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ABSTRACT
An increasingly prevalent technique for improving response
time in queueing systems is the use of redundancy. In a
system with redundant requests, each job that arrives to
the system is copied and dispatched to multiple servers. As
soon as the first copy completes service, the job is considered
complete, and all remaining copies are deleted. A great deal
of empirical work has demonstrated that redundancy can
significantly reduce response time in systems ranging from
Google’s BigTable service to kidney transplant waitlists.

We propose a theoretical model of redundancy, the Redun-
dancy-d system, in which each job sends redundant copies to
d servers chosen uniformly at random. We derive the first
exact expressions for mean response time in Redundancy-
d systems with any finite number of servers. We also find
asymptotically exact expressions for the distribution of re-
sponse time as the number of servers approaches infinity.

1. INTRODUCTION
Redundancy – the idea of dispatching multiple copies of

the same job and waiting for the first copy to complete ser-
vice – is an important strategy for reducing response times
in applications ranging from Google’s BigTable service to
kidney transplant waitlists.

Redundancy provides significant response time improve-
ments because it exploits two sources of variability. First,
queueing times across servers can be highly variable due to
load from different applications. Redundant requests wait
in the queue at multiple servers, so they experience the
minimum queueing time across these servers. Second, the
same job might see highly variable service times at different
servers. For example, in computer systems applications such
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Figure 1: The Redundancy-d system consists of k
servers, each providing independent exponential ser-
vice times with rate µ. Jobs arrive to the system as a
Poisson process with rate kλ. Each job sends copies
to d servers chosen uniformly at random. A job is
complete when its first copy completes service.

as web queries, external factors such as network interference,
disk seek time, and background tasks can cause a query to be
slowed down unpredictably. This slowdown dominates the
computation time required for the query, which is inherently
quite small. This causes the query’s actual service time to
be very long relative to its inherent size. For example, a
web query can be slowed down by up to a factor of 27 due
to unpredictable background load [4]. Sending redundant
requests enables a job to receive the minimum service time
across servers.

While it is clear that redundancy can lead to a significant
reduction in response time, it is often difficult to determine
how much redundancy is needed to obtain such improve-
ments. Is sending only two copies enough to achieve most
of the potential benefit? What is the additional benefit of
increasing the number of copies?

We study these questions in a theoretical model called the
Redundancy-d system (see Figure 1). The Redundancy-d
system consists of k servers; each arriving job makes d copies
of itself and dispatches these copies to d different servers
chosen uniformly at random. The job is considered complete
as soon as the first copy completes service.

Our primary contribution is providing the first exact anal-
ysis of response time in the Redundancy-d system. First, we
derive exact closed-form expressions for mean response time
as a function of the number of servers k and the number of
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Figure 2: Mean response time E[T ] as a function of d
under low (ρ = 0.2, solid red line), medium (ρ = 0.5,
dashed green line), and high (ρ = 0.9, dot-dashed
blue line) load.

copies per job, d, by modeling the system as a Markov chain.
Second, we consider the system in the limit as the number
of servers k approaches infinity. Under a standard asymp-
totic independence assumption, we derive an asymptotically
exact expression for the distribution of response time. Our
exact analysis allows us to quantify the magnitude of the
benefit from increasing d.

2. MAIN RESULTS
Let ρ = λ

µ
denote the system load. This is the total arrival

rate to the system (kλ) divided by the maximum service rate
of the system (kµ). The system is stable as long as ρ < 1.

Theorem 1. The mean response time in the Redundancy-
d system with k servers is

E[T ] =

k∑
i=d

1

kµ
(k−1
d−1)

(i−1
d−1)

− kλ
. (1)

We derive the result in Theorem 1 by modeling the sys-
tem as a Markov chain. Following [1], our system state is a
list of all jobs in the system in the order in which they ar-
rived, where we track the d specific servers to which each job
sent its copies. The general form of the limiting distribution
of the state space is an immediate consequence of Theorem
1 in [1]. Unfortunately, knowing the limiting distribution’s
form does not tell us the normalizing constant, nor does it
immediately yield results for mean number in system and
mean response time. To find mean response time, we must
first find Pr{m jobs in system} by summing over all

(
k
d

)
pos-

sible choices of servers for each queue position. We develop
a novel state aggregation approach that uses recurrence re-
lations to obtain the result given in Theorem 1 (see [2]).

Theorem 2. Assuming queues are d-wise asymptotically
independent as k →∞, the response time in the Redundancy-
d system with d > 1 has c.c.d.f.

Pr{T > t} =

(
1

ρ+ (1− ρ)etµ(d−1)

) d
d−1

. (2)

Theorem 2 relies on the assumption that queues are asymp-
totically independent as k →∞ (see [2] for definition); this
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Figure 3: Probability that response time T < t when
d = 2 under low (ρ = 0.2, solid red line), medium
(ρ = 0.5, dashed green line), high (ρ = 0.9, dot-dashed
blue line), and very high (ρ = 0.99, dotted purple
line) load.

is a standard assumption that has been shown to hold in
several related systems (e.g., [3]). Our proof of Theorem 2
involves considering a tagged arrival to the Redundancy-d
system, and asking why that arrival would have not yet de-
parted by time t. There are two possibilities: either the
job has a large size, or the job experiences a long queueing
time. In the latter case, the long queueing time can again
be attributed to the preceding arrival having a large size or
a long queueing time. This recursive formulation leads to
a system of differential equations, which we solve to obtain
the result in Theorem 2.

Our exact analysis allows us to quantify the response time
benefit obtained from increasing d. Figure 2 shows mean re-
sponse time, E[T ], in the Redundancy-d system as a function
of d for low, medium, and high load. At all loads, E[T ] de-
creases as d increases. The most significant improvement
occurs between d = 1 and d = 2: E[T ] decreases by up to
a factor of 6. Figure 3 shows that this improvement is even
bigger at the tail of response time; the 95th percentile of
response time decreases by up to a factor of 8 when ρ = 0.9.
From Theorem 2, we see that as d becomes large, mean re-
sponse time scales in proportion to 1

d
, indicating that there

is decreasing marginal benefit from further increasing d.
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