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Abstract

We compare the overall mean response time (a.k.a. sojourn time) of the processor sharing (PS) and feedback (FB) queues
under an M/GI/1 system. We show that FB outperforms PS under service distributions having decreasing failure rates; whereas
PS outperforms FB under service distributions having increasing failure rates.
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Time-sharing scheduling policies, especially the
processor-sharing (PS) discipline, are used quite fre-
quently in modern systems. Under PS the processor is
shared evenly among all jobs currently in the system.
Although PS is commonly used, it provides a far from
optimal mean response time (a.k.a sojourn time). The
shortest-remaining-processing-time (SRPT) policy is
known to be optimal with respect to overall mean re-
sponse time [4]. This policy schedules the job having
the smallest remaining size at all times; thus SRPT
requires knowledge of the job’s size (a.k.a service
requirement). In the absence of this knowledge, the
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feedback (FB) policy ' has long been proposed as an
approximation to SRPT. Under FB the job with the
least attained service (a.k.a age) gets the processor to
itself. If several jobs all have the least attained ser-
vice, they time-share the processor via PS. By biasing
towards the jobs with small ages, FB is, in a sense,
attempting to complete the short jobs as quickly as
possible. The goal of this note is to understand un-
der which service distributions FB improves upon the
mean response time of PS.

The response times for both M/GI/1/PS and

M/GI/1/FB are well known. We define pdéf AE[X]
where 4 is the arrival rate and X is a random vari-
able sampled from the service distribution F'(x) with
density function f(x). Let E[T]” denote the mean
response time under policy P and let E[T(x)]” denote

! Note that FB is sometimes referred to by three other names:
Generalized foreground-background (FB), least-attained-service
(LAS), and shortest-elapsed-time (SET).
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the expected response time of a job of size x under
policy P. Then the following classic results exist (see
[6] or [2] for a proof of these):

E[T@)® = —,
I—p
FB Jo S (0)dt + Ix*F(x) x
AT == -
Ay tF(r)dr x
(I =pe)? 1-p°
where

pr = A (/0 tf(t)dt+xﬁ(x)> —/1/: F(1)dt.

Notice that p, can be thought of as the load of jobs
from service distribution Xxdéf min(x, X ).

We briefly discuss some prior work comparing
mean response times under M/GI/1/FB with those
under M/GI/1/PS. Rai, Urvoy-Keller, and Bier-
sack [3] prove that for amy service distribution
E[TT™® < (2 — p)/(2 — 2p)E[TT?S. In our paper, we
are concerned with understanding for which service
distributions E[T]™® < E[T]?S. Coffman and Den-
ning consider exactly this question and hypothesize
the following relation [1, p. 188—189]:

E[T1™® < E[T]" when C > 1,

E[T1?S > E[T]™ when C < 1,

where 2% Var(X)/E[XT* is the squared coefficient
of variation of the service distribution. (Note that [1]
makes the statement in terms of waiting times, but that
this formulation is equivalent.)

It turns out that Coffman and Denning’s hypothesis
is not always true (see Example 1 below) and needs a
slight refinement. Our following main theorem gives
such a refinement.

Theorem 1. Let ,u(x)dif f(x)/E(x) be the hazard rate
of the service distribution. In an MIGI/1 system FB
and PS relate as follows:

1. If u(x) is decreasing, E[T]"® < E[T]*S.
2. If u(x) is constant, E[T]™® = E[T]S.
3. If u(x) is increasing, E[T]™® > E[T]S.

Observe that this theorem is a refinement of
Coffman and Denning’s hypothesis because of the
following well-known lemma [5, p. 16-19], which
relates the hazard rate and the coefficient of variation.

Lemma 1. When u(x) is decreasing, C = 1 and when
u(x) is increasing C < 1.

Notice that Theorem 1 does not say anything about
distributions whose hazard rate is both strictly increas-
ing for some x and strictly decreasing for other val-
ues of x. Our example below shows that it is exactly
this situation (where hazard rate is both increasing and
decreasing) which leads to a counterexample to the
Coffman, Denning hypothesis.

Example 1. The following example gives a job size
distribution where C2 > 1 but E[T]™ < E[T]"®. Con-
sider the discrete distribution

1 with probability $ — &,
X =
6  with probability 1 + e.

It is easy to verify by simple calculation that C? > 1
for any ¢ > 0, but E[T]" < E[T]™® for small & > 0.

Example 1 is counter to the hypothesis of Coffman
and Denning, and moreover observe that this job size
distribution belongs to a class where the hazard rate
is neither always decreasing nor always increasing. >

Before proving Theorem 1, it is useful to describe
the intuition behind the theorem. Intuitively, when the
hazard rate of the service distribution is decreasing
young jobs are likely to have small remaining times
and old jobs are likely to have high remaining times.
Thus, FB is mimicking SRPT by giving preference to
jobs with small remaining times, and thus minimizing
the number of jobs in the system, and equivalently
the overall mean response time. Likewise, when the
hazard rate of the service distribution is increasing,
young jobs are likely to have larger remaining times,
in which case FB maximizes the number of jobs in the
system. In the case of constant hazard rate, a job’s age

2 Strictly speaking, the hazard rates are undefined as the distri-
bution is discrete. However, we can approximate by a continuous
distribution consisting of Gaussians at x =1 and 6 with variance
approaching 0. It is easy to see that Coffman and Denning’s hypo-
thesis does not hold for this continuous distribution either.
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is independent of its remaining service time, in which
case it would seem that FB scheduling should not im-
prove upon PS.

The proof of Theorem 1 will rely on an alternative
formulation of response times under FB as stated in
the following Lemma.

Lemma 2.

1 d
BTG —%é o (1)

Proof. To derive this new expression we can combine
terms and interchange integrals as follows:

X Afy tF(r)de

Ml s R
X —xpe+ A [y tF(t)de
(1= px)?
_x— fy psds
(1= px)?
_ Jy (1 —pods
(1—p)?

The third equation follows from the second by ob-
serving that [ psds =xp, — 4 [y tF(¢)dt. The final
line then follows by writing x as f; 1ds. [

Notice that Eq. (1) gives us a particularly sim-
ple form for the response time under FB. This simple
form, combined with the Chebyshev Integral Inequal-
ity (stated below), will allow us to prove Theorem 1.

Theorem 2 (Chebyshev Integral Inequality). Let
h(x) be a non-negative, integrable, increasing func-
tion on [a, b].

1. Let g(x) be a non-negative, integrable, increasing
function on [a, b].
Then, (b—a) [ h(x)g(x)dx = [Th(x)dx [ g(x)dx.
2. Let g(x) be a non-negative, integrable, decreasing
function on [a, b]

Then, (b— a)f h(x)g(x)dx < f h(x)dxf g(x)dx.

Using Lemma 2 in combination with the Chebyshev
Integral Inequality, we will now prove Theorem 1.

Proof of Theorem 1. We will start with the case
where u(x) is constant. Notice that this implies that
the service distribution is exponential with some rate
u. Recall the Markov chain for the M/M/1/FCFS dis-
cipline, where the state corresponds to the number
of jobs in the system, and for all i > 0, the Markov
chain moves from state i to state i + 1 with rate 4, and
the Markov chain moves from state i to state i — 1
with rate u. Notice that the M/M/1/PS discipline is
represented by the exact same chain. The key point
is that when the Markov chain is in state i, each of
the 7 jobs in the system are served at rate u/i, which,
by superposition of exponential distributions, again
results in a total transition rate of p from state i to
i — 1. A similar argument can be made for M/M/1/FB.
In state 7, some number of jobs j < i will share the
processor evenly, and thus the total completion rate
of j jobs receiving u/j service is w. In fact, any work
conserving policy that does not depend on the job
sizes can be represented by this same chain. Thus, the
mean queue length and the mean sojourn time are also
the same for all work conserving policies that do not
make use of job size. It is also interesting to note that,
since we did not make any assumptions about the ar-
rival process in the above argument, the mean queue
length and the mean sojourn time are also the same
for all work conserving policies that do not make use
of job size under any arbitrary sequence of arrivals.

We now prove the remaining two cases. Using
Lemma 1, we can write the mean response time under
FB as

EUWAMHHMﬂwM

1= py)d
/ fo( p)sf(x)dx

px)

_[Ta- @
_/0 (1 ps)[ (1_px)2dxds.

Finally, observing that dp,/dx = AF(x) and that
fx)= (x)F(x) we get

E[T] /’a—a aﬂlywﬂs@)
ps

At this point we will apply the Chebyshev Integral
Inequality. First, we will deal with the case when u(x)
is increasing. Note that p, is increasing and hence
1/(1 — py)? is increasing. Thus setting A(x) = u(x),
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g(x)=1/(1 — p;)?, a = p, and b = p in Theorem 2,

we have that
Popx)
L (L= po)

1 /P P dp,
> 1) dp, / _dpx
P = Ps Jp, s (1 —py)?

Rewriting fp’i u(x)dpy as [ Af(x)dx we get,
"onx)
Ps (1 — Px )2

dpx

ap,
/p T O

Conversely, when p(x) is decreasing, using an identi-
cal argument we have

/ w(x)
(- px)2

1 R P dp,
< Af(x dx/ .
P — Ps / /) e (1= px)?

Now, we can simply evaluate the integral to obtain our
bounds. We will consider only the case of increasing
1(x) (the decreasing case follows identically). Using
Egs. (2) and(3)

/l/ppvs

dpx
——ds
Ps (1 - px)2

X

0 P — Ps l_p 1_ps
:/Oo 1_”SF(S)<
0 P—Ps (

P — Ps
— ] d
l—p)(l—pn) *
:/w FGs) g
o 1—=p

E[X] — [T
1—p

This completes the final two cases of the proof. [J
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