic independence of the delays of a job’s tasks
since they are sent to k(n) queues. Allowing k(n) to grow with n captures the trends
that data files get larger and that jobs are processing larger and larger data sets [5].

When proving asymptotic independence of a constant number of queues in steady
state, it is typical to start by showing asymptotic independence over a constant time
interval [0, t], where t is long enough for these queues to be close to steady state.
Unfortunately, since k(n) grows with n in our model, to reach steady state, the system
needs a time interval [0, τ (n)], growing with n. This further complicates the analysis
since asymptotic independence then needs to be established over this longer, non-
constant, time interval.

Non-asymptotic regime Next, we study the non-asymptotic regime. We show that
for any n and any k(n) = k with k(n) ≤ n, the distribution of job delay is stochastically
upper bounded by the distribution given by independent task delays, which we call
the independence upper bound. Therefore, independence not only characterizes the
limiting behavior of job delay in the asymptotic regime where n → ∞, but also yields
an upper bound for any n. I.e., the independence upper bound is asymptotically tight.
The independence upper bound is also tighter than all the existing upper bounds in
prior work [25,37].

We prove the independence upper bound using the theory of associated random
variables [9]. Association (also called positive association) is a form of positive corre-
lation, and it has the property that if a set of random variables are associated, then the
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maximum of them is stochastically upper bounded by the maximum of independent
versions of them. To show the independence upper bound, it thus suffices to show that
the delays of a job’s tasks are associated. Intuitively, if the task delays are associated,
they tend to be either large together or small together. But in contrast, if the task delays
were independent, they are more likely to be different from each other, thus leading
to a higher maximum than the associated case.

Such an association result is known for the classic fork–join model with k(n) = n,
but not for the limited fork–join model when k(n) < n. When proving association, a
commonly used idea is to observe the system at each job arrival time and show that the
numbers of tasks sent to different queues are associated [24,35,40]. This corresponds
to a balls-and-bins problem where k(n) balls are thrown into n bins in the same way
that the tasks are sent to the queues. What is needed is that the numbers of balls thrown
into different bins are associated, which is obviously true when k(n) = n since they
are all equal to one. However, when k(n) < n, it is not at all obvious whether the
numbers of balls in any k(n) bins are associated or not. On one hand, the bins seem
to be (positively) associated by virtue of the fact that arrivals occur to multiple bins
simultaneously. On the other hand, the bins seem to be negatively associated since,
given that the total number of balls is fixed, a ball landing in bin 1 makes bin 2 less
likely to also receive a ball. In fact, if we look at a one-time throw of k(n) balls, the
numbers of balls in bins are proved to be negatively associated by a classic result [20].
But this does not mean that the steady-state queues are negatively associated, leaving
the association problem for k(n) < n unsolved in the literature. As pointed out in [25],
it was not known if independence yielded a bound, either lower or upper.

We develop a novel technique that we call “Poisson oversampling,” where we
observe the system not only when jobs arrive but also at the jump times of a Poisson
process that is independent of everything else. This oversampling does not change
the dynamics in the system since it is only a way of observing, but now at each
observation time there could be one or zero job arrivals. So in the corresponding
balls-and-bins problem, there is non-zero probability that there are no balls at all. By
properly choosing a large enough observation rate, this extra randomness surprisingly
makes the numbers of balls thrown in any k(n) bins (positively) associated, and further
implies that the steady-state queues are associated. This Poisson oversampling reveals
that, in steady state, the effect from (positive) association “dominates” the effect from
negative association.With this technique, we are able to prove the independence upper
bound for any k(n) ≤ n for the first time.

1.4 Results

Our goal is to characterize the tail probability of the job delay distribution in steady
state, since it is commonly used to quantify the quality of service. We study a system
with n servers in which each job consists of k(n) tasks.

Our first result is that under the condition k(n) = o(n1/4), the queues at any k(n)

servers are asymptotically independent in steady state as n → ∞, and thus the delays
of a job’s tasks are also asymptotically independent. It then follows that the job delay
converges to the job delay given by the independence assumption. This result is estab-
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lished in Theorem 1 for generally distributed service times, and some explicit forms
are given in Corollary 1 for exponentially distributed service times. This is the first
asymptotically tight characterization of job delay in the limited fork–join model.

We remark that it is not clear if k(n) = o(n1/4) is the highest possible threshold such
that any k(n) queues are asymptotically independent. However, since our emphasis in
this paper is on the generalization from the asymptotic independence of a constant
number of queues to a growing number of queues, we do not attempt to find the
highest threshold of k(n) for asymptotic independence to hold. To complement the
asymptotic independence result, we show that if k(n) = Θ(n), any k(n) queues are not
asymptotically independent (Theorem 3 in Appendix C). For any k(n) between o(n1/4)

andΘ(n), it remains an open problem whether asymptotic independence holds or not.
More discussion can be found in Sects. 5.4 and 7.

Our next result is that for any n and any k(n) with k(n) ≤ n, the job delay is
stochastically upper bounded by the job delay given by the independence assumption.
This result is established in Theorem 2 for generally distributed service times. We
refer to this upper bound as the independence upper bound. It is a new upper bound
on job delay that is tighter than existing upper bounds. The technique we develop for
the proof, named “Poisson oversampling,” may be of independent interest for other
related problems.

1.5 Organization of the paper

The rest of this paper is organized as follows: Section 2 discusses the related work.We
introduce our model and notation in Sect. 3. We summarize our main results in Sect. 4.
In Sect. 5, we give proofs of the asymptotic independence results and the convergence
of job delay. In Sect. 6, we prove the independence upper bound. In Sect. 7, we provide
simulation evaluation of our analysis. We conclude our paper in Sect. 8.

2 Related work

In this section, we discuss prior work on the limited fork–join model and some other
related models. Prior work on the limited fork–join model [25,37] has focused on
the non-asymptotic regime and derived bounds on job delay. However, the bounds
in [25,37] do not have tightness guarantees. In particular, the upper bounds there are
generally looser than the independence upper bound. Furthermore, none of the prior
work has studied the asymptotic regime of the limited fork–join model. Belowwe give
detailed discussions.

Limited fork–join model Rizk et al. [37] give upper bounds on the tail probabili-
ties of job delay in various settings. For Poisson arrivals and exponentially distributed
service times, their upper bound is looser than the independence upper bound. For
general service time distributions, their upper bound needs to be computed by numer-
ically solving a nonlinear equation. In contrast, we show that the independence upper
bound holds and we also further establish asymptotic tightness of the independence
upper bound.
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Lee et al. [25] give upper and lower bounds on the mean job delay, not on the tail
probabilities, assuming that service times follow an exponential distribution. Their
upper bound is in general looser than the expectation of the independence upper
bound, although the difference disappears as n → ∞ when k(n) = o(n). Compared
to this, we prove that the independence upper bound is indeed an upper bound for
any n and k(n) with k(n) ≤ n. Besides, we prove this for very general service time
distributions and in a stochastic dominance sense, which is stronger than the expecta-
tion sense. Also, there is a gap between their upper and lower bounds and there is no
tightness analysis. Again, we establish asymptotic tightness of the independence upper
bound.

There has also been work on variants of the limited fork–join model where each job
consists of a random number of tasks. For example, Shah et al. [40] simply assume
that the number of tasks in each job has a distribution such that the numbers of tasks
sent to different queues are associated, thus obtaining the independence upper bound
for their model. They further investigate different policies for assigning the tasks of a
newly arrived job to servers, and show that the job delay under the two studied policies
is shorter (in a proper sense) than the job delay under the random assignment in the
limited fork–join model. Nelson et al. [36] consider a model where tasks wait in a
central queue until some server becomes available. They show that the mean job delay
is given by a set of recurrence equations, but no analytic form is derived. Kumar and
Shorey [24] obtain upper and lower bounds on the mean delay when tasks are assigned
to servers independently. Still, there are gaps between the upper and lower bounds.

Classic fork–join model The classic fork–join model, where the number of tasks
in a job is equal to the number of servers, n, has been widely studied in the literature.
Similar to the limited fork–joinmodel, tight characterizations of job delay are generally
unknown except when n = 2. See [43] for a detailed survey.

For a general n, it has been proven that the mean delay of a job scales asΘ(ln(n)) as
n → ∞ under proper assumptions [2,3,35]. But a tight characterization of the constant
in Θ(ln(n)) is not known. Besides providing bounds for the limited fork–join model,
Rizk et al. [37] also derive an upper bound on the tail distribution of the job delay
for the classic fork–join model. Again, the tightness of the bound is not addressed.
There has also been work on efficient computation of performance bounds (see, for
example, Lui et al. [30]), closed fork–join systems (see, for example, Varki [44]),
network settings (see, for example, Xia et al. [48]), special traffic regimes (see, for
example, Ko and Serfozo [23], Lu and Pang [29]), etc.

MapReduceModeling MapReduce systems is challenging since the systems have
many complex characteristics such as parallel servers, data locality, communication
networks, etc. Most theoretical work onMapReduce does not provide analytic bounds
on the job delay. The papers by Moseley et al. [34], Lin et al. [28], Zheng et al. [53],
and Sun et al. [41] design scheduling algorithms such that the job delay is guaranteed
to be within a constant factor of the optimal, but do not provide analytic bounds. Tan et
al. [42] quantify the distribution tail of job delay when the map phase is abstracted as
a single-server queue. This abstraction pools all the computing resource into a super
server, resulting in a system with much higher efficiency, especially when the number
of tasks in a job is large. Vianna et al. [45] and Farhat et al. [10] derive approximations
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on the job delay by assuming that the tasks of a job experience independent delays,
but no proof is provided to justify the validity of the approximations.

Asymptotic task delay One component of the job delay in MapReduce is the task
delay. Wang et al. [47] and Xie and Lu [50] bound the mean task delay, taking into
consideration data locality; however, they do not deal with the job delay. Bounding
job delay would require characterizations of the correlation among queues. Ying et al.
[52] study the task delay in a model where a load-balancing policy called batch-filling
is used. They establish asymptotic independence for a constant number of queues,
which is insufficient for models with jobs with a growing number of tasks.

3 Model and notation

Basic notation The symbols R+ and Z+ denote the set of nonnegative real numbers
and nonnegative integers, respectively. We denote random variables by capital letters
and vectors by bold letters.When aMarkov chain (X(t), t ≥ 0) has a unique stationary
distribution, we denote by X(∞) a random elementwhose distribution is the stationary
distribution.

We denote by ⇒ convergence in distribution (weak convergence) for random ele-
ments. We denote by dT V (π1, π2) the total variation distance between two probability
measures π1 and π2 on a sigma-algebra σ of some sample space, i.e.,

dT V (π1, π2) = sup
S∈σ

|π1(S) − π2(S)|. (1)

Note that, equivalently,

dT V (π1, π2) = inf{P(X1 �= X2) : X1 and X2 are random variables

s.t. X1 ∼ π1, X2 ∼ π2}. (2)

Limited fork–join model Our notation is summarized in Table 1. Recall that we
consider a system with n servers, each with its own FIFO queue. We append the
superscript (n) to related quantities to indicate that they are for the n-server system.
We say that a quantity is a constant if it does not scale with n.

Jobs and tasks Jobs arrive over time according to a Poisson process with rate Λ(n),
and each job consists of k(n) tasks with k(n) ≤ n. Upon arrival, each job picks k(n)

distinct servers uniformly at random from the n servers and sends one task to each
server.We assume thatΛ(n) = nλ/k(n) for a constant λ, where the constantλ is the task
arrival rate to each individual queue. Since different jobs choose servers independently,
the task arrival process to each queue is also a Poisson process, and the rate is λ. The
service times of tasks are i.i.d. following a cdf G with expectation 1/μ and a finite
second moment. We think of the service time of each task as being generated upon
arrival: each task brings a required service time with it, but the length of the required
service time is revealed to the system only when the task is completed. The load of
each queue, ρ = λ/μ, is then a constant and we assume that ρ < 1.
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Table 1 Notation table
n Number of servers

Superscript (n) Quantities in the n-server system

k(n) Number of tasks in a job

Λ(n) Job arrival rate

λ Task arrival rate to each queue

1/μ Mean of service time

ρ Load at each queue

W (n)
i (t) Workload of server i’s queue at time t

T (n) Job delay

T̂ (n) Job delay given by independent task delays

Hm mth harmonic number: Hm = ∑m
j=1

1
j

Queueing dynamics It is not hard to see that each queue is an M/G/1 queue. But
the queues are not independent in general since k(n) tasks arrive to the system at the
same time. Let W (n)

i (t) denote the workload of server i’s queue at time t , i.e., the total
remaining service timeof all the tasks in the queue, including the partially served task in
service. So theworkload of a queue is thewaiting time of an incoming task to the queue
before the server starts serving it. Let W (n)(t) = (

W (n)
1 (t), W (n)

2 (t), . . . , W (n)
n (t)

)
.

Then the workload process, (W (n)(t), t ≥ 0), is Markovian and ergodic. The ergod-
icity can be proven using a rather standard Foster–Lyapunov criterion [33], so we
omit it here. Therefore, the workload process has a unique stationary distribution and
W (n)(t) ⇒ W (n)(∞) as t → ∞.

Job delay We are interested in the distribution of job delay in steady state, i.e., the
delay a job would experience if it arrives to the system and finds the system in steady
state. Let a random variable T (n) represent this steady-state job delay. Specifically,
the distribution of T (n) is determined by the workloadW (n)(∞) in the following way:
When a job comes into the system, its tasks are sent to k(n) queues and experience the
delays in these queues. Since the queueing processes are symmetric over the indices
of queues, without loss of generality we can assume that the tasks are sent to the first
k(n) queues for the purpose of computing the distribution of T (n). The delay of a task
is the sum of its waiting time and service time. So the task delay in queue i , denoted
by T (n)

i , can be written as T (n)
i = W (n)

i (∞) + Xi , with Xi being the service time.
Recall that the service times are i.i.d.∼ G and independent of everything else. Since
the job is completed only when all its tasks are completed,

T (n) = max
{

T (n)
1 , T (n)

2 , . . . , T (n)

k(n)

}
. (3)

We will study the relationship between T (n) and T̂ (n), with T̂ (n) defined as the job
delay given by independent task delays. Specifically, T̂ (n) can be expressed as
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T̂ (n) = max
{

T̂ (n)
1 , T̂ (n)

2 , . . . , T̂ (n)

k(n)

}
, (4)

where T̂ (n)
1 , T̂ (n)

2 , . . . , T̂ (n)

k(n) are i.i.d. and each T̂ (n)
i has the same distribution as T (n)

i .

Again, due to symmetry, T (n)
1 , T (n)

2 , . . . , T (n)
n have the same distribution. Let F denote

the cdf of T (n)
i , whose form is known from the queueing theory literature. Then, we

have the following explicit form for T̂ (n):

P

(
T̂ (n) ≤ τ

)
= (F(τ ))k(n)

, τ ≥ 0. (5)

4 Main results

In Theorem 1, we establish asymptotic independence of any k(n) queues under the
condition k(n) = o(n1/4) as the number of servers n → ∞. The asymptotic inde-
pendence is in the sense that the total variation distance between the distribution of
the workloads of these queues and the distribution of k(n) independent queues goes
to 0 as n → ∞. Consequently, the distance between the distribution of the job delay,
T (n), and the distribution of the job delay given by independent task delays, T̂ (n), goes
to 0. This result indicates that assuming independence among the delays of a job’s
tasks gives a good approximation of job delay when the system is large. Again, due
to symmetry, we can focus on the first k(n) queues without loss of generality.

Theorem 1 Consider an n-server system in the limited fork–join model with k(n) =
o(n1/4). Let π(n,k(n)) denote the joint distribution of the steady-state workloads
W (n)

1 (∞), W (n)
2 (∞), . . . , W (n)

k(n) (∞), and π̂ (k(n)) denote the product distribution of

k(n) i.i.d. random variables, each of which follows a distribution that is the same as
the distribution of W (n)

1 (∞). Then,

lim
n→∞ dT V

(
π(n,k(n)), π̂ (k(n))

)
= 0. (6)

Consequently, the steady-state job delay, T (n), and the job delay given by independent
task delays as defined in (4), T̂ (n), satisfy

lim
n→∞ sup

τ≥0

∣
∣
∣P

(
T (n) ≤ τ

) − P
(
T̂ (n) ≤ τ

)∣∣
∣ = 0. (7)

For the special case where the service times are exponentially distributed, the job
delay asymptotics have explicit forms presented in Corollary 1 below. In this setting,
the task delay at each queue is exponentially distributed with rate μ − λ since each
queue is an M/M/1 queue. Then, intuitively, job delay converges to the maximum
of k(n) i.i.d. exponential random variables with rate μ − λ. This maximum has an
expectation of Hk(n)/(μ − λ), where Hk(n) is the k(n)-th harmonic number, and thus
gives rise to the forms in (9) and (10) in Corollary 1 below.
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Corollary 1 Consider an n-server system in the limited fork–join model with k(n) =
o(n1/4), job arrival rate Λ(n) = nλ/k(n), and exponentially distributed service times
with mean 1/μ. Then, the steady-state job delay, T (n), converges as:

lim
n→∞ sup

τ≥0

∣
∣
∣
∣P

(
T (n) ≤ τ

) −
(
1 − e−(μ−λ)τ

)k(n)
∣
∣
∣
∣ = 0. (8)

Specifically, if k(n) → ∞ as n → ∞, then

T (n)

Hk(n)/(μ − λ)
⇒ 1, as n → ∞, (9)

where Hk(n) is the k(n)-th harmonic number, and further,

lim
n→∞

E
[
T (n)

]

Hk(n)/(μ − λ)
= 1. (10)

The proof of Theorem 1 is presented in Sect. 5. We also discuss how we get the
value o(n1/4) for k(n) and whether asymptotic independence holds for higher values
of k(n) in Sect. 5.4. The proof of Corollary 1 is given in Appendix B.

The results above characterize job delay in the asymptotic regime where n goes to
infinity. In Theorem 2 below, we study the non-asymptotic regime for any n and any
k(n) with k(n) = k ≤ n, and we establish the independence upper bound on job delay.
The proof of Theorem 2 is presented in Sect. 6.

Theorem 2 Consider an n-server system in the limited fork–join model with k(n) =
k ≤ n. Then, the steady-state job delay, T (n), is stochastically upper bounded by the
job delay given by independent task delays as defined in (4), T̂ (n), i.e.,

T (n) ≤st T̂ (n), (11)

where “≤st ” denotes stochastic dominance. Specifically, for any τ ≥ 0,

P
(
T (n) > τ

) ≤ P
(
T̂ (n) > τ

) = 1 − (F(τ ))k(n)

. (12)

5 Proofs of asymptotic independence and job delay asymptotics

In this section, we prove the asymptotic independence and job delay asymptotics in
Theorem 1.

Proof sketch To prove Theorem 1, we couple each n-server system in the limited
fork–joinmodel, which we refer to as systemS(n), with a system S̃(n) in which the first
k(n) queues are independent. Wewill specify S̃(n) below. Let W̃ (n)

i (t) denote the work-

load of server i at time t in system S̃(n). Let W̃
(n,k(n))

(t) =
(

W̃ (n)
1 (t), . . . , W̃ (n)

k(n) (t)
)
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Fig. 1 Distances in the proof of
Theorem 1 π̂(k(n)) π(n,k(n)) π

(n,k(n))
τ(n)

π̃(n,k(n)) π̃
(n,k(n))
τ(n)

Theorem 1

Lemma 3

Lemma 2

Lemma 1

Lemma 2

and W (n,k(n))(t) =
(

W (n)
1 (t), . . . , W (n)

k(n) (t)
)
. Then, the proof will proceed in the

following three steps, where we break down the distance dT V

(
π(n,k(n)), π̂ (k(n))

)
in

Theorem 1 into three parts, illustrated in Fig. 1.

(i) We carefully choose a finite time τ (n) and consider the systems S(n) and S̃(n) at
time τ (n). We show in Lemma 1 that the distribution ofW (n,k(n))(τ (n)), denoted

by π
(n,k(n))

τ (n) , approaches the distribution of W̃
(n,k(n))

(τ (n)), denoted by π̃
(n,k(n))

τ (n) ,
as n → ∞.

(ii) We show in Lemma 2 that in both the systems S(n) and S̃(n), the finite time dis-

tributions π
(n,k(n))

τ (n) and π̃
(n,k(n))

τ (n) are close to the stationary distributions, π(n,k(n))

and π̃ (n,k(n)), respectively.
(iii) We show in Lemma 3 that the stationary distribution π̃ (n,k(n)) in the system S̃(n)

is close to the product distribution π̂ (k(n)) in Theorem 1. Note that both π̃ (n,k(n))

and π̂ (k(n)) are for k(n) independent workloads, but we will see that their loads
are different.

Coupling Now we specify the coupling between S(n) and S̃(n). Both systems have
n servers and the queues are all empty at time 0, i.e., W (n)

i (0) = W̃ (n)
i (0) = 0 for all

i = 1, . . . , n. When there is a job arrival to the system S(n), we let a job also arrive to
the system S̃(n). Recall that the job arrival inS(n) selects k(n) distinct queues uniformly
at random and sends one task to each queue. If it selects at most one queue from the
set

{
1, 2, . . . , k(n)

}
, then we let the job arrival in S̃(n) send its tasks to queues with

the same indices as those in S(n). Otherwise, suppose it selects queues i1, i2, . . . , im

from
{
1, 2, . . . , k(n)

}
with 2 ≤ m ≤ k(n). Then, we let the job arrival in S̃(n) send one

task to a queue chosen uniformly at random from i1, i2, . . . , im , kill the other m − 1
tasks, and send the remaining k(n) − m tasks to queues with the same indices as those
in S(n). For each pair of tasks in S(n) and S̃(n) that are sent to queues with the same
indices, we let them have the same service time.

It can be verified that in the system S̃(n), the queues 1, 2, . . . , k(n) are independent
M/G/1 queues with arrival rate λ̃(n) and mean service time 1/μ, where

λ̃(n) = Λ(n)

k(n)

(

1 −
(n−k(n)

k(n)

)

( n
k(n)

)

)

. (13)

Let ρ̃(n) = λ̃(n)

μ
denote the load of each queue. Note that λ̃(n) < λ but λ̃(n) → λ as

n → ∞. Specifically,

λ − λ̃(n) = O

(
(k(n))2

n

)

.
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5.1 Lemmas needed for Theorem 1

We first show in Lemma 1 that, over a finite time interval with proper length, any k(n)

queues in the n-server system S(n) are asymptotically independent as the number of
servers n → ∞.

Lemma 1 For any time τ (n) with τ (n) = O
(

n1/2

k(n)

)
,

dT V

(
π

(n,k(n))

τ (n) , π̃
(n,k(n))

τ (n)

)
= O

((
k(n)

n1/4

)2)

, (14)

which goes to 0 as n → ∞.

Lemma2 states that the time interval τ (n) in Lemma1 is long enough for the systems
S(n) and S̃(n) to be close to steady state.

Lemma 2 For any time τ (n) with τ (n) = Ω
(

n1/2

k(n)

)
,

dT V

(
π

(n,k(n))

τ (n) , π(n,k(n))
)

= O

((
k(n)

n1/4

)2)

, (15)

and

dT V

(
π̃

(n,k(n))

τ (n) , π̃ (n,k(n))
)

= O

((
k(n)

n1/4

)2)

. (16)

The distribution π̃ (n,k(n)) is the joint distribution of the steady-state workloads of
k(n) independent queues, each with arrival rate λ̃(n) and mean service time 1/μ. Since
λ̃(n) → λ asn → ∞, π̃ (n,k(n)) approaches the product distribution π̂ (k(n)) inTheorem1,
which is for k(n) independent queues each with arrival rate λ and mean service time
1/μ. This is formally stated in Lemma 3.

Lemma 3

dT V

(
π̃ (n,k(n)), π̂ (k(n))

)
= O

((
k(n)

n1/4

)2)

. (17)

The proofs of Lemmas 1 and 2 are given in Sects. 5.3.1 and 5.3.2, respectively. The
proof of Lemma 3 is given in Appendix A since it has a similar flavor to the proofs of
Lemmas 1 and 2.

5.2 Proof of Theorem 1

Proof The proof of the asymptotic independence in (6) in Theorem1 is straightforward

given the lemmas. Pick any τ (n) with τ (n) = Θ
(

n1/2

k(n)

)
. Then,
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dT V

(
π(n,k(n)), π̂ (k(n))

)

≤ dT V

(
π(n,k(n)), π

(n,k(n))

τ (n)

)
+ dT V

(
π

(n,k(n))

τ (n) , π̃
(n,k(n))

τ (n)

)

+ dT V

(
π̃

(n,k(n))

τ (n) , π̃ (n,k(n))
)

+ dT V

(
π̃ (n,k(n)), π̂ (k(n))

)

= O

((
k(n)

n1/4

)2)

.

Therefore, under the condition that k(n) = o(n1/4),

lim
n→∞ dT V

(
π(n,k(n)), π̂ (k(n))

)
= 0.

Next we prove the job delay asymptotics in (7) in Theorem 1. Recall that π(n,k(n))

and π̂ (k(n)) are distributions of workloads. Below we compute the distributions of T (n)

and T̂ (n) using π(n,k(n)) and π̂ (k(n)), which allows us to bound the distance between the

distributions of T (n) and T̂ (n) using dT V

(
π(n,k(n)), π̂ (k(n))

)
. By the representations of

T (n) and T̂ (n) in (3) and (4), we have that, for any τ ≥ 0,

∣
∣P

(
T (n) ≤ τ

)
− P

(
T̂ (n) ≤ τ

)∣
∣

=
∣
∣
∣
∣

∫

w∈Rk(n)

+

⎛

⎝
k(n)
∏

i=1

P(wi + Xi ≤ τ)

⎞

⎠ dπ(n,k(n))(w)

−
∫

w∈Rk(n)

+

⎛

⎝
k(n)
∏

i=1

P(wi + Xi ≤ τ)

⎞

⎠ dπ̂ (k(n))(w)

∣
∣
∣
∣

≤
∫

w∈Rk(n)

+

⎛

⎝
k(n)
∏

i=1

P(wi + Xi ≤ τ)

⎞

⎠ · ∣
∣dπ(n,k(n))(w) − dπ̂ (k(n))(w)

∣
∣

≤
∫

w∈Rk(n)

+

∣
∣dπ(n,k(n))(w) − dπ̂ (k(n))(w)

∣
∣

= 2dT V

(
π(n,k(n)), π̂ (k(n))

)
.

Therefore,

lim
n→∞ sup

τ≥0

∣
∣
∣P(T (n) ≤ τ) − P

(
T̂ (n) ≤ τ

)∣∣
∣

≤ lim
n→∞ 2dT V

(
π(n,k(n)), π̂ (k(n))

)

= 0.


�
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5.3 Proof of Lemmas

5.3.1 Proof of Lemma 1

Proof In order to bound dT V

(
π

(n,k(n))

τ (n) , π̃
(n,k(n))

τ (n)

)
, we first write

dT V

(
π

(n,k(n))

τ (n) , π̃
(n,k(n))

τ (n)

)

≤ P

(
W (n,k(n))(τ (n)) �= W̃

(n,k(n))
(τ (n))

)

≤ P

(
W (n,k(n))(t) �= W̃

(n,k(n))
(t) for some t ∈ [0, τ (n)]

)
.

By the coupling between S(n) and S̃(n), W (n,k(n))(t) and W̃
(n,k(n))

(t) are different for
some time t ∈ [0, τ (n)] only when at least one job arrival during [0, τ (n)] selects more
than one queue from

{
1, . . . , k(n)

}
in the system S(n). We denote this event by E .

Then,

dT V

(
π

(n,k(n))

τ (n) , π̃
(n,k(n))

τ (n)

)
≤ P(E).

So it suffices to prove that

P(E) = O

((
k(n)

n1/4

)2)

for τ (n) with τ (n) = O
(

n1/2

k(n)

)
. The remainder of this proof is dedicated to bounding

P(E).
Let p(n) denote the probability of a job arrival selecting at most one queue from

queues 1, 2, . . . , k(n) in the system S(n). Then,

p(n) =
(n−k(n)

k(n)

)

( n
k(n)

) + k(n)
(n−k(n)

k(n)−1

)

( n
k(n)

) .

Let A be the number of job arrivals during [0, τ (n)]. Then,

P(E) =
∞∑

j=0

P(A = j)P(E | A = j)

=
∞∑

j=0

(Λ(n)τ (n)) j e−Λ(n)τ (n)

j !
(
1 − (

p(n)
) j

)

= 1 − e−Λ(n)τ (n)(1−p(n)), (18)
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where (18) follows from the definition of the Poisson generating function.We calculate
p(n) as follows:

p(n) =
(n−k(n)

k(n)

)

( n
k(n)

) + k(n)
(n−k(n)

k(n)−1

)

( n
k(n)

)

= (n − k(n))!
(n − 2k(n))!

(n − k(n))!
n!

(

1 + (k(n))2

n − 2k(n) + 1

)

=
(

1 − k(n)

n

)(

1 − k(n)

n − 1

)

. . .

(

1 − k(n)

n − k(n) + 1

)

·
(

1 + (k(n))2

n − 2k(n) + 1

)

≥
(

1 − k(n)

n − k(n) + 1

)k(n)(

1 + (k(n))2

n − k(n) + 1

)

.

Since

(

1 − k(n)

n − k(n) + 1

)k(n)

= e
k(n) ln

(
1− k(n)

n−k(n)+1

)

= e
− (k(n))2

n−k(n)+1
+O

(
(k(n))3

(n−k(n)+1)2

)

= 1 − (k(n))2

n − k(n) + 1
+ O

(
(k(n))4

(n − k(n) + 1)2

)

,

we have

1 − p(n) ≤ 1 −
(

1 − k(n)

n − k(n) + 1

)k(n)(

1 + (k(n))2

n − k(n) + 1

)

= O

(
(k(n))4

(n − k(n) + 1)2

)

.

Recall that

Λ(n)k(n) = nλ, τ (n) = O

(
n1/2

k(n)

)

.

Thus,

Λ(n)τ (n)(1 − p(n)) = O

((
k(n)

n1/4

)2)

.
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Consequently, inserting this to (18) yields

P(E) = O

((
k(n)

n1/4

)2)

,

which completes the proof of Lemma 1. 
�

5.3.2 Proof of Lemma 2

Proof We first prove (15). For the system S(n), we consider the following coupling
between two copies of the workload process: In one copy, the system starts from empty
queues, i.e., this is the workload process (W (n)(t), t ≥ 0) we have introduced. The

other copy,whichwe denote by (W
(n)

(t), t ≥ 0), starts from its stationary distribution,

i.e., the distribution of W
(n)

(0) is π(n). Then, the distribution of W
(n)

(t) is π(n) for
any t . We let these two copies have the same arrival processes, and each arriving task
has the same service time under both queueing processes.

By this coupling, W (n)
i (t) ≤ W

(n)

i (t) for any time t and any i . For each i =
1, 2, . . . , k(n), let τ (n)

i be the earliest time that the workload W
(n)

i is 0, i.e.,

τ
(n)
i = min

{
t : W

(n)

i (u) = 0 for some u ∈ [0, t]
}
.

Let
τ

(n)
0 = max

{
τ

(n)
1 , . . . , τ

(n)

k(n)

}
.

Then, W (n)
i (t) = W

(n)

i (t) for any t ≥ τ
(n)
0 and any i = 1, 2, . . . , k(n).

To show (15) in Lemma 2, which we restate here for reference,

dT V

(
π

(n,k(n))

τ (n) , π(n,k(n))
)

= O

((
k(n)

n1/4

)2)

, (15) (Restated)

it suffices to prove that

P(τ
(n)
0 > τ(n)) = O

((
k(n)

n1/4

)2)

. (19)

To see that this is sufficient, we first note that

dT V

(
π

(n,k(n))

τ (n) , π(n,k(n))
)

≤ P

(
W (n,k(n))(τ (n)) �= W

(n,k(n))
(τ (n))

)
. (20)
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By the definition of τ
(n)
0 , W (n,k(n))(τ (n)) �= W

(n,k(n))
(τ (n)) if and only if τ

(n)
0 > τ(n).

So (20) further implies

dT V

(
π

(n,k(n))

τ (n) , π(n,k(n))
)

≤ P(τ
(n)
0 > τ(n)), (21)

and thus (19) implies (15).
Now we prove (19). Note that the distribution of τ

(n)
i does not depend on n since

each individual (W
(n)

i (t), t ≥ 0) evolves as an M/G/1 queue with arrival rate λ and

service time distribution G, and τ
(n)
i is a busy period started by the amount of work

in steady state. Thus, by standard results on busy periods (see, for example, [18]),

E[τ (n)
i ] = λg2

2(1 − ρ)2
, (22)

where g2 is the second moment of G, which is a constant. By Markov’s inequality,

P

(
τ

(n)
i > τ(n)

)
≤ E[τ (n)

i ]
τ (n)

. (23)

Since τ
(n)
0 = max{τ (n)

1 , τ
(n)
2 , . . . , τ

(n)

k(n)}, by the union bound we have

P

(
τ

(n)
0 > τ(n)

)
≤

k(n)
∑

i=1

P

(
τ

(n)
i > τ(n)

)

≤ k(n)

τ (n)

λg2
2(1 − ρ)2

= O

((
k(n)

n1/4

)2)

.

This is (19), and thus it completes the proof of (15).
The proof of (16) in Lemma 2 is very much similar to the proof of (15). We obtain

(16) by noting that each (W̃ (n)
i (t), t ≥ 0) with i = 1, 2, . . . , k(n) is an M/G/1 queue

with arrival rate λ̃(n) < λ and following arguments similar to those in the proof of
(15). 
�

5.4 Explaining o(n1/4) in Theorem 1 and discussing tightness

In this section, we first explain in a bit more detail how we get the value o(n1/4) for
k(n) in Theorem 1. We then discuss possible ways for future work to strengthen the
results and show asymptotic independence for higher k(n).

Recall that in our proof of Theorem 1, we choose a finite time instance τ (n) and

decompose the distance dT V

(
π(n,k(n)), π̂ (k(n))

)
in Theorem 1 into the four distances in
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Lemmas 1–3 accordingly. To understand the result, it helps to return to these lemmas.

Instead of directly choosing τ (n) as O
(

n1/2

k(n)

)
, now we keep τ (n) as a variable.

– The distance in (14) of Lemma 1 becomes

dT V

(
π

(n,k(n))

τ (n) , π̃
(n,k(n))

τ (n)

)
= τ (n)O

(
(k(n))3

n

)

. (24)

This is the distance between the limited fork–join system, S(n), and the system
whose first k(n) queues are independent, S̃(n), at time τ (n). Intuitively, the longer
τ (n) is, the more jobs are expected to arrive during [0, τ (n)], and thus the more
likely it is that the first k(n) queues in S(n) deviate from the independent queues
in S̃(n). Careful calculation yields that the distance between S(n) and S̃(n) at time
τ (n) increases linearly with τ (n) as shown in (24).

– The distances in (15) and (16) in Lemma 2 become

dT V

(
π

(n,k(n))

τ (n) , π(n,k(n))
)

= 1

τ (n)
O(k(n)), (25)

and

dT V

(
π̃

(n,k(n))

τ (n) , π̃ (n,k(n))
)

= 1

τ (n)
O(k(n)). (26)

These are the distances between the system state at time τ (n) and the steady state
for the systemsS(n) and S̃(n), respectively. Intuitively, a long τ (n) brings the system
close to steady state. So, as shown in (25) and (26), these distances decrease with
τ (n).

– The distance in (17) of Lemma 3 becomes

dT V

(
π̃ (n,k(n)), π̂ (k(n))

)
= τ (n)O

(
(k(n))3

n

)

+ 1

τ (n)
O(k(n)). (27)

This distance has this sum form since it is bounded in a similar way to the distances
in Lemmas 1 and 2.

To make the sum of the distances in (24)–(27) as small as possible, we should
choose τ (n) such that these distances are equal, which leads to the choice

τ (n) = Θ

(
n1/2

k(n)

)

and a total distance of

O

⎛

⎝

(
k(n)

n1/4

)2
⎞

⎠ .

Therefore, for this distance to converge to zero, it is sufficient that k(n) = o(n1/4).
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We remark that under certain conditions on the task service time distribution, we
can further show asymptotic independence for higher values of k(n). For example,
the bounds in Lemma 2 can be improved under certain conditions. In the proof of
Lemma 2, we use Markov’s inequality on τ

(n)
i to bound its tail probability in (23),

where τ
(n)
i is the initial busy period started by the amount of work in steady state for

an M/G/1 queue. The bound can be improved by using Markov’s inequality on (τ
(n)
i )2

as follows:
P(τ

(n)
i > τ(n)) = P

(
(τ

(n)
i )2 > (τ (n))2

)

≤
E

[
(τ

(n)
i )2

]

(τ (n))2
.

(28)

Note thatE
[
(τ

(n)
i )2

]
is a constant under the condition that the service time distribution

has a finite third moment. Then,

P(τ
(n)
i > τ(n)) = O

(
1

(τ (n))2

)

. (29)

Applying this bound leads to the result that any k(n) queues are asymptotically inde-
pendent if k(n) = o(n1/3.5). For the exponential service time distribution, the bound
on the initial busy period can be further improved, and then asymptotic independence

of any k(n) queues holds if k(n) = o
(

n1/3

log2 n

)
.

While we have shown that k(n) can be increased above o(n1/4) under certain condi-
tions (for example, an exponential service time distribution), it is not clear if it might be
possible to increase k(n) without imposing such conditions. Note that decomposing the

distance dT V

(
π(n,k(n)), π̂ (k(n))

)
in Theorem 1 into the four distances in Lemmas 1–3

is just one way to upper bound dT V

(
π(n,k(n)), π̂ (k(n))

)
. We do not know if the derived

upper bound on dT V has a matching lower bound or not. As an interesting comple-
ment to the asymptotic independence result, we also show that when k(n) = Θ(n) and
the service times are exponentially distributed, any number of queues are not asymp-
totically independent. The formal statement and its proof are given in Theorem 3 in
Appendix C.

It thus remains an open problem whether there exists a critical threshold for k(n),
where smaller k(n) yields asymptotic independence and larger k(n) does not. We leave
the study of this problem as future work.

6 Non-asymptotic regime: proof of independence upper bound

Theorem 2 (Restated) Consider an n-server system in the limited fork–join model
with k(n) ≤ n. Then, the steady-state job delay, T (n), is stochastically upper bounded
by the job delay given by independent task delays as defined in (4), T̂ (n), i.e.,

T (n) ≤st T̂ (n), (11) (Restated)
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where “≤st ” denotes stochastic dominance. Specifically, for any τ ≥ 0,

P
(
T (n) > τ

) ≤ P
(
T̂ (n) > τ

) = 1 − (F(τ ))k(n)

. (12) (Restated)

The main tool we will use is the theory of associated (also called positively associ-
ated) random variables. For convenience of reference, we give the formal definition of
association and some properties that we will use in Appendix D. We refer interested
readers to [9] for further details. Intuitively, association is a form of positive corre-
lation among random variables. If a set of random variables are associated, then the
maximum of them is stochastically upper bounded by the maximum of independent
versions of them. Since the delay of a job is the maximum of its task delays, to show
Theorem 2, it thus suffices to show association of the task delays. This further boils
down to showing association among the workloads of any k(n) queues in steady state
since each task delay is the workload of the queue that the task is sent to plus the
service time of the task.

Such an association result has been proven for the classic fork–joinmodel byNelson
and Tantawi [35] where k(n) = n, but the approach of the proof breaks down once we
have k(n) < n. The proof idea there is to observe the system at each job arrival time
and show that the numbers of tasks sent to different queues are associated. This proof
idea is widely used in the literature to establish association (see, for example, [24,40]),
but it does not work in the limited fork–join model when k(n) < n. We can think of the
process of assigning a job’s tasks to queues as a balls-and-bins problem, where the k(n)

tasks correspond to k(n) balls, the queues are the bins, and the number of balls thrown
in each bin is the number of tasks sent to each queue. When k(n) = n, it is obvious that
the numbers of balls in the bins are associated since they are all exactly equal to one.
But when k(n) < n, the numbers of balls in the bins are actually negatively associated
(as opposed to associated) by a classic result [20]! Therefore, we cannot establish
association for workloads of different queues at job arrival time instances. However,
one should not be discouraged since our goal is to show association in steady state,
which will lead to an upper bound on steady-state job delay.

In our proof, we develop a novel technique that we call “Poisson oversampling,”
where we observe the system not only when jobs arrive but also at the jump times
of a Poisson process that is independent of everything else. In the existing approach
where the system is observed only at job arrival times, there is always one job arrival at
each observation time. But with oversampling, there could be one or zero job arrivals
at each observation time. Recall that jobs arrive with rate Λ(n). Let the additional
Poisson process have rate β(n). Then in the corresponding balls-and-bins problem,
with probabilityΛ(n)/(Λ(n)+β(n)), k(n) balls are thrown into k(n) distinct bins chosen
uniformly at random, and with probability β(n)/(Λ(n) +β(n)) there are no balls at all.
We will see in the proof that, surprisingly, now the numbers of balls thrown into
any k(n) bins become associated with a large enough β(n). This enables us to show
association of steady-state workloads.

Remark Before we present the proof, we remark that it may be possible to explore the
monotonicity of the workload process to establish association [6,19,27].1 However,

1 We thank Prof. Alexander Stolyar for suggesting this possible approach.
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the results in [6,19,27] assume either a finite or a compact state space. It may be
possible to generalize the results from a finite state space [6,19] to a countable state
space for some Markov chains, which then can be applied to our problem for certain
phase-type service time distributions. To further deal with more general service time
distributions, we may be able to utilize the existing results for a compact state space
[27]. But there we need to compactify the state space and verify a condition on the
generator of the workload process. We do not pursue such an approach here.

Proof Recall that
T (n) = max

{
T (n)
1 , T (n)

2 , . . . , T (n)

k(n)

}
,

where T (n)
i denotes the steady-state task delay at queue i . Then to prove the stochastic

dominance, it suffices to prove that T (n)
1 , T (n)

2 , . . . , T (n)

k(n) are associated [9, Theo-
rem 5.1].

We start by noting that it is sufficient to prove that the steady-state workloads,
W (n)

1 (∞), W (n)
2 (∞), . . . , W (n)

k(n) (∞), are associated. The sufficiency follows from the

fact that each T (n)
i can be expressed in the following form:

T (n)
i = W (n)

i (∞) + Xi ,

where X1, X2, . . . , Xk(n) represent the service times of tasks so they are i.i.d.∼ G

and independent of everything else. Then, T (n)
1 , T (n)

2 , . . . , T (n)

k(n) are nondecreasing

functions of W (n)
1 (∞), W (n)

2 (∞), . . . , W (n)

k(n) (∞), X1, X2, . . . , Xk(n) . So by Proper-

ties (P1) and (P2) in Lemma 4, T (n)
1 , T (n)

2 , . . . , T (n)

k(n) are associated when W (n)
1 (∞),

W (n)
2 (∞), . . . , W (n)

k(n) (∞) are associated.

All that remains is prove the claim that W (n)
1 (∞), W (n)

2 (∞), . . . , W (n)

k(n) (∞) are
associated. We will work with a discrete-time Markov chain constructed from the
continuous-time workload process (W (n)(t), t ≥ 0). Specifically, we consider a Pois-
son process, denoted by (B(t), t ≥ 0), that is independent of everything else. Let
the rate of this Poisson process be β(n), which will be specified later in (32). Then,
we sample the workload process (W (n)(t), t ≥ 0) at time instances immediately
before either a job arrival or an event of the Poisson process (B(t), t ≥ 0). Let
such time instances be denoted by {Us, s = 0, 1, . . . }, with U0 = 0. This gives
us a discrete-time Markov chain, which we denote by (Φ(n)(s), s = 0, 1, . . . ), i.e.,
Φ

(n)
i (s) = W (n)

i (U−
s ), where W (n)

i (U−
s ) is the workload of queue i immediately

before time Us . Since (Φ(n)(s), s = 0, 1, . . . ) is constructed by sampling the work-
load process more often than the job arrival process, we call this technique “Poisson
oversampling.”

We first claim that (Φ(n)(s), s = 0, 1, . . . ) converges to a well-defined steady state
Φ(n)(∞) and thatΦ(n)(∞) andW (n)(∞) are identically distributed. This claim can be
proven by showing that (Φ(n)(s), s = 0, 1, . . . ) is aperiodic and positive Harris recur-
rent and then appealing to the PASTA property [31]. We omit the proof of this claim
since the aperiodicity is straightforward to check and the positiveHarris recurrence fol-
lows from a rather standard Foster–Lyapunov criterion using the quadratic Lyapunov

123



228 Queueing Systems (2019) 91:207–239

function [32]. With this claim, it then suffices to prove that Φ
(n)
1 (∞),Φ

(n)
2 (∞), . . . ,

Φ
(n)

k(n) (∞) are associated.

We assume that Φ
(n)
i (0) = 0 for every i = 1, 2, . . . , n. We will prove that

Φ
(n)
1 (s),Φ(n)

2 (s), . . . , Φ(n)

k(n) (s) are associated for any s ≥ 0 by induction on s.

Then, Φ
(n)
1 (∞),Φ

(n)
2 (∞), . . . , Φ

(n)

k(n) (∞) are associated since Φ(n)(s) ⇒ Φ(n)(∞)

as s → ∞ [9].
Base Step Φ

(n)
1 (0),Φ(n)

2 (0), . . . , Φ(n)

k(n) (0) are associated since they are all zero.

Inductive Step Assuming that Φ
(n)
1 (s),Φ(n)

2 (s), . . . , Φ(n)

k(n) (s) are associated for

some s ≥ 0,wewill show thatΦ(n)
1 (s+1),Φ(n)

2 (s+1), . . . , Φ(n)

k(n) (s+1) are associated.
By Lindley’s equation,

Φ
(n)
i (s + 1) =

(
Φ

(n)
i (s) + Yi (s) − ΔU (s)

)+
, (30)

where Yi (s) is the service time needed by the task that arrives to queue i at time Us ,
and ΔU (s) = Us+1 − Us . Note that at time Us there may be no task arrival to queue
i , either because there is no job arrival or because there is a job arrival, but it does not
send any tasks to queue i . So we can write Yi (s) as

Yi (s) = Ai (s) · Xi (s),

where Ai (s) equals to either 1 or 0, representing the number of task arrivals to
queue i at time Us , and Xi (s) is a random variable with distribution G and is inde-
pendent of everything else, representing the service time. Then, Φ

(n)
i (s + 1), i =

1, 2, . . . , k(n), are nondecreasing functions ofΦ(n)
i (s), Ai (s), Xi (s) and−ΔU (s)with

i = 1, 2, . . . , k(n). We can see that each of the following four sets of random variables,
{
Φ

(n)
1 (s),Φ(n)

2 (s), . . . , Φ(n)

k(n) (s)
}
, {A1(s), A2(s), . . . , Ak(n) (s)}, {X1(s), X2(s), . . . ,

Xk(n) (s)}, and {−ΔU (s)}, is independent of the union of the others. So to show that

Φ
(n)
i (s + 1), i = 1, 2, . . . , k(n), are associated, it suffices to show that each of these

sets is a set of associated random variables.

(i) The Φ
(n)
i (s), i = 1, 2, . . . , k(n), are associated by assumption.

(ii) The Xi (s), i = 1, 2, . . . , k(n), are associated since they are independent.
(iii) The random variable −ΔU (s) is associated since a single random variable is

associated.
(iv) We now prove that Ai (s), i = 1, 2, . . . , k(n), are associated. We note that

here they do not satisfy the lattice condition in the celebrated FKG inequality
[12]. For conciseness of notation, let A = (A1(s), A2(s), . . . , Ak(n) (s)). To
show association, it suffices to prove that for all binary-valued, (entrywisely)
nondecreasing functions f and g [9],

E[ f (A)g(A)] ≥ E[ f (A)]E[g(A)]. (31)

By construction, it is clear that A ∈ {0, 1}k(n)
. If either f or g always has constant

value 0 or 1, then (31) trivially holds. So we can focus on the case that neither f
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nor g is a constant function. In this case, by the monotonicity of f and g, we have
f
(
(0, . . . , 0)

) = g
(
(0, . . . , 0)

) = 0 and f
(
(1, . . . , 1)

) = g
(
(1, . . . , 1)

) = 1. Note
that at each sample time Us , the probability that there is a job arrival is Λ(n)/(Λ(n) +
β(n)). Then,

E[ f (A)g(A)] ≥ P
(
A = (1, . . . , 1)

) · f
(
(1, . . . , 1)

)
g
(
(1, . . . , 1)

)

= Λ(n)

Λ(n) + β(n)

1
( n

k(n)

) .

Since f (a) ≤ 1, g(a) ≤ 1 for any a ∈ {0, 1}k(n)
,

E[ f (A)] =
∑

a∈{0,1}k(n) :
a �=(0,...,0)

P(A = a) f (a)

≤ P(A �= (0, . . . , 0))

= Λ(n)

Λ(n) + β(n)
p,

where p is the probability that a job arrival sends at least one task to queues
1, 2, . . . , k(n), so p does not depend on β(n) and

p =
⎧
⎨

⎩

1 if k(n) > n/2,
1

(
n

k(n))

(( n
k(n)

) − (n−k(n)

k(n)

))
if k(n) ≤ n/2.

Similarly,

E[g(A)] ≤ Λ(n)

Λ(n) + β(n)
p.

We choose any β(n) such that

Λ(n)

Λ(n) + β(n)

1
( n

k(n)

) ≥
(

Λ(n)

Λ(n) + β(n)

)2

p2,

i.e., any β(n) such that

β(n) ≥ Λ(n)

((
n

k(n)

)

p2 − 1

)

. (32)

Then
E[ f (A)g(A)] ≥ E[ f (A)]E[g(A)],

which completes the induction, and thus completes the proof. 
�
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7 Evaluation via simulations

In this section, we use simulation to explore the regimes of k(n) that are not covered
by our theoretical analysis. Specifically, our theoretical analysis has established that
when k(n) = o(n1/4), any k(n) queues are asymptotically independent and the job
delay converges to the independence upper bound; when k(n) = Θ(n), any number of
multiple queues are bounded away from being independent. We therefore simulate the
limited fork–join systems for the following four settings between o(n1/4) and Θ(n):
k(n) = n1/3, k(n) = n1/2, k(n) = n2/3 and k(n) = n9/10. We simulate the n-server
system for n = 4, 64, 1024 and 16384 under each setting.

We compare the tail distribution (complementary cumulative distribution function)
of the job delay in each limited fork–join system with the independence upper bound.
Figure 2 shows the results for systems with exponentially distributed service times and
load ρ = 2/3 on each individual queue. We see that for k(n) = n1/3, the independence
upper bound is strikingly accurate. For k(n) = n1/2, the gap between the job delay and
the independence upper bound seems to be diminishing when n is large enough. But
for k(n) = n2/3, it is rather unclear if the job delay will converge to the independence
upper bound or not. Finally, when k(n) = n9/10, the job delay evidently diverges
from the independence upper bound. We have also simulated systems for different
loads (ρ = 1/3, 0.9) and different service time distributions (deterministic, truncated
Pareto, hyperexponential), and similar phenomena are observed.
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Fig. 2 Tail distributions of job delays in the limited fork–join systems and the independence upper bounds
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8 Conclusions

We study the limited fork–join model where there are n servers in the system and each
job consists of k(n) ≤ n tasks that are sent to k(n) distinct servers chosen uniformly
at random. A job is considered complete only when all its tasks complete processing.
We characterize the delay of jobs both in an asymptotic regime where n → ∞ and in
the non-asymptotic regime for any n and any k(n) = k.

For the asymptotic regime, we show that under the condition k(n) = o(n1/4), the
workloads of any k(n) queues in the n-server system are asymptotically independent,
and the delay of a job therefore converges to the maximum of independent task delays.
For the non-asymptotic regime, we show that the steady-state workloads of any k(n)

queues are associated, and therefore assuming independent task delays yields an upper
bound on the job delay. Our results provide the first tight characterization of job delay
in the limited fork–join model, and the upper bound is tighter than other existing upper
bounds.

From a technical perspective, we make the following two contributions: (1) Our
asymptotic results open up new regimes for asymptotic independence: k(n) queues are
shown to be asymptotically independent, where k(n) is allowed to grow with n instead
of being a constant, as was previously studied. (2) We develop new proof techniques
to establish association in steady state. We believe that the results and techniques in
this paper will shed light on related problems such as order statistics in coded data
storage systems, job redundancy and load-balancing algorithms.
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Appendix A: Proof of Lemma 3

Lemma 3 (Restated)

dT V

(
π̃ (n,k(n)), π̂ (k(n))

)
= O

((
k(n)

n1/4

)2)

. (17) (Restated)

Proof This proof has a similar flavor to the proofs of Lemmas 1 and 2. Recall that(

W̃
(n,k(n))

(t), t ≥ 0

)

, the workload processes of the first k(n) queues in the sys-

tem S̃(n), are k(n) independent M/G/1 queues each with arrival rate λ̃(n) and service

time distribution G. We couple this with

(

Ŵ
(k(n))

(t), t ≥ 0

)

, where Ŵ
(k(n))

(t) =
(
Ŵ1(t), . . . , Ŵk(n) (t)

)
is the workload vector of k(n) independent M/G/1 queues each

with arrival rate λ and service time distribution G. Then, π̂ (k(n)) is its stationary
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distribution. We will prove the bound on dT V
(
π̃ (n,k(n)), π̂ (k(n))

)
by showing that(

W̃
(n,k(n))

(t), t ≥ 0

)

and

(

Ŵ
(k(n))

(t), t ≥ 0

)

are close.

Now we specify the coupling. All the queues start from empty, i.e., Ŵi (0) =
W̃ (n)

i (0) = 0 for all i = 1, 2, . . . , k(n). When there is a task arrival to some queue of

Ŵ
(k(n))

, we let a task arrive to the corresponding queue of W̃
(n,k(n))

with probability
λ̃(n)

λ
, and let these two tasks require the same service time. So with probability 1− λ̃(n)

λ

there is no task arrival to W̃
(n,k(n))

.

We pick a time τ (n) = O
(

n1/2

k(n)

)
. Let π̂ (k(n))

τ (n) denote the distribution of Ŵ
(k(n))

(τ (n)).

Then,

dT V

(
π̃ (n,k(n)), π̂ (k(n))

)
≤ dT V

(
π̃

(n,k(n))

τ (n) , π̂
(k(n))

τ (n)

)

+ dT V

(
π̃

(n,k(n))

τ (n) , π̃ (n,k(n))
)

+ dT V

(
π̂

(k(n))

τ (n) , π̂ (k(n))
)
.

Noting Lemma 2, we have

dT V

(
π̃

(n,k(n))

τ (n) , π̃ (n,k(n))
)

= O

((
k(n)

n1/4

)2)

, (33)

dT V

(
π̂

(k(n))

τ (n) , π̂ (k(n))
)

= O

((
k(n)

n1/4

)2)

. (34)

Next we bound dT V

(
π̃

(n,k(n))

τ (n) , π̂
(k(n))

τ (n)

)
using arguments similar to those in the proof

of Lemma 1. By the coupling, Ŵ
(k(n))

(t) and W̃
(n,k(n))

(t) are different for some t ∈
[0, τ (n)] only when some task arrives to Ŵ

(k(n))
but not to W̃

(n,k(n))
. We denote this

event by E . Then,
dT V

(
π̃

(n,k(n))

τ (n) , π̂
(k(n))

τ (n)

)
≤ P(E).

So the remainder of this proof is dedicated to bounding P(E).

Consider the time interval [0, τ (n)]. Let A be the number of task arrivals to Ŵ
(k(n))

during this time interval. Then,

P(E) =
∞∑

j=0

P(A = j)P(E | A = j)

≤
∞∑

j=0

(λk(n)τ (n)) j e−k(n)λτ (n)

j ! j

(

1 − λ̃(n)

λ

)

= k(n)τ (n)(λ − λ̃(n)), (35)
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where we have used a union bound for (35). By definition,

λ̃(n) = Λ(n)

k(n)

(

1 −
(n−k(n)

k(n)

)

( n
k(n)

)

)

≥ Λ(n)

k(n)

(

1 −
(

1 − k(n)

n

)k(n))

= Λ(n)

k(n)

(
(k(n))2

n
+ O

(
(k(n))4

n2

))

= λ + O

(
(k(n))2

n

)

.

Therefore,

P(E) = O

((
k(n)

n1/4

)2)

,

which completes the proof. 
�

Appendix B: Proof of Corollary 1

Corollary 1 (Restated) Consider an n-server system in the limited fork–join model
with k(n) = o(n1/4), job arrival rate Λ(n) = nλ/k(n), and exponentially distributed
service times with mean 1/μ. Then, the steady-state job delay, T (n), converges as:

lim
n→∞ sup

τ≥0

∣
∣
∣
∣P

(
T (n) ≤ τ

) −
(
1 − e−(μ−λ)τ

)k(n)
∣
∣
∣
∣ = 0. (8) (Restated)

Specifically, if k(n) → ∞ as n → ∞, then

T (n)

Hk(n)/(μ − λ)
⇒ 1, as n → ∞, (9) (Restated)

where Hk(n) is the k(n)-th harmonic number, and further,

lim
n→∞

E
[
T (n)

]

Hk(n)/(μ − λ)
= 1. (10) (Restated)

Proof When the service times are exponentially distributed, each queue is an M/M/1
queue, and thus the cdf of the task delay at each queue, F , is given by

F(τ ) = 1 − e−(μ−λ)τ .
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Then, the convergence in (8) directly follows from Theorem 1.

To prove the weak convergence of T (n)

Hk(n) /(μ−λ)
in (9), we first note that

T̂ (n)

Hk(n)/(μ − λ)
⇒ 1, as n → ∞,

which is a direct implication of a standard result in the asymptotic theory of extremes
(see, for example, Theorem 8.12 in [7]). Combining this with (8) yields (9).

To prove the convergence of the expectation in (10), we actually need the stochastic
dominance shown in Theorem 2. The expectation in (10) can be written as

E
[
T (n)

]

Hk(n)/(μ − λ)
=

∫ ∞

0
P

(
T (n)

Hk(n)/(μ − λ)
> τ

)

dτ.

By Theorem 2, for any τ ≥ 0,

P

(
T (n)

Hk(n)/(μ − λ)
> τ

)

≤ P

(
T̂ (n)

Hk(n)/(μ − λ)
> τ

)

.

Since
T̂ (n)

Hk(n)/(μ − λ)
⇒ 1, as n → ∞,

and

E
[
T̂ (n)

]

Hk(n)/(μ − λ)
=

∫ ∞

0
P

(
T̂ (n)

Hk(n)/(μ − λ)
> τ

)

dτ = 1,

by the General Lebesgue Dominated Convergence Theorem (see, for example, Theo-
rem 19 in [38]), we can take the limit inside the integral and, using (9), get

lim
n→∞

E
[
T (n)

]

Hk(n)/(μ − λ)
=

∫ ∞

0
lim

n→∞P

(
T (n)

Hk(n)/(μ − λ)
> τ

)

dτ

=
∫ 1

0
1dτ

= 1,

which completes the proof. 
�

Appendix C: Non-independence result for k(n) = Θ(n)

Theorem 3 Consider an n-server system in the limited fork–join model with k(n) =
Θ(n), job arrival rate Λ(n) = nλ/k(n), and exponentially distributed service times
with rate μ. Let π(n,2) denote the joint distribution of the steady-state queue lengths
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for any two queues in the n-server system. Let π̂ (2) denote the joint distribution of the
steady-state queue lengths of two independent M/M/1 queues, each with load ρ. Then,
there exist ε > 0 and n0 > 0 such that, for any n > n0, dT V

(
π(n,2), π̂ (2)

)
> ε.

Proof We assume that k(n) = pn for a constant p with 0 < p ≤ 1. Then the job
arrival rate is given by Λ(n) = λ/p, which is a constant, so we rewrite Λ(n) as Λ for
conciseness.

Let ε = pλ(1−ρ)2

2(11Λ+8μ)
. We will specify n0 later. Suppose by contradiction that

dT V
(
π(n,2), π̂ (2)

) ≤ ε for all n > n0. We will show that this assumption contra-
dicts the balance equations of the first two queues in the limited fork–join system with
n servers.

We first write out the balance equations for the Markov chain formed by the queue
lengths of the first two queues. Consider a job arrival to this n-server system. Let p(n)

0

be the probability that no task arrives to the first two queues, and p(n)
1 be the probability

that exactly one task arrives to the first two queues. Let p(n)
2 = 1 − p(n)

0 − p(n)
1 be

the probability that two tasks arrive to the first two queues. We can compute these
probabilities as follows:

p(n)
0 =

(
n − 2

k

) / (
n

k

)

→ p0 := (1 − p)2 as n → ∞,

p(n)
1 = 2

(n−2
k−1

)

(n
k

) → p1 := 2p(1 − p) as n → ∞,

p(n)
2 =

(n−2
k−2

)

(n
k

) → p2 := p2 as n → ∞.

Recall that the joint distribution of the steady-state queue lengths of the first two queues
is π(n,2). Then, the balance equation of the first two queues for the state (1, 1) can be
written as

0 = π(n,2)(1, 1) · (p(n)
1 Λ + p(n)

2 Λ + 2μ)

−
(
1

2
π(n,2)(0, 1)p(n)

1 Λ + 1

2
π(n,2)(1, 0)p(n)

1 Λ

+ π(n,2)(0, 0)p(n)
2 Λ + π(n,2)(1, 2)μ + π(n,2)(2, 1)μ

)

. (36)

Let the right-hand side of (36) be denoted by R(π(n,2)). Let

a1 = (p(n)
1 − p1)Λ

(

π(n,2)(1, 1) − 1

2
π(n,2)(0, 1) − 1

2
π(n,2)(1, 0)

)

+ (p(n)
2 − p2)Λ

(

π(n,2)(1, 1) − 1

2
π(n,2)(0, 1)

− 1

2
π(n,2)(1, 0) − π(n,2)(0, 0)

)

,
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a2 = (π(n,2)(1, 1) − π̂ (2)(1, 1))(p1Λ + p2Λ + 2μ)

− 1

2
(π(n,2)(0, 1) − π̂ (2)(0, 1) + π(n,2)(1, 0) − π̂ (2)(1, 0))p1Λ

− (π(n,2)(0, 0) − π̂ (2)(0, 0))p2Λ

− (π(n,2)(1, 2) − π̂ (2)(1, 2) + π(n,2)(2, 1) − π̂ (2)(2, 1))μ.

Then since π̂ (2)(q1, q2) = (1 − ρ)2ρq1+q2 for any (q1, q2) ∈ Z
2+,

R(π(n,2)) = a1 + a2 + π̂ (2)(1, 1) · (p1Λ + p2Λ + 2μ)

−
(
1

2
π̂ (2)(0, 1)p1Λ + 1

2
π̂ (2)(1, 0)p1Λ

+ π̂ (2)(0, 0)p2Λ + π̂ (2)(1, 2)μ + π̂ (2)(2, 1)μ

)

= a1 + a2 − pλ(1 − ρ)4. (37)

We choose n0 such that, for any n > n0, |p(n)
1 − p1| ≤ ε and |p(n)

2 − p2| ≤ ε. Then,
it is not hard to see that |a1| ≤ 3Λε. By the assumption that dT V

(
π(n,2), π̂ (2)

) ≤ ε,
we have that |a2| ≤ 8(Λ + μ)ε. By the choice of ε, |a1 + a2| ≤ (11Λ + 8μ)ε =
1
2 pλ(1−ρ)2. Therefore,R(π(n,2)) < 0by (37),which contradicts the balance equation
(36). This completes the proof of Theorem 3. 
�

Appendix D: Definition and some properties of association

Definition 1 (Association [9]) We say random variables X1, X2, . . . , Xm are associ-
ated if for all (entrywisely) nondecreasing functions f and g,

E[ f (X1, X2, . . . , Xm)g(X1, X2, . . . , Xm)]
≥ E[ f (X1, X2, . . . , Xm)]E[g(X1, X2, . . . , Xm)]. (38)

Lemma 4 [9] Associated random variables have the following properties:

(P1) Nondecreasing functions of associated random variables are associated.
(P2) If two sets of associated random variables are independent of one another,
then their union is a set of associated random variables.
(P3) If a sequence of random vectors X(u) ⇒ X as u → ∞ and, for each u, the
entries of X(u) are associated, then the entries of X are associated.
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