
42

Load Balancing Guardrails: Keeping Your Heavy Traffic on
the Road to Low Response Times

ISAAC GROSOF, Carnegie Mellon University, USA

ZIV SCULLY, Carnegie Mellon University, USA

MOR HARCHOL-BALTER, Carnegie Mellon University, USA

Load balancing systems, comprising a central dispatcher and a scheduling policy at each server, are widely

used in practice, and their response time has been extensively studied in the theoretical literature. While much

is known about the scenario where the scheduling at the servers is First-Come-First-Served (FCFS), to minimize

mean response time we must use Shortest-Remaining-Processing-Time (SRPT) scheduling at the servers. Much

less is known about dispatching polices when SRPT scheduling is used. Unfortunately, traditional dispatching

policies that are used in practice in systems with FCFS servers often have poor performance in systems with

SRPT servers. In this paper, we devise a simple fix that can be applied to any dispatching policy. This fix,

called guardrails, ensures that the dispatching policy yields optimal mean response time under heavy traffic

when used in a system with SRPT servers. Any dispatching policy, when augmented with guardrails, becomes

heavy-traffic optimal. Our results yield the first analytical bounds on mean response time for load balancing

systems with SRPT scheduling at the servers.

CCS Concepts: • General and reference → Performance; • Mathematics of computing → Queueing
theory; • Networks → Network performance modeling; • Theory of computation → Routing and
network design problems; • Computing methodologies→ Model development and analysis; • Software and
its engineering→ Scheduling.

Additional Key Words and Phrases: load balancing; dispatching; scheduling; SRPT; response time; latency;

sojourn time; heavy traffic

ACM Reference Format:
Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. Load Balancing Guardrails: Keeping Your Heavy Traffic

on the Road to Low Response Times. Proc. ACM Meas. Anal. Comput. Syst. 3, 2, Article 42 (June 2019), 31 pages.
https://doi.org/10.1145/3326157

1 INTRODUCTION
Load balancers are ubiquitous throughout computer systems. They act as a front-end to web server

farms, distributing HTTP requests to different servers. They likewise act as a front-end to data

centers and cloud computing pools, where they distribute requests among servers and virtual

machines.

In this paper, we consider the immediate dispatch load balancing model, where each arriving job

is immediately dispatched to a server, as shown in Figure 1. The system has two decision points:

(1) A dispatching policy decides how to distribute jobs across the servers.

(2) A scheduling policy at each server decides which job to serve among those at that server.

Authors’ address: Carnegie Mellon University, Computer Science Department, 5000 Forbes Ave, Pittsburgh, PA 15213, USA,

{igrosof, zscully, harchol}@cs.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART42 $15.00

https://doi.org/10.1145/3326157

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

https://doi.org/10.1145/3326157
https://doi.org/10.1145/3326157

42:2 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

Fig. 1. Two decision points within a load balancing system: (1) Pick the dispatching policy. (2) Pick the
scheduling policy for the servers.

We ask:

What (1) dispatching policy and (2) scheduling policy should we use to minimize mean
response time of jobs?

We assume that the job arrival process is Poisson and that job sizes are i.i.d. from a general size

distribution. We assume jobs are preemptible with no loss of work. Finally, we assume that job

sizes are known at the time the job arrives in the system.

With these assumptions, the scheduling question turns out to be easy to answer: use Shortest-

Remaining-Processing-Time (SRPT) at the servers. No matter what dispatching decisions are made,

if we consider the sequence of jobs dispatched to a particular server, the policy which minimizes

mean response time for that server must be to schedule those jobs in SRPT order. This follows from

from the optimality of SRPT for arbitrary arrival sequences [25]. SRPT scheduling is in fact already

used in backend servers [16, 23]. Thus, in the remainder of this paper we assume SRPT is used at

the servers.

The question remains: What dispatching policy minimizes mean response time given SRPT

service at the servers? While many dispatching policies have been considered in the literature,

they have mostly been considered in the context of First-Come-First-Served (FCFS) or Processor-

Sharing (PS) scheduling at the servers. Popular dispatching policies include Random routing [14, 22],

Least-Work-Left (LWL) [7, 14, 15], Join-Shortest-Queue (JSQ) [6, 12, 26, 29], JSQ-d [7, 19, 22, 24],

Size-Interval-Task-Assignment (SITA) [4, 10, 14], Round-Robin (RR) [14, 21], and many more

[2, 5, 8, 31]. However, only the simplest of these policies, such as Random and RR, have been studied

for SRPT servers [9, 13].

One might hope that the same policies that yield low mean response time when servers use FCFS

scheduling would also perform well when servers use SRPT scheduling. Unfortunately, this does not

always hold. For example, when the servers use FCFS, it is well-known that LWL dispatching, which

sends each job to the server with the least remaining work, outperforms Random dispatching,

which sends each job to a randomly chosen server. (We write this as LWL/FCFS outperforms

Random/FCFS.) However, the opposite can happen when the servers use SRPT: as shown in

the scenario in Figure 2, Random/SRPT can outperform LWL/SRPT. Moreover, the performance

difference is highly significant: Random/SRPT outperforms LWL/SRPT by a factor of 5 or more

under heavy load. This means that LWL is making serious mistakes in dispatching decisions. We

can therefore see that the heuristics that served us well for FCFS servers can steer us awry when

we use SRPT servers.

In this paper, we introduce guardrails, a new technique for creating dispatching policies. Given

an arbitrary dispatching policy P, applying guardrails results in an improved policy Guarded-P

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:3

0.0 0.2 0.4 0.6 0.8 1.0

System load (ρ)

0

100

200

300

400

500

M
ea

n
re

sp
on

se
tim

e
(E

[T
]) Random/FCFS

LWL/FCFS
LWL/SRPT
Random/SRPT

Fig. 2. Two dispatching policies: Random and LWL. Two scheduling policies: FCFS and SRPT. FCFS scheduling
at the servers yields higher mean response time as a function of load, compared with SRPT scheduling at
the servers. Random dispatching is worse than LWL dispatching under FCFS scheduling at the servers, but
Random dispatching is better than LWL dispatching under SRPT scheduling at the servers. Simulation uses
k = 10 servers. Size distribution shown is Bimodal with jobs of size 1 with probability 99.95% and jobs of size
1000 with probability 0.05%.

0.0 0.2 0.4 0.6 0.8 1.0

System load (ρ)

0

20

40

60

80

100

M
ea

n
re

sp
on

se
tim

e
(E

[T
]) LWL/SRPT

Random/SRPT
G-Random/SRPT
G-LWL/SRPT

Fig. 3. Adding guardrails to LWL yields much lower mean response time as a function of load. Guardrails
yield a factor of 3 improvement even at ρ = 0.8, and a factor of 7 improvement at ρ = 0.9. Adding guardrails
to Random also yields significantly lower mean response time as a function of load. Simulation uses k = 10

servers. Size distribution shown is Bimodal with jobs of size 1 with probability 99.95% and jobs of size 1000
with probability 0.05%. The guardrails have tightness д = 2.

(G-P). We prove that the improved policy G-P has asymptotically optimal mean response time in

the heavy traffic limit, no matter what the initial policy P is. We also show empirically that adding

guardrails to a policy almost always decreases its mean response time (and never significantly

increases it), even outside the heavy-traffic regime.

As an example of the power of guardrails, Figure 3 shows the performance of guarded versions

of LWL and Random, namely G-LWL and G-Random. The guardrails stop LWL from making

serious mistakes and dramatically improve its performance. Random dispatching also benefits

from guardrails. Moreover, the guarded policies have a theoretical guarantee: In the limit as load

ρ → 1, G-Random/SRPT and G-LWL/SRPT converge to the optimal mean response time. In contrast,

unguarded Random/SRPT is a factor of k worse than optimal in the ρ → 1 limit, where k is the

number of servers.

This paper makes the following contributions:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:4 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

• In Section 2, we introduce guardrails, a technique for improving any dispatching policy.

• In Section 4, we bound the mean response time of any guarded dispatching policy when

paired with SRPT scheduling at the servers. Using that bound, we prove that any guarded

policy has asymptotically optimal mean response time as load ρ → 1, subject to a technical

condition on the job size distribution roughly equivalent to finite variance.

• In Section 5, we consider a wide variety of common dispatching policies. We empirically

show that guardrails improve most of these at all loads.

• In Section 6, we discuss practical considerations and extensions of guardrails, including

– guardrails for large systems, which may have multiple dispatchers and network delays;

– guardrails for scheduling policies other than SRPT; and

– guardrails for heterogeneous servers.

We give a more technical summary of our theoretical results and review related work in Section 3.

2 LOAD BALANCING GUARDRAILS
2.1 What are Guardrails?
Traditional dispatching policies aim to equalize load at each server. However, minimizing mean

response time requires more than balancing load: we also need to find a way to favor small jobs.

Given that every server uses SRPT scheduling, if we can spread out the small jobs across the servers,

then we ensure that the maximum possible number of servers are working on the smallest jobs

available. Our idea is to take any dispatching policy and add “guardrails” that force it to spread out

small jobs across the servers.

In the discussion above, “small” is a relative term. Whatever the size of the smallest jobs currently

in the system, we would like to spread out jobs near that size across the servers. To do this, we

define the rank of a job of size x to be

r = ⌊logc x⌋, (1)

where c > 1 is a constant called the guardrail rank width (see Section 2.1.1). The idea of guardrails

is to spread out the jobs within a rank r across the servers, doing so separately for each rank r .
To do so, for each rank r and each server s , the dispatcher stores a guardrail work counter Gr

s .

When dispatching a job of size x to server s , the dispatcher increases Gr
s by x , with r given by (1).

1

Guardrails are a set of constraints which ensure that no two rank r work counters are ever too far

apart.

Definition 1. A dispatching policy satisfies guardrails with tightness д if at all times

|Gr
s −G

r
s ′ | ≤ дcr+1

for all ranks r and all pairs of servers s and s ′, where c > 1 is the same constant as in (1). The

tightness can be any constant д ≥ 1.

We sometimes say that a particular dispatching decision satisfies (respectively, violates) guardrails

if it satisfies (respectively, violates) the constraints imposed by Definition 1.

2.1.1 Choosing the Guardrail Rank Width c . The choice of c in (1) heavily affects the performance

of policies satisfying guardrails.

• If c is too large, then guardrails may not differentiate between jobs of different sizes.

• If c is too small, then guardrails may misguidedly differentiate between jobs of similar sizes.

This could allow one server to receive multiple small jobs of different ranks while another

receives none.

1
The dispatcher also occasionally decreases work counters, as explained in Section 2.3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:5

To balance this tradeoff, we set c to be a function of load ρ:

c = 1 +
1

1 + ln 1

1−ρ

. (2)

This particular value of c is chosen to enable the heavy-traffic optimality proof for any dispatching

policy satisfying guardrails.

2.2 Guarded Policies: How to Augment Dispatching Policies with Guardrails
Guardrails as described in Definition 1 are a set of constraints on dispatching policies that we

will use to guarantee bounds on mean response time (see Section 4). However, the constraints

alone do not give a complete dispatching policy. To define a concrete dispatching policy satisfying

guardrails, we start with an arbitrary dispatching policy P and augment it to create a new policy,

called Guarded-P (G-P), which satisfies guardrails.

Roughly speaking, G-P tries to dispatch according to P, but if dispatching to P’s favorite server

would violate guardrails, G-P considers P’s second-favorite server, and so on. Below are guarded

versions of some common dispatching policies:

• G-Random dispatches to a random server among those which satisfy guardrails.

• G-LWL dispatches to the server with the least remaining work among those which satisfy

guardrails.

• Round-Robin (RR) can be seen as always dispatching to the server that has least recently

received a job, so G-RR dispatches to the server that has least recently received a job among

those which satisfy guardrails.

Given an arbitrary dispatching policy P, Algorithm 1 formally defines G-P. We assume that P is

specified by procedure Dispatch
P
which, when passed a job of size x and a set of servers S, returns

a server in S to which P would dispatch a job of size x . The key to Algorithm 1 is that instead

of calling Dispatch
P
with the set of all servers, we pass it a restricted set of servers Ssafe ⊆ S

such that dispatching to any server in Ssafe will satisfy guardrails. Ssafe is never empty because

x ≤ дcr+1, so Ssafe will always contain the server s ′ of minimal Gr
s ′ .

Algorithm 1 is phrased in terms of for loops over all ranks r . While there are infinitely many

ranks in theory, it is simple to represent all of the work counters in finite space by representing

most of them implicitly.

2.3 Resets
Algorithm 1 includes a procedure, Reset

G-P
, which we have not yet explained. As defined so far,

guardrails effectively spread out small jobs across the servers, but they have an unfortunate side

effect: they sometimes prevent dispatches to empty servers. This is because the work counters Gr
s

as defined so far depend only on the dispatching history, not the current server state.

Because dispatching to empty servers is desirable, we would like to ensure that dispatching to an

empty server never violates guardrails. We accomplish this by having servers reset whenever they
becomes empty. When a server s resets, for each rank r , we decrease Gr

s to match the minimum

among all rank r work counters. Because all rank r jobs have size less than дcr+1, by Definition 1,

dispatching to a server that has just reset will never violate guardrails.

3 TECHNICAL SUMMARY
3.1 System Model
We will study a k-server load balancing system with Poisson arrivals at rate λ jobs per second and

job size distribution X . Our optimality results (Theorem 2) assume that either

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:6 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

Algorithm 1 Guarded-P (G-P)

Given: dispatching policy P, tightness д ≥ 1, set of servers S, and rank width c = 1 + 1

1+ln 1

1−ρ

Call when: the system starts

procedure InitializeG-P()
for each rank r and each server s ∈ S do

Gr
s ← 0

Call when: a job of size x arrives

procedure DispatchG-P
(x)

r ← ⌊logc x⌋
Gmin ← mins ′∈S G

r
s ′

Ssafe ← {s
′ ∈ S | Gr

s ′ + x ≤ Gmin + дc
r+1}

s ← Dispatch
P(x ,Ssafe)

Gr
s ← Gr

s + x
return s

Call when: server s becomes empty

procedure ResetG-P(s)
for each rank r do

Gr
s ← mins ′∈S G

r
s ′

• X has bounded maximum size or

• the tail of X has upper Matuszewska index
2
less than −2.

This disjunctive assumption is roughly equivalent to finite variance. We adopt the convention

that each of the k servers serves jobs at speed 1/k . As a result, a job of size x requires kx service

time to complete. We have chosen to define the speed of a server this way because we will later

compare the k-server system with a single server system of speed 1, and this convention allows us

to directly apply standard results on single server systems. We define the system load ρ for both a

single-server system and the k-server system by

ρ = λE[X] < 1.

Load does not depend on k because the total service rate of all k servers combined is 1.

Throughout, we assume that the dispatching policy is a guarded policy, as defined in Algorithm 1.

We consider two different scheduling policies that might be used at the servers:

SRPT The policy that serves the job of least remaining size.

Priority-c The preemptive class-based priority policy in which a job’s class is its rank, as defined
by (1). That is, a job of size x has rank r = ⌊logc x⌋, and Priority-c serves the job of minimal

rank. Within each rank, jobs are served FCFS.

3.2 Theorem Overview
Our overall goal is to prove, for any dispatching policy P, the asymptotic optimality of the policy

Guarded-P (G-P) with respect to mean response time, given SRPT scheduling at the servers. We

refer to this joint dispatch/scheduling policy as G-P/SRPT.

2
See Appendix A.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:7

Rather than studyingG-P/SRPT directly, we instead boundmean response time under G-P/Priority-c.
By the optimality of SRPT scheduling [25], the mean response time under G-P/Priority-c gives an
upper bound on the mean response time under G-P/SRPT.

Theorem 1. For any dispatching policy P, consider the policy G-P with tightness д. The expected
response time for a job of size x under G-P/Priority-c is bounded by

E[T (x)]G-P/Priority-c ≤
λ
2

∫ cr+1

0
t2 fX (t)dt

(1 − ρcr)(1 − ρcr+1)
+
(4c + 2)дk cr+1

c−1 + kx

(1 − ρcr)
,

where

• fX (·) is the probability density function of X ,

• c is the guardrail rank width

• r = ⌊logc x⌋ is the rank of a job of size x , and

• ρy = λ
∫ y
0
t fX (t)dt is the load due to jobs of size ≤ y.

We prove Theorem 1 in Section 4.3.

Using the bound in Theorem 1, we show that the mean response time of the G-P/Priority-c
system converges to that of a single-server SRPT system in the heavy-traffic limit.

Theorem 2. Consider a single-server SRPT system whose single server is k times as fast as each

server in the load balancing system. For any dispatching policy P, consider the policy G-P with any

constant tightness. Then for any size distribution X which is either (i) bounded or (ii) unbounded

with tail having upper Matuszewska index
3
less than −2, the mean response times of G-P/SRPT,

G-P/Priority-c, and (single-server) SRPT converge as load approaches capacity:

lim

ρ→1

E[T]G-P/SRPT

E[T]SRPT
=

E[T]G-P/Priority-c

E[T]SRPT
= 1.

We prove Theorem 2 in Section 4.4.

Theorem 2 relates the mean response times of G-P/SRPT and single-server SRPT, which has the

optimal mean response time among all single-server policies [25]. But a single-server system can

simulate a load balancing system running any joint dispatching/scheduling policy P
′
/S
′
. As a result,

the mean response time under single-server SRPT is a lower bound for the mean response time

under P
′
/S
′
.

Using that bound, Theorem 2 implies the following relationship between the mean response

times of G-P/SRPT and P
′
/S
′
.

Corollary 1. For any dispatching policy P consider the policy G-P with any constant tightness.

Consider any joint dispatching/scheduling policy P
′
/S
′
. Then for any size distribution X which is

either (i) bounded or (ii) unbounded with tail having upper Matuszewska index
3
less than −2, the

mean response times of G-P/SRPT and G-P/Priority-c are at least as small as the mean response

time of P
′
/S
′
as load approaches capacity:

lim

ρ→1

E[T]G-P/SRPT

E[T]P′/S′
=

E[T]G-P/Priority-c

E[T]P′/S′
≤ 1.

3
See Appendix A.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:8 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

3.3 Relationship to Prior Work
Our guardrails provide the first mechanism to augment an arbitrary dispatching policy to ensure

size balance at all job size scales. Moreover, we give the first bound on the mean response time

of load balancing systems with SRPT scheduling at the servers. Using this bound, we prove that

guarded dispatching policies have asymptotically optimal mean response time in the ρ → 1 limit

for any constant number of servers. Our guarded policies are the first dispatching policies known

to have this property for general job size distributions.

We are not the first to consider load balancing systems with SRPT scheduling at the servers.

Avrahami and Azar [3] consider a problem analogous to ours but in a worst-case setting, assuming

adversarial arrival times and job sizes, in contrast to our stochastic setting. Their dispatching policy,

which they call IMD, divides jobs into size ranks in a manner similar to our size ranks, except

with the width of each rank set to c = 2. IMD dispatches each rank r job to the server that has

received the least work of rank r jobs in the past. Put another way, IMD is the policy that keeps

maximally tight guardrails with no other underlying policy. Avrahami and Azar prove that IMD is

O(log P) competitive with an optimal migratory offline algorithm, where P is the ratio between the

largest and smallest job sizes in this system. Note that P can be arbitrarily large for general job size

distributions. Unfortunately, the O(log P) competitive ratio is optimal for any online dispatching

policy in the worst-case setting [18]. Our result is much stronger thanks to our stochastic setting.

Down and Wu [9] also consider a stochastic setting with SRPT scheduling at the servers, and

they also propose a dispatching policy that balances jobs of different sizes across the servers. Their

analysis does not result in any formula for mean response time but instead uses a diffusion limit

argument to show optimality in heavy traffic. However, this limits their results to discrete job size

distributions, thus exlcuding many practically important continuous job size distributions. In fact,

Down and Wu [9, Section 5] observe empirically that their policy performs poorly for Bounded

Pareto job size distributions. In contrast, our analysis shows that any guarded dispatching policy is

heavy-traffic optimal for general job size distributions, including Bounded Pareto (see Figure 4).

Finally, the Down and Wu [9] result provides no insight into mean response time outside of the

heavy traffic regime, whereas we derive a mean response time bound that is valid for all loads.

4 ANALYSIS OF GUARDED POLICIES
In this section, we analytically bound the mean response time of a load balancing system using

an arbitrary guarded dispatching policy G-P paired with SRPT scheduling. We then show that our

bound implies that G-P/SRPT minimizes mean response time in heavy traffic.

4.1 Preliminaries and Notation
We use a tagged job analysis: we analyze the expected response time of a particular “tagged” job,

which we call j, arriving to a steady-state system. The expected response time of j is equal to the

system’s mean response time by the PASTA property [30].

Instead of studying G-P/SRPT directly, we analyze G-P/Priority-c, which yields an upper bound

on the mean response time under G-P/SRPT. Studying Priority-c simplifies the analysis because

the priority classes of Priority-c match the ranks used by guardrails.

Suppose that j has rank r and is dispatched to server s . Under Priority-c scheduling, there are
two types of work that might delay job j:

• The current relevant work at server s when j arrives. This is the total amount of remaining

work at server s due to jobs of rank ≤ r .
• The future relevant work due to arriving jobs dispatched to server s while j is in the system.

These are the jobs dispatched to s of rank < r (that is, rank ≤ r − 1).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:9

We use the following notation, where “rank r work” denotes work due to jobs of rank r .

• W r
s (t) denotes the current amount of rank r work at server s at time t .

• V r
s (t) denotes the total amount of rank r work that has ever been dispatched to server s up to

time t . In particular, the amount of rank r work dispatched to s during a time interval (t1, t2)
is V r

s (t2) −V
r
s (t1).

• Gr
s (t) denotes the rank r guardrail work counter for server s at time t (see Algorithm 1).

Specifically, Gr
s (t) is defined as follows:

4

– If a rank r job of size x is dispatched to server s at time t , we set Gr
s (t
+) = Gr

s (t
−) + x .

– If a server s becomes empty of all jobs at time t , we set Gr
s (t
+) = mins ′ G

r
s ′(t
−), where s ′

ranges over all servers. We call this a reset of server s .
– Otherwise, Gr

s (t) does not change.

We writeW ≤r
s (t), V

≤r
s (t), andG

≤r
s (t) to denote the corresponding quantities where we consider all

ranks ≤ r , rather than just rank r , and similarly for superscript < r .
Occasionally, we will be talking about the total work in the system, or the total work that has

arrived, summed over all servers. In that case, we will drop the subscript s , writingW ≤r (t) or
V ≤r (t). Finally, we writeW ≤r

to denote the stationary distribution of the amount of rank ≤ r work
in the whole system.

4.2 Bounding Response Time: Key Steps
Our goal in this section is to bound the expected response time of a tagged job j under G-P/Priority-c.
We assume that j has size x and rank r = ⌊logc x⌋. We first bound current relevant work, then

move on to bound future relevant work.

We begin by showing that guardrails ensure that any two servers have a similar amount of

remaining rank ≤ r work.

Lemma 1. For any dispatching policy P, consider the dispatching policy G-P with tightness д.
In a G-P/Priority-c system, the difference in remaining rank ≤ r work between any two servers s
and s ′ at any time t is bounded by

W ≤r
s (t) −W

≤r
s ′ (t) ≤

2дcr+2

c − 1
,

where c is the guardrail rank width.

We prove Lemma 1 in Section 4.3.1.

Roughly speaking, Lemma 1 shows that guarded policies do a good job of spreading out rank ≤ r
work across the servers. This is important because if the rank ≤ r work is spread out well, then

whenever there is a large amount of rank ≤ r work in the system, all the servers are doing rank ≤ r
work. This allows us to bound the amount of rank ≤ r work in the k-server G-P/Priority-c system
in terms of the remaining rank ≤ r work in an M/G/1/Priority-c system with a single server that

runs k times as fast.

Lemma 2. For any dispatching policy P, consider the dispatching policy G-P with tightness д.
The total amount of remaining rank ≤ r work in a G-P/Priority-c system is stochastically bounded

relative to the remaining rank ≤ r work in a M/G/1/Priority-c system whose server runs k times as

fast:

W ≤r ≤st W
≤r
M/G/1/Priority-c +

2дkcr+2

c − 1
,

where c is the guardrail rank width.

4
The notations t− and t+ below refer to “just before” and “just after” time t . More formally, they refer to the left and right

limits, respectively, of an expression that is piecewise-continuous in t .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:10 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

We prove Lemma 2 in Section 4.3.2.

Combining Lemmas 1 and 2 yields a bound on the amount of remaining rank ≤ r work at any

server s , thus bounding the current relevant work.
We now turn to bounding future relevant work. Suppose that the tagged job j is dispatched to

server s . The fact that guardrails spread out relevant work across the servers means that while j
is in the system s will not receive much more rank < r work than other servers, thus bounding

future relevant work. Combining this with our bound on current relevant work yields the following

bound on j’s response time.

Lemma 3. For any dispatching policy P, consider the dispatching policy G-P with tightness д. In
a G-P/Priority-c system, the response time of a job of size x is stochastically bounded by

T (x) ≤st B<r

(
W ≤r

M/G/1/Priority-c +
(4c + 2)дkcr+1

c − 1
+ kx

)
,

where c is the guardrail rank width, r = ⌊logc x⌋ is the rank of the job, and B<r (w) is the length of

a busy period comprising only jobs of rank < r started by workw .

We prove Lemma 3 in Section 4.3.3.

Taking expectations in Lemma 3 and applying the well-known formula for E[W ≤r
M/G/1/Priority-c],

we obtain Theorem 1.

Theorem 1. For any dispatching policy P, consider the policy G-P with tightness д. The expected
response time for a job of size x under G-P/Priority-c is bounded by

E[T (x)]G-P/Priority-c ≤
λ
2

∫ cr+1

0
t2 fX (t)dt

(1 − ρcr)(1 − ρcr+1)
+
(4c + 2)дk cr+1

c−1 + kx

(1 − ρcr)
,

where
• fX (·) is the probability density function of X ,
• c is the guardrail rank width
• r = ⌊logc x⌋ is the rank of a job of size x , and
• ρy = λ

∫ y
0
t fX (t)dt is the load due to jobs of size ≤ y.

We prove Theorem 1 in Section 4.3.4.

4.3 Bounding Response Time: Proofs
4.3.1 Proof of Lemma 1.

Lemma 1. For any dispatching policy P, consider the dispatching policy G-P with tightness д. In a
G-P/Priority-c system, the difference in remaining rank ≤ r work between any two servers s and s ′ at
any time t is bounded by

W ≤r
s (t) −W

≤r
s ′ (t) ≤

2дcr+2

c − 1
,

where c is the guardrail rank width.

Proof. Let t0 be the most recent time up to time t when server s was empty of rank ≤ r work.
Note that t0 may equal t . We will bound the difference in rank ≤ r work at the two servers at time

t by comparison with time t0.
The remaining rank ≤ r work present at time t is

(i) the remaining rank ≤ r work present at time t0
(ii) plus rank ≤ r work due to arrivals in the interval [t0, t]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:11

(iii) minus rank ≤ r work processed during the interval.

We consider these three quantities first for server s , then for server s ′.
We begin with server s:

(i) By the definition of t0, there is no remaining rank ≤ r work at server s .
(ii) The amount of work that arrives to server s over the interval [t0, t] is V

≤r
s (t) −V

≤r
s (t0).

(iii) The amount of rank ≤ r work processed during the interval [t0, t] is equal to
t−t0
k , because the

server s processes work at speed 1/k , s has rank ≤ r work available throughout the interval,

and the Priority-c scheduling policy always prioritizes lower rank work.

These quantities give us the remaining rank ≤ r work at server s at time t :

W ≤r
s (t) = (V

≤r
s (t) −V

≤r
s (t0)) −

t − t0
k
. (3)

Because server s was never empty at any time during (t0, t], the guardrail work counters were never
reset to the system-wide minimums during [t0, t]. As a result, the changes in G≤rs (·) and V

≤r
s (·)

over the interval [t0, t] must be equal. We can apply this fact to (3):

W ≤r
s (t) = (G

≤r
s (t) −G

≤r
s (t0)) −

t − t0
k
. (4)

We now turn to server s ′:

(i) The remaining rank ≤ r work present at server s ′ at time t0 is non-negative.
(ii) The amount of work that arrives to server s over the interval [t0, t] is V

≤r
s ′ (t) −V

≤r
s ′ (t0).

(iii) The amount of rank ≤ r work processed over the interval [t0, t] is at most
t−t0
k .

Therefore, we may lower bound the remaining rank ≤ r work at server s ′ at time t :

W ≤r
s ′ (t) ≥ (V

≤r
s ′ (t) −V

≤r
s ′ (t0)) −

t − t0
k
. (5)

The change inG≤rs ′ (·) over the interval [t0, t] is no more than the change in V ≤rs ′ (·) over the same

interval, since any reset to the system-wide minimum can only lead to a decrease in G≤rs ′ (t). We

can apply this fact to (5):

W ≤r
s ′ (t) ≥ (G

≤r
s ′ (t) −G

≤r
s ′ (t0)) −

t − t0
k
. (6)

Combining (4), (6), and the guardrail constraint in Definition 1 yields the desired bound:

W ≤r
s (t) −W

≤r
s ′ (t) ≤ (G

≤r
s (t) −G

≤r
s (t0)) − (G

≤r
s ′ (t) −G

≤r
s ′ (t0))

≤ |G≤rs (t) −G
≤r
s ′ (t)| + |G

≤r
s (t0) −G

≤r
s ′ (t0)|

=

r∑
q=−∞

(|G
q
s (t) −G

q
s ′(t)| + |G

q
s ′(t0) −G

q
s (t0)|)

≤

r∑
q=−∞

2дcq+1

=
2дcr+2

c − 1
. □

4.3.2 Proof of Lemma 2.

Lemma 2. For any dispatching policy P, consider the dispatching policy G-P with tightness д. The
total amount of remaining rank ≤ r work in a G-P/Priority-c system is stochastically bounded relative

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:12 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

to the remaining rank ≤ r work in a M/G/1/Priority-c system whose server runs k times as fast:

W ≤r ≤st W
≤r
M/G/1/Priority-c +

2дkcr+2

c − 1
,

where c is the guardrail rank width.

Proof. We consider two coupled systems receiving the same arrivals:

• a G-P/Priority-c system where each of the k servers runs at speed 1/k , and
• a M/G/1/Priority-c system where the single server runs at speed 1.

We will refer to the total amount of remaining rank ≤ r work in the G-P/Priority-c system as

W ≤r (t), and the total amount of remaining rank ≤ r work in the M/G/1/Priority-c system as

W ≤r
M/G/1/Priority-c(t).

It suffices to show that at any time t , we have the following bound on the difference in the total

amounts of remaining rank ≤ r work between the two systems:

W ≤r (t) ≤W ≤r
M/G/1/Priority-c(t) +

2дkcr+2

c − 1
. (7)

To prove (7), we consider two cases:

(i) At least one server in the G-P/Priority-c system that has no remaining rank ≤ r work at

time t .
(ii) All servers in the G-P/Priority-c system have remaining rank ≤ r work at time t .

In case (i), suppose server s ′ in the G-P/Priority-c system has no remaining rank ≤ r work at

time t . By Lemma 1, we know that at all servers s ,

W ≤r
s (t) =W

≤r
s (t) −W

≤r
s ′ (t) ≤

2дcr+2

c − 1
.

Summing over all k servers implies (7).

We now turn to case (ii). Let t0 be the most recent time before t when a G-P/Priority-c server
had no remaining rank ≤ r work. Note that case (i) applies at time t0. Therefore, it suffices to show

that the difference in remaining rank ≤ r work between the two systems is no more at time t than
at time t0:

W ≤r (t) −W ≤r
M/G/1/Priority-c(t) ≤W

≤r (t0) −W
≤r
M/G/1/Priority-c(t0). (8)

By definition of t0, for the duration of entire time interval (t0, t), each of the k servers in the

G-P/Priority-c system processes rank ≤ r work at speed 1/k , for a total of t − t0 work. This is at
least as much rank ≤ r work as the M/G/1/Priority-c system processes during (t0, t), because the
single server’s speed is 1. Due to coupling, the two systems receive the same amount of rank ≤ r
work during (t0, t), implying (8). □

4.3.3 Proof of Lemma 3.

Lemma 3. For any dispatching policy P, consider the dispatching policy G-P with tightness д. In a
G-P/Priority-c system, the response time of a job of size x is stochastically bounded by

T (x) ≤st B<r

(
W ≤r

M/G/1/Priority-c +
(4c + 2)дkcr+1

c − 1
+ kx

)
,

where c is the guardrail rank width, r = ⌊logc x⌋ is the rank of the job, and B<r (w) is the length of a
busy period comprising only jobs of rank < r started by workw .

Proof. Let

• j be the tagged job,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:13

• x be j’s size and r = ⌊logc x⌋ be j’s rank,
• aj and dj be j’s arrival and departure times, respectively, and

• s be the server to which j is dispatched.

The time at which job j departs, dj , can be calculated as the time required for server s to complete

the following work:

• relevant work already present at time aj , namelyW ≤r
s (aj);

• plus all relevant work that arrives at s while j is in the system, namely V <r
s (t) −V

<r
s (aj);

• plus j’s size, namely x .

Let t ≥ aj be an arbitrary time while j is in the system. Because each server runs at speed 1/k , the
amount of work that server s has completed by time t is (t − aj)/k . Writing

Zs (t) =W
≤r
s (aj) + (V

<r
s (t) −V

<r
s (aj))

gives the following expression for j’s departure time dj :

dj = inf

{
t

���� t − ajk
≥ Zs (t) + x

}
. (9)

To bound dj , we first bound Zs (t). Let

Z (t) =
1

k

∑
s ′

Zs ′(t) (10)

be the average value of Zs ′(t) over all servers s
′
, and let

Zmaxdiff

s (t) = max

s ′
(Zs (t) − Zs ′(t))

be the maximum difference between Zs (t) and Zs ′(t) over all servers s
′
. Observe that

Zs (t) ≤ Z (t) + Zmaxdiff

s (t).

Combining this with (9) gives a bound on dj :

dj ≤ inf

{
t

���� t − ajk
≥ Z (t) + Zmaxdiff

s (t) + x

}
. (11)

To simplify (11), our next step is to bound Zmaxdiff

s (t). We start by expanding Zs (t) − Zs ′(t):

Zs (t) − Zs ′(t) = (W
≤r
s (aj) −W

≤r
s ′ (aj)) + (V

<r
s (t) −V

<r
s (aj)) − (V

<r
s ′ (t) −V

<r
s ′ (aj)). (12)

We are left with an expression in terms of the rank < r work dispatched to each server. We would

like to turn this into an expression in terms of guardrail work counters, which will allow us to

apply the constraints given by Definition 1. Consider the time interval (aj , t). Job j is present at
server s for the duration of the interval, so server s does not reset, implying

V <r
s (t) −V

<r
s (aj) = G

<r
s (t) −G

<r
s (aj). (13)

In contrast, server s ′ may reset during (aj , t). When a reset occurs at some time treset, G
<r
s ′ (treset)

decreases while V <r
s ′ (treset) stays constant. Furthermore, G<r

s ′ (t
′) and V <r

s ′ (t
′) change in the same

way at all other times t ′, so

V <r
s ′ (t) −V

<r
s ′ (aj) ≥ G<r

s ′ (t) −G
<r
s ′ (aj). (14)

Applying (13), (14), and Lemma 1 to (12) yields the bound

Zs (t) − Zs ′(t) ≤
2дcr+2

c − 1
+ (G<r

s (t) −G
<r
s (aj)) − (G

<r
s ′ (t) −G

<r
s ′ (aj)).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:14 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

Because G-P is a guarded policy, we can apply the guardrail constraints from Definition 1:

Zs (t) − Zs ′(t) ≤
2дcr+2

c − 1
+ (G<r

s (t) −G
<r
s ′ (t)) − (G

<r
s (aj) −G

<r
s ′ (aj))

=
2дcr+2

c − 1
+

r−1∑
q=−∞

(G
q
s (t) −G

q
s ′(t)) + (G

q
s ′(aj) −G

q
s (aj))

≤
2дcr+2

c − 1
+

r−1∑
q=−∞

(дcq+1 + дcq+1)

=
(2c + 2)дcr+1

c − 1
.

We have bounded Zs (t) − Zs ′(t) for arbitrary s
′
and hence bounded Zmaxdiff

s (t). Substituting into

(11) yields

dj ≤ inf

{
t

���� t − ajk
≥ Z (t) +

(2c + 2)дcr+1

c − 1
+ x

}
.

Recalling the definition of Z (t) from (10) gives us

dj ≤ inf

{
t

���� t − aj ≥W ≤r (aj) + (V
<r (t) −V <r (aj)) +

(2c + 2)дkcr+1

c − 1
+ kx

}
.

Because the arrival process to the overall system is a Poisson process, we can rewrite this in terms

of a “relevant” busy period, meaning one containing only jobs of rank < r :

dj − aj ≤ B<r

(
W ≤r (aj) +

(2c + 2)дkcr+1

c − 1
+ kx

)
.

The Poisson arrival process also implies, by the PASTA property [30], that the amount of relevant

work j sees on arrival, namelyW ≤r (aj), is drawn from the steady-state distribution, namelyW ≤r
,

so

T (x) ≤st B<r

(
W ≤r +

(2c + 2)дkcr+1

c − 1
+ kx

)
.

Applying Lemma 2 toW ≤r
yields the desired bound. □

Remark 1. Note we can prove Lemmas 1 and 3 using only the following properties of resets:

• A server only resets when it is empty.

• When a server resets, its work counters do not increase.

• The guardrail constraints in Definition 1 continue to hold after each reset.

In particular, this means that resets are optional for proving our response time bounds, so the

bounds hold even if the dispatcher chooses to omit some resets. This is helpful when implementing

guarded dispatching policies in large systems (see Sections 6.1 and 6.2).

4.3.4 Proof of Theorem 1.

Theorem 1. For any dispatching policy P, consider the policy G-P with tightness д. The expected
response time for a job of size x under G-P/Priority-c is bounded by

E[T (x)]G-P/Priority-c ≤
λ
2

∫ cr+1

0
t2 fX (t)dt

(1 − ρcr)(1 − ρcr+1)
+
(4c + 2)дk cr+1

c−1 + kx

(1 − ρcr)
,

where
• fX (·) is the probability density function of X ,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:15

• c is the guardrail rank width
• r = ⌊logc x⌋ is the rank of a job of size x , and
• ρy = λ

∫ y
0
t fX (t)dt is the load due to jobs of size ≤ y.

Proof. Recall the conclusion of Lemma 3,

T (x) ≤ B<r

(
W ≤r

M/G/1/Priority-c +
(4c + 2)дkcr+1

c − 1
+ kx

)
. (15)

Standard results on busy periods [13] state that

E[B<r (Y)] =
E[Y]

1 − ρcr
,

and standard results on the single-server Priority-c system[13] give the expected steady-state

remaining rank ≤ r work:

E[W ≤r
M/G/1/Priority-c] =

λ
2

∫ cr+1

0
t2 fX (t)dt

(1 − ρcr+1)
.

Taking expectations of (15) and applying these standard results yields the desired bound. □

4.4 Asymptotic Behavior of Guarded Policies
Theorem 2. Consider a single-server SRPT system whose single server is k times as fast as each

server in the load balancing system. For any dispatching policy P, consider the policy G-P with any
constant tightness. Then for any size distribution X which is either (i) bounded or (ii) unbounded
with tail having upper Matuszewska index5 less than −2, the mean response times of G-P/SRPT,
G-P/Priority-c, and (single-server) SRPT converge as load approaches capacity:

lim

ρ→1

E[T]G-P/SRPT

E[T]SRPT
=

E[T]G-P/Priority-c

E[T]SRPT
= 1.

Proof. We start with the bound on the mean response time of G-P/Priority-c from Theorem 1:

E[T (x)]G-P/Priority-c ≤
λ
2

∫ cr+1

0
t2 fX (t)dt

(1 − ρcr)(1 − ρcr+1)
+
(4c + 2)дk cr+1

c−1 + kx

(1 − ρcr)
. (16)

Note that the first term in this expression also appears in the expression for mean response time

under single-server Priority-c [13]:

E[T (x)]Priority-c =
λ
2

∫ cr+1

0
t2 fX (t)dt

(1 − ρcr)(1 − ρcr+1)
+

x

(1 − ρcr)
.

Therefore, let us simplify (16):

E[T (x)]G-P/Priority-c ≤ E[T (x)]Priority-c +
(4c + 2)дk cr+1

c−1 + (k − 1)x

(1 − ρcr)
. (17)

We may simplify this bound by combining constant terms. Note that c ≤ 2 and x ≥ cr . Let
m = 20дk + k − 1. Then

mx ≥ (4c + 2)дkcr+1 + (k − 1)(c − 1)x .

Thus, we may simplify (17) further:

E[T (x)]G-P/Priority-c ≤ E[T (x)]Priority-c +
mx

(c − 1)(1 − ρcr)
.

5
See Appendix A.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:16 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

We want to relate this to something more similar to the mean response time under SRPT. A

convenient policy for comparison with Priority-c that is similar enough to SRPT is Preemptive-

Shortest-Job-First (PSJF), which prioritizes jobs according to their original size.

We now use Lemma 4 from Appendix B, which says that

E[T]Priority-c ≤ (c + 2
√
c − 1)E[T]PSJF.

For brevity, let

b(c) = (c + 2
√
c − 1).

Using Lemma 4, we find that

E[T (x)]G-P/Priority-c ≤ b(c)E[T]PSJF +
mx

(c − 1)(1 − ρcr)
.

Note that x ≥ cr , so ρx ≥ ρcr , so

E[T (x)]G-P/Priority-c ≤ b(c)E[T]PSJF +
mx

(c − 1)(1 − ρx)
.

Based on standard results on mean response time under PSJF and SRPT [13], we know that

E[T (x)]PSJF ≤ E[T (x)]SRPT +
x

1 − ρx
.

Letm′ =m + 4. Because c ≤ 2, we know b(c) · (c − 1) ≤ 4. Thus,

E[T (x)]G-P/Priority-c ≤ b(c)E[T (x)]SRPT +
m′x

(c − 1)(1 − ρx)
. (18)

Next, we take the expectation of (18) over all job sizes x . To do so, we need to integrate∫ ∞

0

x

1 − ρx
fX (x)dx ,

where fX (·) is the probability density function of X . To compute the integral, we make a change of

variables from x to ρx , using the following facts:

ρx =

∫ x

0

λt fX (t)dt

dρx
dx
= λx fX (x)

ρ0 = 0

lim

x→∞
ρx = ρ .

Given this change of variables, we compute∫ ∞

0

x

1 − ρx
fX (x)dx =

∫ ρ

0

1

λ(1 − ρx)
dρx =

1

λ
ln

(
1

1 − ρ

)
.

Applying this to (18), we find that

E[T]G-P/Priority-c ≤ b(c)E[T]SRPT +
m′

λ(c − 1)
ln

(
1

1 − ρ

)
.

Dividing through by E[T]SRPT, we find that

E[T]G-P/Priority-c

E[T]SRPT
≤ b(c) +

m′ ln 1

1−ρ

λ(c − 1)E[T]SRPT
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:17

Plugging in the value of c in terms of ρ from (2),

E[T]G-P/Priority-c

E[T]SRPT
≤ b(c) +

m′ · (ln2 1

1−ρ + ln
1

1−ρ)

λE[T]SRPT
.

We now take the limit of the above ratio as ρ → 1. In this limit,

• ln
1

1−ρ diverges,

• λ approaches E[X], and
• c approaches 1, so b(c) also approaches 1:

lim

c→1+
c + 2
√
c − 1 = 1.

Therefore, lettingm′′ = 2m′/E[X],

lim

ρ→1

E[T]G-P/Priority-c

E[T]SRPT
≤ lim

ρ→1

(
1 +

m′′ ln2 1

1−ρ

E[T]SRPT

)
. (19)

Recall now that we assume that X is either (i) bounded or (ii) unbounded with tail function

having upper Matuszewska index
6
less than -2. In Lemma 5 in Appendix C, we use a result of Lin

et al. [20] to show that in either case,

lim

ρ→1

ln
2 1

1−ρ

E[T]SRPT
= 0.

Applying this to (19), we find that

lim

ρ→1

E[T]G-P/Priority-c

E[T]SRPT
≤ 1. (20)

SRPT yields optimal mean response time over all single-server policies [25], and a joint dispatch-

ing/scheduling policy can be emulated on a single server, so (20) is in fact an equality, as desired.

The optimality of SRPT’s mean response time also implies that the mean response time under

G-P/SRPT is no more than the mean response time under G-P/Priority-c. As a result,

lim

ρ→1

E[T]G-P/SRPT

E[T]SRPT
= 1. □

4.5 Optimality of Guarded Policies
As a simple corollary of Theorem 2, we find that for any dispatching policy P, G-P/SRPT has optimal

mean response time in the heavy traffic limit over all joint dispatching/scheduling policies.

Corollary 1. For any dispatching policy P consider the policy G-P with any constant tightness.
Consider any joint dispatching/scheduling policy P′/S′. Then for any size distribution X which is either
(i) bounded or (ii) unbounded with tail having upper Matuszewska index6 less than −2, the mean
response times of G-P/SRPT and G-P/Priority-c are at least as small as the mean response time of P′/S′

as load approaches capacity:

lim

ρ→1

E[T]G-P/SRPT

E[T]P′/S′
=

E[T]G-P/Priority-c

E[T]P′/S′
≤ 1.

Proof. SRPT has optimal mean response time among all single-server policies [25], and any

joint dispatching/scheduling policy can be emulated on a single server, so E[T]SRPT ≤ E[T]P
′
/S
′

. The

result thus follows from Theorem 2. □

6
See Appendix A.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:18 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

SITA-E LWL Random RR JSQ-2 JSQ FPI
Dispatching policy

0

50

100

150

200

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

533.5 g=1
g=2
g=4
No guardrails

(a) ρ = 0.98

SITA-E LWL Random RR JSQ-2 JSQ FPI
Dispatching policy

0

10

20

30

40

50

60

70

80

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

g=1
g=2
g=4
No guardrails

(b) ρ = 0.80

Fig. 4. At heavy load ρ = 0.98, adding guardrails significantly reduces the mean response times of SITA-E,
LWL, Random, and RR, while leaving the mean response times of JSQ, JSQ-2, and FPI nearly unchanged.
At more moderate load ρ = 0.8, adding guardrails significantly reduces the mean response times of SITA-E,
Random, RR, and JSQ-2 while leaving the mean response times of LWL, JSQ, and FPI nearly unchanged. The
smallest tightness, д = 1, shows the best performance for all policies except JSQ and FPI, where it doesn’t
really matter. Simulation uses k = 10 servers. Size distribution shown is Bounded Pareto with α = 1.5 and
range [1, 106]. C2 ∼ 333. 40 trials simulated, 95% confidence intervals shown.

5 SIMULATION
We have shown that in heavy traffic, adding guardrails to any dispatching policy gives it optimal

mean response time. We now turn to investigating loads outside the heavy-traffic regime. While the

mean response time upper bound in Theorem 1 holds for all loads, it is only tight in the heavy-traffic

limit. We therefore focus on simulation.

We consider the following dispatching policies, each paired with SRPT scheduling at the servers:

Random The policy which dispatches each job to a uniformly random server.

Round-Robin (RR) The policy which dispatches each job to the server which least recently

received a job.

Least-Work-Left (LWL) The policy which dispatches each job to the server with the least re-

maining work.

Size-Interval-Task-Assignment (SITA) The policywhich classifies jobs into size intervals (small,

medium, large, etc.) and dispatches all small jobs to one server, all medium jobs to another

server, etc. Specifically, we simulate SITA-E, the SITA policy which chooses the size intervals

to equalize the expected load at each server.

Join-Shortest-Queue (JSQ) The policy which dispatches each job to the server with the fewest

jobs present.

Join-Shortest-Queue-d (JSQ-d) The policy which samples d uniformly random servers on each

arrival and dispatches the job to the server with the fewest jobs present among those d . We

focus on the d = 2 case.

First Policy Iteration (FPI) The first policy iteration heuristic, as described by Hyytiä et al. [17]

in the setting of dispatching to SRPT servers. FPI dispatches each job to the server that would

be optimal if all jobs thereafter were dispatched randomly. Hyytiä et al.’s derivation of the FPI

policy assumes that the job size distribution is continuous, and specifically that two different

jobs almost surely have different sizes. As a result, we only implement the FPI policy for the

Bounded Pareto distribution, shown in Figure 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:19

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

20

40

60

80

100

120

140

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

263.4 621.5 g=1
g=2
g=4
No guardrails

(a) ρ = 0.98

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

10

20

30

40

50

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

99.9 g=1
g=2
g=4
No guardrails

(b) ρ = 0.80

Fig. 5. At heavy load ρ = 0.98, adding guardrails significantly reduces the mean response time of SITA-E,
LWL, Random, and RR, while leaving the mean response times of JSQ and JSQ-2 nearly unchanged. At
more moderate load ρ = 0.8, adding guardrails significantly reduces the mean response times of SITA-E,
LWL, Random, RR, and JSQ-2, while leaving the mean response time of JSQ nearly unchanged. The smallest
tightness, д = 1, shows the best performance for all policies except JSQ, where it doesn’t really matter.
Simulation uses k = 10 servers. Size distribution shown is Bimodal with 99.95% size 1 jobs and 0.05% size
1000 jobs. C2 ∼ 221. 40 trials simulated, 95% confidence intervals shown.

5.1 Simulation Results
Figures 4 and 5 show the mean response time under all of the above dispatching policies with

SRPT scheduling at the servers. We omit the FPI policy from Figure 5, because that simulation’s

job size distribution is not continuous, and Hyytiä et al. do not derive the FPI policy for such

distributions [17]. We also show 95% confidence intervals for each mean response time. We consider

two different job size distributions: a Bounded Pareto distribution (see Figure 4) and a Bimodal

distribution (see Figure 5). In each case we show (a) very heavy traffic (ρ = 0.98) and (b) more

moderate traffic (ρ = 0.8). We augment each dispatching policy with guardrails of varying tightness,

д = 1, 2, and 4.

The high-level message seen in Figures 4 and 5 is that adding guardrails to dispatching policies

can greatly reduce their response times, even at more moderate loads. Simple dispatching policies

like Random and RR improve by 15 − 40% when ρ = 0.8 and 30 − 50% when ρ = 0.98, in the figures

shown. Other policies, like LWL and SITA-E, show even more dramatic improvement for certain

job size distributions. We find using tightness д = 1 is generally best.

The FPI heuristic of Hyytiä et al. [17] performs about equally well with or without guardrails.

Figure 4 shows that adding guardrails to FPI yields a slight reduction in mean response time at

ρ = 0.98, and has essentially no effect at ρ = 0.8. The FPI heuristic performs well in simulation, but

its only theoretical guarantee is it outperforms Random. Applying guardrails guarantees optimal

mean response time in heavy traffic, while maintaining or improving performance in simulation.

We observe that the JSQ dispatching policy performs well even without guardrails. In fact,

guardrails can be seen as helping all the other dispatching policies to improve their performance to

approach JSQ. We do not know of any guarantees on JSQ’s performance with SRPT servers, even

under heavy traffic, unless we add guardrails to JSQ. Figures 4 and 5 show that adding guardrails to

JSQ does not affect its performance much.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:20 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

In Appendix D, we simulate guarded policies under a variety of alternative system conditions.

We simulate systems with more servers, systems with lighter load and systems with different job

size distributions.

5.2 Simulation Discussion and Intuition
Recall from Section 2.1 the intuition behind guardrails: Guardrails force the dispatching policy

to spread out small jobs across all of the servers. Guardrails thereby ensure that the maximum

possible number of servers are working on the smallest jobs available.

Let us consider this intuition in light of each of the dispatching policies. SITA-E does the opposite

of spreading small jobs: It clumps the smallest jobs onto the same server. Therefore, G-SITA-E shows

a massive improvement. In particular, we want д to be as low as possible (д = 1), corresponding to

the greatest guardrail control, to prevent SITA-E from doing what it was designed to do.

Random and RR are better at spreading jobs naturally, but they still make mistakes. In particular,

Random and RR do not differentiate between jobs of different sizes and they do not observe the

state of the servers, so they only spread out the small jobs by chance. As a result, G-Random and

G-RR show sizable improvements. The tightest guardrails (д = 1) increase the spread of the small

jobs the most, and hence show the most improvement.

LWL does not spread out the small jobs. In fact, one huge job at a server can keep away all

of the small jobs for a long time. However, LWL is so efficient at using its servers that one does

not experience its shortcomings unless both load and job size variability are high. Under those

circumstances, LWL has very high mean response times. At load ρ = 0.98 with the Bimodal size

distribution shown in Figure 5, LWL’s mean response time is 7 times worse than that of Random.

Guardrails are particularly effective in these situations where LWL fails because they force small

jobs onto the servers with one large job. The tightest guardrails (д = 1) force small jobs onto those

servers most aggressively and hence show the lowest mean response time in Figures 4 and 5.

5.3 Comparing Simulation to Analytical Bounds
In Theorem 1 we established an analytical upper bound on the mean response time of any guarded

policy. This bound is tight in the limit as load ρ → 1, and implies the heavy traffic optimality of

any guarded policy.

However, this bound is not tight under the more moderate loads simulated in this section. Under

the system conditions shown in Figure 4, at load ρ = 0.8 and guardrail tightness д = 1, Theorem 1

implies that any guarded policy has mean response time at most 350, and that at load ρ = 0.98 the
mean response time is at most 700. The actual performance of guarded policies is much better than

this, as shown in Figure 4. Tightening our bound is a potential direction for future research.

6 PRACTICAL CONSIDERATIONS
We now discuss several useful properties of guardrails that help when implementing them in

practical systems. We also extend guardrails to cover a broader range of applications.

6.1 Robustness to Network Delays
Guardrails are relatively simple to implement: the dispatcher stores work counters for each rank and

each server, increasing the appropriate work counter whenever it dispatches a job (see Algorithm 1).

For the most part, the dispatcher does not need to monitor the precise state of each server. The

only exception is that whenever a server becomes empty, the server resets, which decreases all

of the dispatcher’s work counters for that server. As we will explain shortly, this complicates the

implementation, particularly in settings with network delays.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:21

Fortunately, resets are optional for the purposes of heavy-traffic optimality (see Remark 1). How-

ever, resets are still desirable because they help decrease response time at lower loads. Specifically,

resets ensure that a guarded policy is always allowed to dispatch jobs to empty servers. We thus do

not want to ignore resets entirely.

To implement resets without the dispatcher needing to track the remaining work at each server at

all times, servers can send “reset messages” to the dispatcher when they become empty. This works

well so long as messages do not experience network delays, because our analysis (see Lemmas 1

and 3) assumes that servers only reset when they are empty, which might not be the case if a reset

message is delayed.

In practice, reset messages may well experience network delays, To handle delays, the dispatcher

should ignore reset messages from servers that might not be empty. One protocol for doing so is:

• The dispatcher stores, for each server s , a hash of all the job IDs sent to s .
• Each server s stores a hash of all the job IDs it has received.

• When a server becomes empty, it sends a reset message to the dispatcher which contains the

currently stored hash.

• When the dispatcher receives a reset message from server s , it resets s if the reset message’s

hash matches the stored hash for s . Otherwise, the dispatcher ignores the reset message.

6.2 Multiple Dispatchers
Many large load balancing systems in practice have multiple dispatchers, each of which sends jobs

to the same set of servers. Communication between the dispatchers may be limited, in which case

they each have to make dispatching decisions independently. Fortunately, in systems with multiple

dispatchers, it suffices to have each dispatcher independently implement guardrails. As explained

below, we obtain the same theoretical guarantees for each of the following:

• A system with d dispatchers, each independently satisfying guardrails with tightness д.
• A system with a single dispatcher satisfying guardrails with tightness dд.

Guardrails thus guarantee heavy-traffic optimality for systems with any constant number of

dispatchers.

To see why it suffices to implement guardrails separately for each dispatcher, consider a system

with d dispatchers. Suppose each dispatcher separately keeps “local” guardrail work counters,

which only track arrivals to that dispatcher, and implements guardrails with tightness д. We can

also imagine what the “global” guardrail work counters, which track all arrivals at all dispatchers,

would look like, even though there is no physical device storing them. We ask: given that the local

counters have tightness д, what is the tightness of the global counters? Consider the local and
global rank r guardrail work counters for two servers s and s ′. Each dispatcher’s local counter pair

has difference at most дcr+1 (see Definition 1), and there are d dispatchers, so the global counter

pair has difference at most dдcr+1. This means the global counters stay within tightness dд.
Systems with multiple dispatchers tend to be large systems in which network delays are non-

negligible. The reset protocol from Section 6.1 can be easily adapted to multiple dispatchers by

having each server store a separate hash of job IDs for each dispatcher.

6.3 Scheduling Policies other than SRPT
We have shown that guarded dispatching policies provide theoretical guarantees and good empirical

performance for load balancing systems using SRPT scheduling at the servers. However, in some

settings it is impossible to use SRPT. For example, network hardware often allows scheduling using

only finitely many priority classes, in which case SRPT can only be approximated [16, 23]. Systems

may also choose a non-SRPT scheduling policy for other reasons, such as fairness concerns [27].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:22 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

Guardrails are sometimes suitable even when the servers are using a scheduling policy other

than SRPT. In particular, we can extend our theoretical guarantees to many preemptive size-based

scheduling policies that favor small jobs. We have already proven such a guarantee for the Priority-c
policy (see Theorem 2). Using bounds proved by Wierman et al. [28], one can extend our results

to all policies in their SMART class, which includes Preemptive-Shortest-Job-First (PSJF) and

Shortest-Processing-Time-Product (SPTP, also known as RS).

Guardrails can also provide guarantees for size-based policies with finitely many priority classes,

which are used in some computer systems to approximate SRPT [16, 23]. In this setting, each priority

class corresponds to an interval of job sizes. Here it is most natural to use a slightly modified version

of guardrails: a guarded policy is one ensuring that for any class i , the maximum difference between

two servers’ class i work counters never exceeds the upper bound of class i’s size interval. If the
job size distribution is bounded, these modified guardrails guarantee a mean response time bound

analogous to Theorem 1. This implies that in the heavy traffic limit, the system’s performance

approaches that of one large server using the same scheduling policy.

So far, we have only considered policies that use job size information to favor small jobs. This is

the setting in which guardrails are most likely to be effective. We conjecture that guardrails might

also be useful for servers using PS or Foreground-Background (FB) scheduling, as these policies

also tend to favor small jobs, so they may benefit from spreading out small jobs across the servers.

6.4 Heterogeneous Server Speeds
We have thus far assumed that all servers in the system have the same speed, but this is not always

the case. Fortunately, guardrails can be adapted to systems with heterogeneous server speeds. The

key is to track each server’s guardrail work counterGs (t) in units of time. That is, when we dispatch

job of size x to a server with speed µ, we increase the server’s guardrail work counter by x/µ. It
is simple to generalize our response time bound in Theorem 1 to this setting by multiplying the

bound’s last term by µmax/µmin, where µmin and µmax are the minimal and maximal server speeds,

respectively. This implies that any guarded policy paired with SRPT service is heavy-traffic optimal

with heterogeneous servers.

7 CONCLUSION
We introduce load balancing guardrails, a technique for augmenting dispatching policies that ensures

low response times in load balancing systems using SRPT scheduling at the servers. We prove that

guardrails guarantee optimal mean response time in heavy traffic, and we show empirically that

guardrails reduce mean response time across a range of loads. Moreover, guardrails are simple

to implement and are a practical choice for large load balancing systems, including those with

multiple dispatchers and network delays.

One direction for future work could address a limitation of guardrails: they require the dispatcher

to know each job’s exact size. Many computer systems only have access to noisy job size estimates

or have no size information at all. When exact size information is not available, minimizing mean

response time becomes much more complex, as it is not even clear what scheduling policy should

be used at the servers. It is possible that a variation of guardrails could be used to create good

dispatching policies when using the celebrated Gittins index scheduling policy [1, 11] at the servers.

Our analysis of guardrails constitutes the first closed-form mean response time bound for load

balancing systems with general job size distribution and complex dispatching and scheduling

policies. However, the bound is only tight in the heavy-traffic limit. Developing better analysis

tools for the light traffic case remains an important open problem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:23

ACKNOWLEDGMENTS
We thank Gustavo de Veciana and the anonymous referees for their helpful comments. This research

was supported by NSF-XPS-1629444, NSF-CSR-180341, and a 2018 Faculty Award from Microsoft.

Additionally, Ziv Scully was supported by an ARCS Foundation scholarship and the NSF GRFP

under Grant Nos. DGE-1745016 and DGE-125222.

REFERENCES
[1] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. 2009. On the Gittins index in the M/G/1 queue. Queueing Systems 63,

1 (2009), 437–458.

[2] E. Altman, U. Ayesta, and B. J. Prabhu. 2011. Load balancing in processor sharing systems. Telecommunication Systems
47, 1 (01 Jun 2011), 35–48. https://doi.org/10.1007/s11235-010-9300-8

[3] Nir Avrahami and Yossi Azar. 2003. Minimizing Total Flow Time and Total Completion Time with Immediate

Dispatching. In Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
’03). ACM, New York, NY, USA, 11–18. https://doi.org/10.1145/777412.777415

[4] Eitan Bachmat and Hagit Sarfati. 2008. Analysis of Size Interval Task Assignment Policies. SIGMETRICS Perform. Eval.
Rev. 36, 2 (Aug. 2008), 107–109. https://doi.org/10.1145/1453175.1453199

[5] T. Bonald, M. Jonckheere, and A. Proutiére. 2004. Insensitive Load Balancing. In Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’04/Performance ’04). ACM, New York,

NY, USA, 367–377. https://doi.org/10.1145/1005686.1005729

[6] F. Bonomi. 1990. On job assignment for a parallel system of processor sharing queues. IEEE Trans. Comput. 39, 7 (July
1990), 858–869. https://doi.org/10.1109/12.55688

[7] Maury Bramson, Yi Lu, and Balaji Prabhakar. 2012. Asymptotic independence of queues under randomized load

balancing. Queueing Systems 71, 3 (01 Jul 2012), 247–292. https://doi.org/10.1007/s11134-012-9311-0

[8] Rodolpho G. de Siqueira and Daniel R. Figueiredo. 2017. A Control-based Load Balancing Algorithm with Flow Control

for Dynamic and Heterogeneous Servers. In Anais do XXXV Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos. SBC, Porto Alegre, RS, Brasil. http://portaldeconteudo.sbc.org.br/index.php/sbrc/article/view/2626

[9] Douglas G. Down and Rong Wu. 2006. Multi-layered round robin routing for parallel servers. Queueing Systems 53, 4
(01 Aug 2006), 177–188. https://doi.org/10.1007/s11134-006-7419-9

[10] Hanhua Feng, Vishal Misra, and Dan Rubenstein. 2005. Optimal state-free, size-aware dispatching for heterogeneous

M/G/-type systems. Performance Evaluation 62, 1 (2005), 475 – 492. https://doi.org/10.1016/j.peva.2005.07.031

Performance 2005.

[11] John C. Gittins, Kevin D. Glazebrook, and Richard Weber. 2011. Multi-armed Bandit Allocation Indices. John Wiley &

Sons.

[12] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. 2007. Analysis of join-the-shortest-queue routing

for web server farms. Performance Evaluation 64, 9 (2007), 1062–1081. https://doi.org/10.1016/j.peva.2007.06.012

Performance 2007.

[13] Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in Action (1st ed.).

Cambridge University Press, New York, NY, USA.

[14] Mor Harchol-Balter, Mark E. Crovella, and Cristina D. Murta. 1999. On Choosing a Task Assignment Policy for a

Distributed Server System. J. Parallel and Distrib. Comput. 59, 2 (1999), 204–228. https://doi.org/10.1006/jpdc.1999.1577

[15] Mor Harchol-Balter, Alan Scheller-Wolf, and Andrew R. Young. 2009. Surprising Results on Task Assignment in Server

Farms with High-variability Workloads. In Proceedings of the Eleventh International Joint Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’09). ACM, New York, NY, USA, 287–298. https://doi.org/10.1145/

1555349.1555383

[16] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal. 2003. Size-based Scheduling to Improve

Web Performance. ACM Trans. Comput. Syst. 21, 2 (May 2003), 207–233. https://doi.org/10.1145/762483.762486

[17] Esa Hyytiä, Aleksi Penttinen, and Samuli Aalto. 2012. Size- and state-aware dispatching problem with queue-specific

job sizes. European Journal of Operational Research 217, 2 (2012), 357 – 370. https://doi.org/10.1016/j.ejor.2011.09.029

[18] Stefano Leonardi and Danny Raz. 2007. Approximating total flow time on parallel machines. J. Comput. System Sci. 73,
6 (2007), 875–891. https://doi.org/10.1016/j.jcss.2006.10.018

[19] Quan-Lin Li, John C. S. Lui, and YangWang. 2011. AMatrix-Analytic Solution for Randomized Load BalancingModels with
PH Service Times. Springer Berlin Heidelberg, Berlin, Heidelberg, 240–253. https://doi.org/10.1007/978-3-642-25575-5_

20

[20] Minghong Lin, Adam Wierman, and Bert Zwart. 2011. Heavy-traffic analysis of mean response time under Shortest

Remaining Processing Time. Performance Evaluation (2011). https://doi.org/10.1016/j.peva.2011.06.001

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

https://doi.org/10.1007/s11235-010-9300-8
https://doi.org/10.1145/777412.777415
https://doi.org/10.1145/1453175.1453199
https://doi.org/10.1145/1005686.1005729
https://doi.org/10.1109/12.55688
https://doi.org/10.1007/s11134-012-9311-0
http://portaldeconteudo.sbc.org.br/index.php/sbrc/article/view/2626
https://doi.org/10.1007/s11134-006-7419-9
https://doi.org/10.1016/j.peva.2005.07.031
https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1006/jpdc.1999.1577
https://doi.org/10.1145/1555349.1555383
https://doi.org/10.1145/1555349.1555383
https://doi.org/10.1145/762483.762486
https://doi.org/10.1016/j.ejor.2011.09.029
https://doi.org/10.1016/j.jcss.2006.10.018
https://doi.org/10.1007/978-3-642-25575-5_20
https://doi.org/10.1007/978-3-642-25575-5_20
https://doi.org/10.1016/j.peva.2011.06.001

42:24 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

[21] Zhen Liu and Rhonda Righter. 1998. Optimal Load Balancing on Distributed Homogeneous Unre-

liable Processors. Operations Research 46, 4 (1998), 563–573. https://doi.org/10.1287/opre.46.4.563

arXiv:https://pubsonline.informs.org/doi/pdf/10.1287/opre.46.4.563

[22] M. Mitzenmacher. 2001. The power of two choices in randomized load balancing. IEEE Transactions on Parallel and
Distributed Systems 12, 10 (Oct 2001), 1094–1104. https://doi.org/10.1109/71.963420

[23] BehnamMontazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018. Homa: A Receiver-driven Low-latency

Transport Protocol Using Network Priorities. In Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’18). ACM, New York, NY, USA, 221–235. https://doi.org/10.1145/3230543.3230564

[24] Debankur Mukherjee, Sem Borst, Johan van Leeuwaarden, and Phil Whiting. 2016. Universality of Power-of-d Load

Balancing Schemes. SIGMETRICS Perform. Eval. Rev. 44, 2 (Sept. 2016), 36–38. https://doi.org/10.1145/3003977.3003990

[25] Linus Schrage. 1968. A Proof of the Optimality of the Shortest Remaining Processing Time Discipline. Operations
Research 16, 3 (1968), 687–690. http://www.jstor.org/stable/168596

[26] Richard R. Weber. 1978. On the optimal assignment of customers to parallel servers. Journal of Applied Probability 15,

2 (1978), 406–413. https://doi.org/10.2307/3213411

[27] Adam Wierman and Mor Harchol-Balter. 2003. Classifying scheduling policies with respect to unfairness in an M/GI/1.

In ACM SIGMETRICS Performance Evaluation Review, Vol. 31. ACM, 238–249.

[28] Adam Wierman, Mor Harchol-Balter, and Takayuki Osogami. 2005. Nearly insensitive bounds on SMART scheduling.

In ACM SIGMETRICS Performance Evaluation Review, Vol. 33. ACM, 205–216.

[29] Wayne Winston. 1977. Optimality of the shortest line discipline. Journal of Applied Probability 14, 1 (1977), 181–189.

https://doi.org/10.2307/3213271

[30] Ronald W. Wolff. 1982. Poisson arrivals see time averages. Operations Research 30, 2 (1982), 223–231.

[31] Xingyu Zhou, Jian Tan, and Ness Shroff. 2018. Flexible load balancing with multi-dimensional state-space collapse:

Throughput and heavy-traffic delay optimality. Performance Evaluation 127-128 (2018), 176 – 193. https://doi.org/10.

1016/j.peva.2018.10.003

A MATUSZEWSKA INDEX
The optimality results in this paper, such as Theorem 2, assume that the job size distributionX is not

too heavy-tailed. Specifically, we assume that either X is bounded, or that the upper Matuszewska
index of the tail of X is less than −2. This is slightly stronger than assuming that X has finite

variance. The formal definition of the upper Matuszewska is the following.

Definition 2. Let f be a positive real function. The upper Matuszewska index of f , writtenM(f),
is the infimum over α such that there exists a constant C such that for all γ > 1,

lim

x→∞

f (γx)

f (x)
≤ Cγ α .

Moreover, for all Γ > 1, the convergence x →∞ must be uniform in γ ∈ [1, Γ].

The conditionM(FX) < −2, where FX is the tail of X , is intuitively close to saying that FX (x) ≤
Cx−2−ϵ for some constant C and some ϵ > 0. Roughly speaking, this means that X has a lighter tail

than a Pareto distribution with α = 2.

B LEMMA 4
Lemma 4. For any job size distribution, the mean response time of a single-server Priority-c

system is no more than c times the mean response time of a single-server PSJF system:

E[T]Priority-c ≤ (c + 2
√
c − 1)E[T]PSJF.

Proof. We will consider a new random variable, D, the delay due to a job. D is defined for

scheduling policies that assign every job a fixed priority, like Priority-c and PSJF. For a given job j
of size x , D j is

• the amount j delays other jobs, namely x times the number of jobs with lower priority than j
in the system when j arrives,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

https://doi.org/10.1287/opre.46.4.563
http://arxiv.org/abs/https://pubsonline.informs.org/doi/pdf/10.1287/opre.46.4.563
https://doi.org/10.1109/71.963420
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1145/3003977.3003990
http://www.jstor.org/stable/168596
https://doi.org/10.2307/3213411
https://doi.org/10.2307/3213271
https://doi.org/10.1016/j.peva.2018.10.003
https://doi.org/10.1016/j.peva.2018.10.003

Load Balancing Guardrails 42:25

• plus the amount other jobs that arrived before j delay j, namely the total remaining size of

jobs with higher priority than j in the system when j arrives,
• plus j’s size.

Note that the response time of a job ℓ is equal to ℓ’s size, plus the amount ℓ is delayed by jobs

that arrived before ℓ, plus the amount l is delayed by jobs that arrive after ℓ. Each of those amounts

of time is accounted for in the delay of exactly one job. As a result, the sum of the delays of the

jobs in a busy period equals the sum of the response times of those jobs. Therefore, in steady state,

mean response time and mean delay are equal:

E[T] = E[D].

Therefore, it suffices to show that

E[D]Priority-c ≤ (c + 2
√
c − 1)E[D]PSJF.

Let us consider a pair of coupled systems receiving the same arrivals: A single-server system

with PSJF scheduling, and a single-server system with Priority-c scheduling.
Note that PSJF and Priority-c both prioritize all jobs of lower ranks over all jobs of higher ranks.

As a result, both coupled systems will server jobs of the same ranks at the same times, and will

always have the same amount of remaining work of each rank.

Let us consider the expected delay due to a particular “tagged” job j, arriving to a steady-state

system. The expected delay due to j is equal to each system’s mean delay by the PASTA property [30].

Let j be a job of size x with rank r = logc x .
The delay due to j, D j , is a summation over each job in the system at the moment j arrives. Let

D
q
j be the delay caused by the interaction of j and jobs of rank q that are in the system when j

arrives, including j’s size in Dr
j . Then we can write D j in terms of the D

q
j s:

D j =

∞∑
q=−∞

D
q
j .

Therefore, it suffices to show for all ranks q that

E[Dq
j]

Priority-c ≤ (c + 2
√
c − 1)E[Dq

j]
PSJF. (21)

Let X j′ denote the original size of a job j ′, and let R j′ denote the remaining size of j ′. Let Jq

denote the set of jobs of rank q in the system at the time j arrives. Let N q
denote the number of

jobs of rank q in the system at the time j arrives.
We now consider three cases: q < r , q = r , and q > r .

Case 1: q < r . Because q < r , all jobs in rank q have higher priority than j. As a result, under
both PSJF and Priority-c, Dq

j is equal to the total remaining size of jobs of rank q:

D
q
j =

∑
j′∈Jq

R j′ .

As noted above, this is equal in the two systems due to the coupling. This proves (21) in this case.

Case 2: q = r . Because Priority-c uses First-Come-First-Served scheduling within a rank, Dr
j in

the Priority-c system is equal to the total remaining size of jobs of rank q:

Dr
j
(Priority-c)

=
∑

j′∈J r (Priority-c)
R j′ .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:26 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

In contrast, Dr
j in the PSJF system is equal to the total remaining size of jobs of rank r with size at

most x , plus x times the number of jobs of rank r with size more than x :

Dr
j
(PSJF)

=
∑

j′∈J r (PSJF) |X j′ ≤x

R j′ +
∑

j′∈J r (PSJF) |X j′>x

x .

Noting that x ≥ cr and the remaining size of any job of rank r is at most cr+1, we can lower bound

Dr
j
(PSJF)

:

Dr
j
(PSJF)

≥
∑

j′∈J r (PSJF) |X j′ ≤x

R j′ +
∑

j′∈J r (PSJF) |X j′>x

cr

≥
∑

j′∈J r (PSJF) |X j′ ≤x

R j′ +
∑

j′∈J r (PSJF) |X j′>x

R j′

c

≥
1

c

∑
j′∈J r (PSJF)

R j′ .

As noted above,

∑
j′∈Jq R j′ is equal in both systems. As a result,

E[Dq
j]

Priority-c ≤ cE[Dq
j]

PSJF,

which proves (21) in this case.

Case 3: q > r . Because q > r , all jobs in rank q have lower priority that j. As a result, in both

systems,

D
q
j = xN q .

Also, note that x is independent of N q
. Therefore, we simply need to show that

E[N q]Priority-c ≤ (c + 2
√
c − 1)E[N q]PSJF.

However, it is possible for there to be twice as many jobs of rank q in the Priority-c system as in

the PSJF system, regardless of the value of c . In particular, there could be two rank q jobs in the

Priority-c system and one rank q job in the PSJF system, if one of the rank q jobs in the Priority-c
system has very little remaining size.

Let jold be the oldest job of rank q in the Priority-c system at a given time. Because Priority-c
serves jobs in FCFS order, only jold has been processed, so only jold can have remaining size under

cq . Therefore, we can bound the total remaining size of the rank q jobs in the Priority-c system:∑
j′∈Jq (Priority-c)

R j′ ≥ R jold + c
q(N q (Priority-c) − 1).

Likewise, we can bound the total remaining size of the rank q jobs in the PSJF system:∑
j′∈Jq (PSJF)

R j′ ≤ cq+1N q (PSJF).

Using the fact that

∑
j′∈Jq R j′ is equal in both systems gives us

R jold + c
q(N q (Priority-c) − 1) ≤ cq+1N q (PSJF),

which rearranges to

N q (Priority-c) ≤ cN q (PSJF) + 1 −
R jold

cq
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:27

This implies N q (Priority-c) ≤ cN q (PSJF) + 1, which allows us to relate the expected numbers of jobs in

the systems:

E[N q (Priority-c)] ≤ cE[N q (PSJF)] + P{N q (Priority-c) > cN q (PSJF)}. (22)

Recall that N q (Priority-c)
and N q (PSJF)

are both integers. This means that if N q (Priority-c) > cN q (PSJF)
,

then

N q (Priority-c) ≥ N q (PSJF) + 1.

As a result, if N q (Priority-c) > cN q (PSJF)
, then

N q (PSJF) + 1 ≤ cN q (PSJF) + 1 −
R jold

cq
,

meaning that

R jold ≤ (c − 1)c
qN q (PSJF). (23)

Therefore, we will show that either P{N q (Priority-c) > cN q (PSJF)} is small or E[N q (PSJF)] is large. In

either case, (22) will imply the desired bound (21).

Let us condition on R jold . Because j is a Poisson arrival, j sees a time-average state of R jold . The
(stochastically) smallest this distribution can be is the uniform distribution on [0, cq], because the
original size of a rank q job is at least cq . In particular, for any ℓ,

P{R jold < ℓ} ≤
ℓ

cq
.

Let ρq be the probability that j sees a rank q job in the system on arrival. Letm be the largest

integer such that

P{N q (Priority-c) > cN q (PSJF)} ≥ m(c − 1)ρq .

Then (23) implies

P{R jold ≤ cq(c − 1)N q (PSJF)} ≥ m(c − 1)ρq . (24)

Regardless of the correlation between N q (PSJF)
and R jold , we must have

P{N q (PSJF) ≥ m} ≥ (c − 1)ρq . (25)

This is because if N q (PSJF) ≤ m − 1 on a particular arrival, and also N q (Priority-c) > cN q (PSJF)
, then

by (23),

R jold ≤ (c − 1)c
q(m − 1). (26)

But an arrival only sees job jold in the system at all with probability ρq . Moreover, conditional on

seeing a job jold at all, the arrival observes (26) with probability at most (c − 1)(m − 1), because
every rank q job has size at least cq . This means

P{R jold ≤ (c − 1)c
q(m − 1)} ≤ (m − 1)(c − 1)ρq ,

which together with (24) implies (25).

By a similar argument as (25),

P{N q (PSJF) ≥ m − z} ≥ (z + 1)(c − 1)ρq

for any integer z < m.

In addition, if there is a job in the Priority-c system then there is a job in the PSJF system:

P{N q (PSJF) ≥ 1} ≥ ρq .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:28 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

We can combine these bounds on the probability of N q (PSJF)
taking specific values to a derive a

bound on its expectation:

E[N q (PSJF)] ≥

(m−1∑
z=0

(m − z)(c − 1)ρq

)
+ (ρq − ρqm(c − 1))

=

((m−1∑
z=0

(m − z − 1)(c − 1)

)
+ 1

)
ρq

=

(
1 +

m

2

(m − 1)(c − 1)

)
ρq .

We are now ready to show that either P{N q (Priority-c) > cN q (PSJF)} is small or E[N q (PSJF)] is large

by bounding their ratio for any value ofm:

P{N q (Priority-c) > cN q (PSJF)}

E[N q (PSJF)]
≤

(m + 1)(c − 1)ρq

(1 + m
2
(m − 1)(c − 1))ρq

=
m + 1

1

c−1 +
m
2
(m − 1)

.

This expression is maximized when

m =

√
2c

c − 1
− 1,

so

P{N q (Priority-c) > cN q (PSJF)}

E[N q](PSJF)
≤

√
2c
c−1

1

c−1 + (
√ c

c−1 −
1

2
)(

√
2c
c−1 − 2)

=
1√

2c
c−1 −

3

2

≤ 2

√
c − 1.

where the final bound holds due to the fact that 1 < c ≤ 2, by the definition of c . Combining this

result with (22) yields

E[N q (Priority-c)] ≤ (c + 2
√
c − 1)E[N q (PSJF)],

which is (21), as desired. □

C LEMMA 5
Lemma 5. For any size distribution X which is either (i) bounded or (ii) unbounded with tail

having upper Matuszewska index
7
less than −2,

lim

ρ→1

ln
2 1

1−ρ

E[T]SRPT
= 0.

Proof. Lin et al. [20] show in their Theorem 1 that if X is bounded, then

E[T]SRPT = θ
(

1

1 − ρ

)
,

7
See Appendix A.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:29

SITA-E LWL Random RR JSQ-2 JSQ FPI
Dispatching policy

0

200

400

600

800

1000

1200

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

6255.1 g=1
No guardrails

(a) ρ = 0.98

SITA-E LWL Random RR JSQ-2 JSQ FPI
Dispatching policy

0

100

200

300

400

500

600

700

800

900

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

g=1
No guardrails

(b) ρ = 0.80

Fig. 6. Simulation with many servers: k = 100. Size distribution shown is Bounded Pareto with α = 1.5 and
range [1, 106]. C2 ∼ 333. 10 trials simulated, 95% confidence intervals shown.

proving case (i). They also show in their Theorem 2 that if the Matuszewska index of the tail of X
is less than −2, then

E[T]SRPT = θ
(

1

(1 − ρ)H−1(ρ)

)
,

where H−1(·) is the inverse of H (x) = ρx/ρ. Furthermore, in their proof of Theorem 2, they show

that for any function ϕ(y) such that ϕ(y) = o(yϵ) for all ϵ > 0,
8

lim

ρ→1

ϕ

(
1

1 − ρ

)
(1 − ρ)H−1(ρ) = 0.

Applying this result with ϕ(y) = ln
2(y) proves in case (ii). □

D ADDITIONAL SIMULATIONS
We include here some additional simulation results covering a wider range of cases than Section 5.

We only show the tightest guardrails (д = 1), as those guardrails generally yield the lowest mean

response times. We vary the parameters of the simulations in from Section 5 in three different

ways:

• adding many more servers (Figures 6 and 7),

• decreasing load (Figure 8), and

• varying the job size distribution (Figures 9 and 10).

In nearly every case guardrails improve or at least do not degrade mean response time of the

underlying policy. In particular, as a general rule, G-LWL is nearly always tied for minimum mean

response time among all dispatching policies simulated.

We omit the FPI heuristic from simulations involving the Bimodal job size distribution because

Hyttiä et al. [17] only derive the policy for continuous job size distributions. We omit the FPI

heuristic from the simulations of other job size distributions in Figures 9 and 10 due to lack of time.

Figures 6 and 7 show simulations with many more servers. Specifically, they use k = 100 servers,

as opposed to k = 10 in other simulations. The only setup where guardrails degrade mean response

time of the underlying policy is JSQ with Bounded Pareto job size distribution in heavy traffic,

shown in Figure 6 (a), but G-LWL and G-FPI have performance on par with JSQ in that case.

8
While Lin et al. [20] only mention this property for the specific case of ϕ(y) = lny , their proof easily generalizes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

42:30 Isaac Grosof, Ziv Scully, and Mor Harchol-Balter

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

100

200

300

400

500

600

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

2432.2 1889.6 g=1
No guardrails

(a) ρ = 0.98

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

50

100

150

200

250

300

350

400

450

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

g=1
No guardrails

(b) ρ = 0.80

Fig. 7. Simulation with many servers: k = 100. Size distribution shown is Bimodal with 99.95% size 1 jobs and
0.05% size 1000 jobs. C2 ∼ 221. 10 trials simulated, 95% confidence intervals shown.

SITA-E LWL Random RR JSQ-2 JSQ FPI
Dispatching policy

0

10

20

30

40

50

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

g=1
No guardrails

(a) Bounded Pareto job size distribution: α = 1.5,
range [1, 106], C2 ∼ 333.

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

5

10

15

20

25

30

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

g=1
No guardrails

(b) Bimodal job size distribution: size 1 w.p. 99.95%,
size 1000 w.p. 0.05%, C2 ∼ 221.

Fig. 8. Simulation with light traffic: ρ = 0.5. Simulation uses k = 10 servers. Two job size distributions shown.
10 trials simulated, 95% confidence intervals shown.

Figure 8 shows simulations with light traffic, specifically ρ = 0.5. The trends are largely the same

as those in Section 5, but the differences in mean response time are smaller. This is to be expected

because a large fraction of jobs experience no delay. In fact, the mean response time is nearly

equal to the mean service time for many of the dispatching policies (E[T] ≈ 30 in (a), E[T] ≈ 15

in (b)). Guardrails are particularly effective in the Bimodal case shown in (b), dispatching nearly

every small job to a server with no other small jobs. In addition to the loads shown, we have also

simulated a range of loads from ρ = 0.2 to ρ = 0.9975. The trends are consistent across all loads,
but the differences are less pronounced at lower loads.

Figures 9 and 10 show simulations with different job size distributions. We specifically simulate

with Hyperexponential and Exponential job size distributions, representing another high-variance

distribution and a low-variance distribution, respectively. In the Hyperexponential case shown

in Figure 9, LWL performs particularly poorly without guardrails, similar to the Bimodal case.

Roughly speaking, this is because there again are two types of jobs, though each has an exponential

distribution instead of a deterministic one, and a job of the large type can cause many jobs of the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

Load Balancing Guardrails 42:31

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

10

20

30

40

50

60

70

80

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

238.1 217.9 g=1
No guardrails

(a) ρ = 0.98

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

10

20

30

40

50

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

g=1
No guardrails

(b) ρ = 0.80

Fig. 9. Simulation with different size distribution: Hyperexponential withmean∼ 1.5 andC2 ∼ 444. Simulation
uses k = 10 servers. 10 trials simulated, 95% confidence intervals shown.

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

20

40

60

80

100

120

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

220.7 g=1
No guardrails

(a) ρ = 0.98

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

5

10

15

20

25

30

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

g=1
No guardrails

(b) ρ = 0.80

Fig. 10. Simulation with different size distribution: Exponential with mean 1. Simulation uses k = 10 servers.
10 trials simulated, 95% confidence intervals shown.

small type to be dispatched to a single server. But again, guardrails effectively mitigate this problem,

although JSQ slightly outperforms G-LWL in very heavy traffic. In the Exponential case, LWL

without guardrails performs well already, but adding guardrails does not degrade its performance.

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 42. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Load Balancing Guardrails
	2.1 What are Guardrails?
	2.2 Guarded Policies: How to Augment Dispatching Policies with Guardrails
	2.3 Resets

	3 Technical Summary
	3.1 System Model
	3.2 Theorem Overview
	3.3 Relationship to Prior Work

	4 Analysis of Guarded Policies
	4.1 Preliminaries and Notation
	4.2 Bounding Response Time: Key Steps
	4.3 Bounding Response Time: Proofs
	4.4 Asymptotic Behavior of Guarded Policies
	4.5 Optimality of Guarded Policies

	5 Simulation
	5.1 Simulation Results
	5.2 Simulation Discussion and Intuition
	5.3 Comparing Simulation to Analytical Bounds

	6 Practical Considerations
	6.1 Robustness to Network Delays
	6.2 Multiple Dispatchers
	6.3 Scheduling Policies other than SRPT
	6.4 Heterogeneous Server Speeds

	7 Conclusion
	Acknowledgments
	References
	A Matuszewska Index
	B Lemma 4
	C Lemma 5
	D Additional Simulations

