Competitive Online Scheduling for Server Systems

Kirk Pruhs-
Computer Science Department
University of Pittsburgh
Pittsburgh, PA 15260
kirk@cs.pitt.edu

ABSTRACT

Our goal here is to illustrate the competitive online scheduling re-
search community’s approach to online server scheduling problems
by enumerating some of the results obtained for problems related
to response and slowdown, and by explaining some of the standard
analysis techniques.

1. INTRODUCTION

Our goal here is to illustrate the competitive online scheduling
research community’s approach to online server scheduling prob-
lems by enumerating some of the results obtained for problems re-
lated to response and slowdown, and by explaining some of the
standard analysis techniques.

We consider the setting of a collection of n jobs arriving at a
server, or multiservers, over time. Examples of possible servers in-
clude databases, name servers, web servers and operating systems.
Let r; be the time that a job J; is released to the server, and p; be the
work of J;. On an s speed server, a job with work p; is completed
at the time C; when it has been be processed for time p; /s. Online
scheduling means that the server’s scheduling decisions can not be
based on any information about the jobs that will arrive in the fu-
ture. If jobs can have widely varying work, the scheduler must be
able to preempt jobs (and later resume execution from the point of
preemption) in order to be able to guarantee any reasonable perfor-
mance. There are two standard Quality of Service (QoS) measures
for a job. The response of a job is F; = C; — ri, and the slow-
down of a job is S; = F;/p;. For example, a job with slowdown
2 behaves as though it was served by a dedicated speed % server.
One can then obtain a QoS measure for a schedule by taking the £,
norm, 1 < p < o0, of the QoS measures of the jobs. Mostly com-
monly the £; norm, the average, and the £, norm, the maximum,
are considered.

We will explain the standard analysis techniques in the context of
the basic scheduling problems of minimizing the average response
and the average slowdown on one server. The most obvious worst-
case measure of the goodness of an online scheduling algorithm
is the competitive ratio. An online scheduling algorithm A is c-
competitive if:

A(I)
oD = ¢

where A(I) is the QoS measure of the schedule produced by algo-
rithm A on input I, and Opt(I) is the optimal QoS value. So for
example, if A is 2-competitive, it means that on all instances A(J)
is at most twice optimal. Sometimes one wishes to measure the

*Supported in part by NSF grants CNS-0325353, CCF-0448196,
CCF-0514058 and I1S-0534531.

52

competitive ratio as a function of some parameter, say the number
of jobs. In this case, the maximum is over all instances I with that
parameter.

Since the competitive ratio is a worst-case concept, one gener-
ally thinks of the competitive ratio as the pay-off of a game played
between the online scheduling algorithm A and an adversary. Al-
gorithm A’s move at time ¢ is to specify the job that it will run,
and the adversary’s move at time ¢ is to specify the jobs that arrive
at time t. The payoff of the game is then essentially the relative
difference between the QoS measure of A’s schedule and the QoS
measure of the optimal schedule.

The algorithm Shortest Remaining Processing Time (SRPT) al-
ways runs the job with the least amount of unfinished work. It is
well known that SRPT is 1-competitive (optimal) for average re-
sponse. Further, SRPT is 2-competitive for average slowdown [21]
In each case, the standard proof uses a local competitiveness argu-
ment. Local competitiveness is both the most commonly used, and
generally the most straight-forward to apply, analysis technique. To
understand the local competitiveness analysis technique, let A(t)
be the increase of the QoS measure for algorithm A at time ¢ for
some understood input I. If the QoS measure was average re-
sponse, then A(t) is the number of jobs released but unfinished
by A at time ¢. If the QoS measure was average slowdown, then
A(t) is the number of jobs released but unfinished by A at time ¢
divided by the aggregate work of these jobs. An algorithm A is
locally c-competitive if for all inputs 7, and all times {, it is the case
that A(t) < c¢- Opt(t). An algorithm that is locally c-competitive
is then c-competitive since A(I) = f, A(t)dt < [, ¢ Opt(t)dt =
¢+ Opt(I). To apply local competitiveness to show that SRPT is
optimal for average response, ones needs to show that at all times,
SRPT always has the least possible number of unfinished jobs. To
apply local competitiveness to show that SRPT is 2-competitive for
average slowdown, one needs to show that at all times ¢, SRPT
is at most twice optimal with respect to the objective of minimiz-
ing the number of unfinished jobs at time ¢ divided by the work
of these jobs. Note that when applying local competitiveness, one
may potentially have to compare the online algorithm A to a differ-
ent schedule for each time ¢.

SRPT is a clairvoyant online algorithm in that it requires knowl-
edge of the work the jobs. A clairvoyant scheduling algorithm
may be implementable in a web server serving static content, but it
would not be implementable in an operating system where the work
of the jobs is unknown. The nonclairvoyant algorithm Shortest
Elapsed Time First (SETF) runs the job that has been run the least
so far. SETF is also called Least Attained Service and Foreground-
Background. SETF can be seen as a highly idealized form of the
process scheduling algorithm used by Unix. The competitive ratio
of SETF can be linear in the number of jobs. To see this, con-

sider the case of jobs with work A that arrive at the integer times
0,1,...,m — L. Fornow let A = 1 + 1. From time n/2 to time
n, SETF has ©(n) unfinished jobs with 1/» amount of unfinished
work, resulting in average response of ©(n). But SRPT completes
earlier arriving jobs before starting later arriving jobs, and has an
average response of ©(1).

More generally, the competitive ratio of every deterministic al-
gorithm is Q(n'/®) [20]. We give the adversarial strategy that
establishes this lower bound for an arbitrary deterministic online
nonclairvoyant algorithm A. The adversary releases k jobs at time
zero, each with work 1/k more than the amount that A processes
these jobs by time k& — 1 (the fact that this is possible follows from
the fact that A is deterministic). It is easy to see that the adversary
can have one unfinished job at time k—1. Then the adversary brings
in a stream of jobs of work 1/k for k? time units. This results in a
competitive ratio for A of Q(n!/?) since n = k°.

QoS
Optimal

Figure 1: QoS curves of an almost fully scalable online algo-
rithm A and the optimal algorithm for a system with the thresh-
old property.

In spite of this negative worst-case result for SETF, the Unix pro-
cess scheduling algorithm seems to perform reasonably well over
a wide range of inputs. To give one possible explanation for this
phenomenon, Kalyanasundaram and Pruhs in [15] introduced what
has come to be called Resource Augmentation Analysis. The term
resource augmentation analysis and the notation that we use here
were introduced in [22]. To understand the motivation for resource
augmentation analysis, note that it is common for systems to posses
the following informally defined threshold property:

1. The input or input distributions are parameterized by a load
A, and the server is parameterized by a capacity x. The QoS
provided by the server is reasonable if the load X is at most
90% of the server capacity u, and the QoS is horrible if A is
more that 110% of p.

For example, an M | M | 1 queue with the SRPT scheduling dis-
cipline has the threshold property [3]. The instances that showed
that SETF is Q(n)-competitive with respect to response have the
threshold property. Figure 1 gives an example of the QoS curve for
a system that has the threshold property if the optimal scheduling
algorithm is used. From Figure 1 it seems that the online schedul-

53

ing algorithm A performs reasonably well in comparison to the op-
timal scheduling algorithm. But one can see that the competitive
ratio of A is huge by looking at the vertical gap between the curves
when the load is near capacity p. To explain why the curves for
A and optimal in Figure 1 are close, we need to also measure the
horizontal gap between curves. We would like to say something
like A performs at most ¢ times worse than optimal on inputs with
s times higher load. Notice that multiplying the load by a factor of
s is like slowing the server down by a factor of s. So this is roughly
equivalent to saying that A with an s times faster server is at most
c times as bad as optimal. Formally, an online algorithm A is an
s-speed c-approximation algorithm if

max As(D) c
" Opti(I) —

where A (I) is the QoS measure of the schedule produced by al-
gorithm A with a speed s server on input I, and Opt1(I) is the
optimal QoS value achievable on a unit speed server. Essentially
the best possible resource augmentation result that one can obtain
is what is called an almost fully scalable algorithm, which is one
that is (1 + €)-speed O(1)-competitive algorithm. The constant in
the O(1) term will generally depend on €. If you have a system,
that with the optimal offline scheduling algorithm, has the thresh-
old property with threshold 4, and an online algorithm A that is
s-speed c-competitive, where ¢ is modest, then the system with A
as the scheduling algorithm has the threshold property with thresh-
old p/s. So in particular, an online scheduling algorithm that is
almost fully scalable has essentially the same threshold as the opti-
mal offline algorithm.

In [15] it was shown, using local competitiveness, that SETF was
almost fully scalable for average response. More precisely, it was
shown that SETF is (1 + €)-speed (1 + 2)-competitive. This illus-
trates a phenomenon that is common in many scheduling problems:
There is an almost fully scalable algorithm even though there are
no O(1)-competitive algorithms. The intuition behind this is that
if a system’s load is near its capacity, then the online scheduler has
no time to recover from even small mistakes. Many of the strong
worst-case lower bounds for online scheduling problems utilize in-
put instances where the load is essentially the capacity of the sys-
tem. One example is the instance showing that the competitive ratio
of SETF is Q(n).

2. RANDOMIZED ALGORITHMS

Another approach to obtaining positive results is to consider ran-
domized scheduling algorithms. Generally randomized online al-
gorithms are compared against an oblivious adversary that must
specify the input before the online algorithm begins. If the adver-
sary is allowed to change the future input in response to the random
events internal to the scheduling algorithm, then generally random-
ization is not so helpful to the online algorithm.

As an example, consider the problem of minimizing response
on one server. One nonclairvoyant algorithm that is discussed in
many introductory texts on operating systems is the Multi-Level
Feedback algorithm, which can be viewed as mimicking SETF,
while keeping the number of preemptions per job to be logarith-
mic. In MLF, there are a collection Qo, Q1, . . . of queues. There is
a target processing time T; associated with each queue. Typically,
T; = 2¢+1, but some results require more slowly growing targets,
e.g. Ti = (14 ¢)**1. Each job J; gets processed for T; — T;-1
units of time while in queue Q; before being promoted to the next
queue, Q;+1. MLF maintains the invariant that it is always running
the job in the front of the lowest nonempty queue.

[16] propose a randomized variation, call RMLF, of MLF that
is is identical to MLF except that the target of each job in queue
@ is 27! minus an exponentially distributed independent random
variable. [16] shows that RMLF is ©(lognloglogn) against an
adversary that at all times knows the outcome of all of the ran-
dom events internal to RMLF up until that time. This accounts for
the possibility of inputs where future jobs may depend on the past
schedule. [8} show that RMLF is ©(log n)-competitive against an
oblivious adversary. Both of these analyses used local competitive-
ness.

Every randomized algorithm is 2(log n)-competitive for aver-
age response [20] against an oblivious adversary. Since this is a
cost-minimization problem, we can apply Yao’s technique to lower
bound the competitive ratio. That is, we need only give an input
distribution on which the ratio of the expected response for any de-
terministic algorithm A divided by the expected optimal response
is Q(logn). The input distribution consists of & jobs released at
time zero. The work of these jobs is exponentially distributed with
mean 1. By the memoryless property of the exponential distribu-
tion, expected remaining processing times are independent of A.
At time k& — k%%, A has k% unfinished jobs, but SRPT would
only have k%/4/log k unfinished jobs. The competitive ratio of A
can then be forced to log n by bringing in a stream of short jobs.

The fact that SETF/MLF is almost fully scalable, and RMLF
is optimally competitive amongst randomized algorithms, provide
support for the adoption of MLF for process scheduling within an
operating system.

3. AVERAGE FLOW AND STRETCH ON
PARALLEL SERVERS

In the standard model for parallel scheduling, there are m iden-
tical servers. No job can be run simultaneously on more than one
server. On parallel servers, SRPT is ©(log n)-competitive for min-
imizing total response, and this is known to be optimal within con-
stant factors [19]. This analysis of SRPT used a type of local com-
petitiveness that was widely applied in subsequent papers. The
main idea was to bound the additional unfinished work, on jobs
with work at most w, that SRPT has in comparison to the adver-
sary. A simpler analysis of SRPT’s performance for minimizing
response is available in [18]. In [22] it is shown that that SRPT
is a (2 — 1/m)-speed 1-competitive algorithm for minimizing to-
tal response time on parallel servers. SRPT is 14-competitive for
minimizing total slowdown on parallel servers [21].

Resource augmentation is also possible on the number of servers.
So an s-server c-competitive algorithm A is c-competitive with the
optimal schedule with s times fewer servers [22]. However it seems
that there many fewer interesting results in the literature that use
server augmentation as compared to speed augmentation.

4. IMMEDIATE DISPATCH

An online scheduling algorithm has the immediate dispatch prop-
erty if it assigns a job J; to a server at time r;, and all jobs are
processed exclusively on the server that they are assigned. Imme-
diate dispatch might be desirable for example if you had a load
balancer sitting in front of a server farm, and migrations of jobs
between servers was undesirable. In [2] an immediate dispatch al-
gorithm is given that has the same competitive ratio for average
response as SRPT, namely ©(logn). In this algorithm, when a job
Ji is released, it is assigned to the server that has been assigned
the minimum aggregate work of jobs with work about p;. Note
that this assignment rule ignores information such as what is the
current load on each server or which jobs have actually been pro-

54

cessed or completed at the current time. Each server runs the jobs
it is assigned using SRPT. The key observations in the analysis of
this algorithm are that: for all w, the aggregate work of jobs with
work about w is evenly spread over the various servers, and hence
the difference in the total work processed by any time ¢ of jobs with
work at most w on any two servers is O(w). It is then established
that A(t) = O(Opt(t) + mlogn). The bound then follows by
local competitiveness.

5. ¢» NORMS OF FLOW AND STRETCH

Often server systems do not implement the best known algo-
rithms for optimizing average Quality of Service (QoS) out of con-
cern of that these algorithms may be insufficiently fair to individ-
ual jobs. One standard way to compromise between optimizing for .
the average and optimizing for the worst case is to optimize the £,
norm, generally for something like p = 2 or p = 3. For exam-
ple, the standard way to fit a line to collection of points is to pick
the line with minimum least squares, equivalently £;, distance to
the points, and Knuth’s TgXtypesetting system uses the £3 metric
to determine line breaks. The £,, 1 < p < oo, metric still con-
siders the average in the sense that it takes into account all values,
but because z” is strictly a convex function of z, the £, norm more
severely penalizes outliers than the standard /; norm.

In [5] it is shown that are no n°(Y)-competitive online clairvoy-
ant scheduling algorithms for any [, norm, 1 < p < oo of either
response or slowdown on one server. This is a bit surprising, at
least for response, as there are optimal online algorithms, SRPT
and FIFO, for the /; and I norms of response. However, in [5]
it is shown that the standard clairvoyant algorithms SJF and SRPT
are almost fully scalable for I, norms of response and slowdown on
one server. They showed that the nonclairvoyant algorithms SETF
and MLF are almost fully scalable for response objective functions,
but not for slowdown objective functions. In contrast, Round Robin
(RR), which at all times shares the servers equally amongst all un-
finished jobs, is not almost fully scalable even for response objec-
tive functions. This is a bit surprising as starvation avoidance is an
often cited reason for adopting RR.

The analysis of these algorithms in [5] used local competitive-
ness. For concreteness, consider the 42 norm of response. The
increase Aj+¢(t) of the £3 norm of response for an algorithm Aj ...
at time ¢ is then twice the aggregate ages of the unfinished jobs at
time ¢. That is, if you integrate over time ¢ of the aggregate ages
of the unfinished jobs at time ¢, you give half of the 2 norm of
response. Thus to establish local c-competitiveness for the £2 norm
of response for an algorithm A1 4., it is sufficient to show that at all
times the aggregate ages of the unfinished jobs for A, ;. is at most
c times the least possible aggregate ages for unfinished jobs at time
t using a unit speed processor.

[10] show how to combine immediate dispatching algorithm of
[2] with a scheduling policy such as SJF to obtain an almost fully
scalable algorithm for I, norms of response and slowdown on mul-
tiservers. The analysis is essentially a local competitive argument
similar to the analysis of SJF and SRPT in {5].

6. WEIGHTED FLOW TIME

In the online weighted response problem, each job J; has an
associated positive weight w; that is revealed to the clairvoyant
scheduler at the release timer;. The objective function is Y w; F;.
If all w; = 1 then the objective function is total response, and if
all w; = 1/p; then the objective function is total slowdown. Some
systems, such as the Unix operating system, allows different pro-
cesses to have different priorities. In Unix, users can use the nice

command to set the priority of their jobs. Weights provide a way
that a system might implement priorities.

For the moment let us focus on one server. For weighted re-
sponse, [9] show that besides being a sufficient condition, local
c-competitiveness is a necessary condition for an algorithm to be
c-competitive. The idea is that if an online algorithm was ever
worse than locally c-competitive at some time, then the adversary
could then bring in a stream of dense short jobs that contribute lit-
tle to the weighted response if they are processed as they arrive,
but will increase the weighted response tremendously if they are
delayed at all. The most obvious algorithm is Highest Density First
(HDF) which always runs the job of highest density. The density
of a job is its weight divided by its work. The competitive ratio of
HDF is w(1). To see this consider an instance consisting of many
low weight and high density jobs, and one high weight and lower
density job, all released at time 0. HDF will run the high density
jobs first, and thus will not be locally competitive at the time right
before it finishes the high weight job, since at this time it might
be possible to have only one low weight job left unfinished. This
instance demonstrates that the scheduler has to balance between
delaying low density jobs, and delaying low weight jobs. Using
this intuition, [4] give a ©(log W)-competitive algorithm that par-
titions the jobs based on approximate weight, and then runs SRPT
on the jobs in the partition with maximum total weight. Here W
is the largest weight. The analysis is a local competitiveness argu-
ment that is a variation on the local competitiveness argument for
SRPT. For a long time it was universally believed that there existed
an O(1)-competitive algorithm for weighted response, and finding
such an algorithm was viewed as the most important open problem
in competitive online scheduling. Recently, Nikhil Bansal and Ho-
Leung Chan have shown that that the consensus intuition was not
correct by showing that there is no O(1)-competitive algorithm for
weighted response.

Using a local competitiveness argument, [9] show that HDF is
an almost fully scalable algorithm for weighted response on one
server. This analysis uses a concept/technique, fractional response,
that has proved useful in several other contexts. Let p; (¢) be the re-
maining unfinished work on job i at time ¢. Then the increase in the
fractional weighted response objective at time ¢ is the sum over of
the unfinished jobs J; of wll’—;@ So for example if a job J; has & 5
of its original work remaining to be done, then J; only contributes
5 of its weight to the increase of the fractional weighted response
objective. HDF is an optimal algorithm for fractional weighted re-
sponse, and the optimal weighted fractional response is clearly a
lower bound for the optimal weighted response. Thus it is suffi-
cient to show that the weighted response for H DF'1 . is compet-
itive with the fractional response for H D F;. This is established
by showing that by the time that H DF is close to finishing a job
Ji, which is when J; might not contribute much to the fractional
response, then A D Fy . has finished J;. As a human prover, it is
often easier to deal with fractional response than integer response
since fractional response has a more continuous structure. This is
much the same reason it is easier to deal with linear programs than
integer linear programs.

[6] give almost fully scalable algorithms for the weighted Ip
norms of response. For the parallel server setting, [11] give a lower
bound on the competitive ratio of any algorithm of Q(v'W), and
[9] show that HDF is (2 + ¢)-speed O(1)-competitive.

7. AMORTIZED LOCAL COMPETITIVE-
NESS

An interesting phenomenon arises when we try obtain a resource

55

augmentation analysis for RR for response on one server. [15] give
the following lower bound instance for RR, based on an earlier in-
stance in [20]. Letto = 0, and ¢; = 1 + €. There are two jobs
of work s released at time o, and one job is released at each time
t;, © > 1, with work z(¢) that is exactly the same work that RR
has left on each of the previous jobs. To guarantee that the ad-
versary can finish the job released at time ¢; by time ¢;41, 7 > 1,
let ti+1 = t; + z(%). Then the total response for the adversary is
O(X1, 1/4%), and the total response for RR is ©(3"7, 1/i*~1).
This instance shows that RR is not 2-speed O(1)-competitive, and
RR is not locally competitive for any constant s. But, at least for
this instance, RR is (2 + €)-speed O(1)-competitive. In a land-
mark paper, Edmonds [12] proved RR is in fact (2 + €)-speed
O(1)-competitive. Since a local competitiveness argument can not
work here, Edmonds had to develop a new technique: amortized
local competitiveness. Let A be an arbitrary online scheduling al-
gorithm. Let A(t) be the rate of increase of the objective at time
t. The online algorithm A is amortized locally c-competitive with
potential function ®(t) if the following two conditions hold:

Boundary: @ is initially 0, and finally nonnegative.
Job Arrival: ® does not increase when a new job arrives.

Completion: @ does not increase when either the online algorithm
or the adversary complete a job.

Running: For all times ¢ when no job arrives or is completed,

) d@(t)

— cOpt(t) + <0 e
Observe that when ®(t) is identically zero, we have ordinary lo-
cal competitiveness. To see that amortized local c-competitiveness
implies global competitiveness, let ¢1, ¢z, . .. be the events that ei-
ther a job is released, the online algorithm A completes a job, or
the adversary completes a job. Let A(®(¢;)) denote the change in
potential in response to event ti. Integrating equation 1 over time,
we get that

A + 3" A@(4:)) < cOpt(I)

t;

By the job arrival condition, and the completion condition, we can
conclude that A(I) + ®(co) — ®(0) < cOpt(I), and finally, by
the boundary condition, we can conclude that A(I) < cOpt(I).
Intuitively on can think of the potential function ¢ as a bank.
When A(t) < cOpt(t), A is doing better than it needs to, and can
save money in the bank. When A(t) > cOpt(t), A is doing worse
than it can afford to, and thus must withdraw money from the bank
to pay for this. The conditions above just imply that A can not cheat
the bank, for example, by not paying back money that it borrowed.

8. ARBITRARY SPEED-UP CURVES

An immediate question that one has to ask when formalizing a
scheduling problem on parallel servers is whether a single job can
simultaneousty run on multiservers. In some settings this may not
be possible; in other settings this may be possible but the speed-
up that one obtains may vary. Thus one can get myriad different
scheduling problems on parallel servers depending on what one
assumes. A very general model is to assume that each job has a
speed-up function that specifies how much the job is sped up when
assigned to multiservers. More formally, a speed-up function T'(s)
measures the rate at which work is finished on the job if s process-
ing resources (say s servers) are given to the job.

A job is parallelizable if I'(s)} = s. Parallelizable work has the
property that if you devote twice as many servers to the work, it
completes at twice the rate. At the other extreme, a job is constant
if I'(s) = cfor all s > 0 and some constant ¢ > 0. Devoting
additional processing resources to constant jobs does not result in
any faster processing of these jobs. In fact constant jobs complete
at the same rate even if they are not run. The normal multiserver
setting can be modeled by the speed-up function I'(s) = s for
s < landI'(s) = 1fors > 1. Thatis, a job is parallelizable on
one server, but assigning the job to multiservers does not help.

In any real application, speed-up functions will be sublinear and
non-decreasing. A speed-up function is sublinear if doubling the
number of servers at most doubles the rate at which work is com-
pleted on the job. A speed-up function is non-decreasing if increas-
ing the number of servers does not decrease the rate at which work
is completed on the job. One can also generalize this so that jobs
are made of phases, each with their own speed-up function. As-
sume that a nonclairvoyant scheduling algorithm does not know
the speed-up function of any job.

In a remarkable analysis, Edmonds showed that RR is (2 + €)-
speed O(1)-competitive for jobs with phases that have speed-up
functions that are sublinear and non-decreasing [12]. A corollary of
this general result is that RR is (2 + €)-speed O(1)-competitive for
response on one server. This results extends, with slightly weaker
bounds, to the case where RR is given extra servers instead of faster
servers.

Edmonds first transforms each possible input into a canonical in-
put that is streamlined. An input is streamlined if: (1) every phase
is either parallelizable or constant, and (2) the adversary is able to
execute each job at its maximum possible speed. This implies that
at any one time, the adversary has only one parallel job phase to
which it is allocating all of its resources. The idea of this trans-
formation is that if RR is devoting more resources to some work
than the adversary, it is to the adversary’s advantage to make this
work be constant work that completes at the rate that the adversary
was originally processing that work. In contrast, if the adversary
is devoting more resources to a job than is RR, and the adversary
has no other unfinished jobs, then it is to the adversary’s advantage
to make this work to be parallelizable. As a consequence of this
transformation, you get that the adversary is never behind RR on
any job. The fact that the input is streamlined means that without
loss of generality one can assume that RR has one server of speed
s = 2+ e and Opt has one server of speed 1.

We now turn to the potential function ® used by Edmonds. The
potential ®(t) = F(t) + Q(t) where Q(t) is total sequential work
finished by RR by time ¢ minus the total sequential work finished
by the adversary by time ¢. To define F(¢) requires some prelim-
inary definitions. For u > t, define m.(t) (£.(t)) to be number
of fully parallelizable (sequential) phases executing under RR at
time u, for which RR at time u has still not processed as much
work as the adversary processed at time ¢. Let ny,(t) = mau(t) +
Zu(t). Then F(t) = [fu(mu(t), Lu(t))du, where fi(m,£) =

Ml"—ﬂz As the definition of the potential function sug-
gests Edmond’s analysis of RR is quite complicated.

9. MULTICAST PULL SCHEDULING

In a muiticast/broadcast server system, when the server sends
a requested page/item, all outstanding client requests to this page
are satisfied by this multicast. The system may use broadcast be-
cause the underlying physical network provides broadcast as the
basic form of communication (e.g. if the network is wireless or the
whole system is on a LAN). We restrict our attention to the case

56

that the objective function is total response. Multicast pull schedul-
ing is a generalization of weighted response. If one restricts the
instances in multicast pull scheduling such that for each page, all
requests for that page arrive at the same time, then the multicast pull
scheduling problem and the weighted response scheduling problem
are identical.

Assume for now that all pages have the same work/size, say as
would be the case for a name server. The most obvious algorithm
is Most Requests First (MRF), which broadcasts the page with the
most outstanding requests. At first, one might even be tempted
to think that MRF is optimal. However, [17] show that MRF is
not even O(1)-speed O(1)-competitive. To see this consider the
instance where at time O there is single request to each of n pages,
and at each time ¢, 0 < ¢ < n, there 2 requests to s other special
pages. At each time M RF}; broadcasts the s special pages. Thus
at time n + s, M RF, will not be locally O(1)-competitive since
it has n — s pages with outstanding requests, but it is possible to.
have finished all the pages. By bringing in a stream of requests to
new pages, one obtains an instance where the competitive ratio of
MRPF; is Q(n). This lower bound instance shows that the online
scheduler has to be concerned with not only the popularity of the
requests, but also with how to best aggregate jobs. Further, [13, 17]
show that no O(1)-competitive algorithm exists for this problem.

The lower bound instance for MRF actually contains the key
insight that relates multicast pull scheduling to scheduling with
speed-up curves, and thus suggests a possible algorithm. After the
online algorithm has finished a page that was requested by a sin-
gle client, the adversary can again direct another client to request
that page. The online algorithm must service this second request as
well. In contrast, the optimal schedule knows not to initially give
any resources to the first request because the broadcast for the sec-
ond request simultaneously services the first. Thus, even though
the online algorithm devotes a lot of resources to the first request
and the optimal algorithm devotes no resources to the first request,
it completes under both at about the same time. In this regard, the
work associated with the first request can be thought of as “con-
stant”. This suggests that the real difficulty of broadcast scheduling
is that the adversary can force some of the work to have a constant
speed-up curve.

Formalizing this intuition, [13] give a method to convert any non-
clairvoyant unicast scheduling algorithm A to a multicast schedul-
ing algorithm B. A unicast algorithm can only answer one request
at a time, as is the case on a standard web server. [13] shows that
if A works well when jobs can have parallel and constant phases,
then B works well if it is given twice the resources. The basic idea
is that B simulates A, creating a separate job for each request, and
then the amount of time that B broadcasts a page is equal to the
amount of time that A runs the corresponding jobs. More formally,
if A is an s-speed c-competitive unicast algorithm, then its counter-
part, algorithm B, is a 2s-speed c-competitive multicast algorithm.
In the reduction, each request in the multicast pull problem is re-
placed by a job whose work is constant up until the time that either
the adversary starts working on the job or the online algorithm fin-
ishes the job. After that time, the work of the replacement job is
parallel. The amount of parallel work is such that A will complete
a request exactly when B completes the corresponding job. Using
the RR for algorithm A, one obtains an algorithm, called BEQUI
in [13], that broadcasts each page at a rate proportional to the num-
ber of outstanding requests. Using Edmonds’ analysis of RR for
jobs with speed-up functions, one gets that BEQUI is (4 + €)-speed
O(1 + 1/e¢)-competitive. In fact, all the results in [13] hold if the
pages have arbitrary sizes under the assumptions that the c]lents
have to receive a page in order.

The most popular multicast pull scheduling algorithm for unit
work pages in the computer systems literature is Longest Wait First
(LWF). LWF always services the page for which the aggregate
waiting times of the outstanding requests for that page is maxi-
mized. In the natural setting where for each page, the request ar-
rival times have a Poisson distribution, LWF broadcasts each page
with frequency roughly proportional to the square root of the page’s
arrival rate, which is essentially optimal. [14] show that LWF is 6-
speed O(1)-competitive, but is not almost fully scalable. It is not
too difficult to see that there is no possibility of proving such a re-
sult using local competitiveness. The authors of [13] were not able
to obtain a potential function that would allow them to establish this
result via amortized local competitiveness. This illustrates one po-
tential difficulty a human prover might encounter when searching
for an amortized local competitiveness argument. One has discover
a potential function to establish the fundamental inequality 1 for
all configurations. But there can be configurations, in which the
online algorithm is not doing badly, yet the natural potential func-
tions aren’t sufficiently refined to establish inequality 1. The rather
complicated analysis given in [14] sums up the total cost of LWF,
and sums up the total cost to the adversary, and then compares like
terms.

10. SPEED SCALING

In addition to the traditional goal of efficiently managing time
and space, many computers now need to efficiently manage power
usage. For example, Intel’s SpeedStep and AMD’s PowerNOW
technologies allow the Windows XP operating system to dynami-
cally change the speed of the processor to prolong battery life. In
this setting, the operating system must not only have a job selec-
tion policy to determine which job to run, but also a speed scaling
policy to determine the speed at which the job will be run. In cur-
rent CMOS based processors, the speed satisfies the well known
cube-root-rule, that the speed is approximately the cube root of the
power. Energy is power integrated over time. The operating sys-
tem is faced with a dual objective optimization problem as it both
wants to conserve energy, and optimize some Quality of Service
(QoS) measure of the resulting schedule.

If there is an upper bound on energy used, then there is no O(1)-
competitive online speed scaling policy for total response. To un-
derstand intuitively why this is the case, consider the situation when
the first job arrives. The scheduler has to allocate a constant frac-
tion of the total energy to this job; otherwise, the scheduler would
not be O(1)-competitive in the case that no more jobs arrive. How-
ever, if many more jobs arrive in the future, then the scheduler has
wasted a constant fraction of its energy on only one job. By iter-
ating this process, one obtains a bound of w(1) on the competitive
ratio with respect to total response.

Albers and Fujiwara [1] proposed combining the dual objectives
of energy and response into the single of objective of energy used
plus total response. Optimizing a linear combination of energy
and total response has the following natural interpretation. Sup-
pose that the user specifies how much improvement in response,
call this amount p, is necessary to justify spending one unit of en-
ergy. For example, the user might specify to the Windows XP op-
erating system that he is willing to spend 1 erg of energy from the
battery for a decrease of 3 micro-seconds in response. Then the
optimal schedule, from this user’s perspective, is the schedule that
optimizes p = 3 times the energy used plus the total response. By
changing the units of either energy or time, one may assume with-
out loss of generality that p = 1.

Local competitiveness is generally not achievable in speed scal-
ing problems because the adversary may spend essentially all of

57

its energy in some small period of time, making it impossible for
any online algorithm to be locally competitive at that time. Thus
amortized local analysis is the tool of choice.

Letus consider the objective of fractional weighted response plus
energy. The increase of the objective for an algorithm A at time ¢ is
wa(t) +pa(t) = wa(t) + sa(t)®, wa(t) is the fractional weight
of the unfinished jobs at time ¢ for algorithm A, pa(t) and sa(t)
are the power and speed of algorithm A at time ¢, and p4(t) =
s4(t)" is the speed to power function. Thus the fundamental local
competitiveness equation 1 in this case is equivalent to:

walt) + 54(0)" — clwon(t) + sop(t)?) + L

<0 ()
For reasons explained in [1], that we will not go into here, the nat-
ural algorithm to consider is the algorithm A that uses HDF for
job selection, and always runs at a power pa(t) = wa(t). Then
equation 2 reduces to

d®(t)

<
dt 0,

2wa (t) — c(wo(t) + s0()%) + €))
Here one can think of ®(t) as a measure of the energy in a bank/battery
at time £. Then %t—) is then a measure of power representing the
rate that energy is flowing into or out of the bank/battery.

First consider the simpler case where all jobs have unit work
and unit weight, [7] shows that the algorithm A is 2-competitive
for the objective function of fractional response plus energy. Let

= (a — 1)/a. If you have w jobs with equal release times, then
Opt is proportional to w®T!. Thus we know that, in order for @ to
have enough energy stored to pay for the future, assuming that no
more jobs arrive, that it must be the case that ®(t) > wa(t)*™! —
wopt (t)?T1. Unfortunately setting the potential function equal to
the right-hand side of this inequality does not satisfy equation 3
when wa(t) > wopt(t) and a new job arrives. The problem is
that the incremental cost to A in this situation is much larger than
the incremental cost for the adversary, and the potential function
does not decrease enough to pay for this. Thus [7] use the related
potential function

o(t) =

(max(0, wa(t) — wo(t)))*

(B+1)

Note that this potential function decreases more quickly than the
first candidate potential function in the situation discussed above.

[7] shows that by rounding the power used by A up to the nextin-
teger one obtains a 4-competitive algorithm for the objective func-
tion (integral) response plus energy.

Let us turn our attention back to the general case of jobs with
arbitrary work and arbitrary weight, [7] show that algorithm A is
O(1)-competitive with respect to the objective of fractional weighted
response plus energy. When the cube-root rule holds, the compet-
itive ratio is approximately 2.52. To define the potential function
used in [7], let wa(h) be a function of ¢ denoting the total frac-
tional weight of the jobs unfinished by A that have inverse density
of atleast h. The inverse density of a job is the work divided by the
weight. The potential function used in [7] is then

2

o) = 5y

[(e wa(h) = 8+ o)) v

B 4)
For the objective of energy plus (integer) weighted response, [7]
shows that an algorithm that tries to mimic algorithm A is a bit less
than 8-competitive when the cube-root rule holds.

11. CONCLUSIONS

Recall that our goal here is to illustrate the competitive online
scheduling research community’s approach to online server schedul-
ing problems by enumerating some of the results obtained for prob-
lems related to response and slowdown, and by explaining some of
the standard analysis techniques. Our goal was not to present an
exhaustive survey. Necessarily our choices for results to cover is
idiosyncratic. We offer our apologies to the authors of the many
fine papers not discussed here. The closest thing to an exhaustive
server of competitive online scheduling is probably the survey arti-
cle [23].

I have been asked to compare competitive analysis to stochastic
analysis. Given my immature knowledge of stochastic schedul-
ing, I am somewhat reluctant, but here is my best shot. Let us
start with the disadvantages of competitive analysis. Since com-
petitive analysis is a worst-case concept, the results are generally
overly pessimistic for normal inputs. Also competitive analysis
only bounds the performance relative to the optimal algorithm, it
does not give any absolute measure of performance. So it might
recommend a scheduling algorithm to run on your server farm, but
it wouldn’t tell you how many servers to buy to handle a certain
number of users. Let us now turn to the advantages of competitive
analysis, including resource augmentation analysis. It seems that
for server systems, the key property of a good online scheduling
algorithm is that it should scale as well as the optimal scheduling
algorithm with the load. Algorithms that are O(1)-competitive, or
almost fully scalable, have this scaling property. This seems to
be the reason that competitive analysis generally recommends the
“right” algorithms, for example, SRPT for average slowdown on
a web server, SETF for average response on an operating system,
and LWF for average response on a multicast name server. Fur-
ther, one can reasonably obtain a competitive analysis for a wide
variety of scheduling applications, without requiring probabilistic
assumptions about the input distribution. It is often not clear what
the “right” probabilistic assumption is, and if one assumes some
general probability distribution, the resulting analysis is often in-
tractable. Consider for example a multicast-pull web server. To
apply stochastic analysis would require assuming some joint prob-
ability distribution over file size and popularity, that is, you need
to know how file size correlates with popularity. It is probably not
so clear a priori what the “right” assumption is for a web server,
or even that there is a “right” assumption. For example, this joint
distribution may depend on whether the client-side caching policy
is something like LRU, which doesn’t discriminate based on file
size, or is something like Greedy-Dual-Size, which is more likely
to evict large files. If one assumes a general joint distribution, then
it is probably not so tractable to analyze algorithms using such a
general assumption (although in fairness to stochastic scheduling,
part of this intractability derives from the stochastic scheduling re-
searchers’ desire for exact, instead of approximate, results).

12. REFERENCES

[1]1 S. Albers and H. Fujiwara. Energy-efficient algorithms for
flow time minimization. In Symposium on Theoretical
Aspects of Computer Science, pages 621-633, 2006.

[2] N. Avrahami and Y. Azar. Minimizing total flow time and
total completion time with immediate dispatching. In Proc.
15th Symp. on Parallel Algorithms and Architectures (SPAA),
pages 11-18. ACM, 2003.

{3] N. Bansal. On the average sojourn time under
m—m—1—srpt. Opererations Research Letters,
33(2):195-200, 2005.

58

[4] N. Bansal and K. Dhamdhere. Minimizing weighted flow
time. In Proc. 14th Symp. on Discrete Algorithms (SODA),
pages 508-516. ACM/SIAM, 2003.

[51 N. Bansal and K. Pruhs. Server scheduling in the L, norm:
A rising tide lifts all boats. In Proc. 35th Symp. Theory of
Computing (STOC), pages 242-250. ACM, 2003.

[6] N. Bansal and K. Pruhs. Server scheduling in the weighted I,
norm. Manuscript, 2003.

[7]1 N. Bansal, K. Pruhs, and C. Stein. Speed scaling for
weighted flow time. In ACM-SIAM Symposium on Discrete
Algorithms, 2007.

[8] L. Becchetti and S. Leonardi. Non-clairvoyant scheduling to
minimize the average flow time on single and parallel
machines. In Proc. 33rd Symp. Theory of Computing
(STOC), pages 94-103. ACM, 2001. To appear in JACM.

[9] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and
K. Pruhs. Online weighted flow time and deadline
scheduling. In RANDOM-APPROX, volume 2129 of Lecture
Notes in Computer Science, pages 36—47. Springer, 2001.

[10] C. Chekuri, S. Khanna, and A. Kumar. Multi-processor
scheduling to minimize I, norms of flow and stretch.
Manuscript, 2003.

[11] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for weighted
flow time. In Proc. 33rd Symp. Theory of Computing
(STOC), pages 84-93. ACM, 2001.

[12] J. Edmonds. Scheduling in the dark. Theoretical Computer
Science,235:109-141, 2000.

[13] J. Edmonds and K. Pruhs. Multicast pull scheduling: when
fairness is fine. Algorithmica, 36:315-330, 2003.

[14] J. Edmonds and K. Pruhs. A maiden analysis of longest wait
first. In Proc. 15th Symp. on Discrete Algorithms (SODA).
ACM/SIAM, 2004.

[15] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. Journal of the ACM, 47:214-221, 2000.

[16] B. Kalyanasundaram and K. Pruhs. Minimizing flow time
nonclairvoyantly. Journal of the ACM, 50:551-567,2003.

[17] B. Kalyanasundaram, K. R. Pruhs, and M. Velauthapillai.
Scheduling broadcasts in wireless networks. Journal of
Scheduling, 4:339-354, 2001.

[18] S.Leonardi. A simpler proof of preemptive flow-time
approximation. In Approximation and On-line Algorithms, -
Lecture Notes in Computer Science. Springer, 2003.

[19] S. Leonardi and D. Raz. Approximating total flow time on
parallel machines. In Proc. 29th Symp. Theory of Computing
(STOC), pages 110-119. ACM, 1997.

[20] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant
scheduling. Theoretical Computer Science, 130:17-47, 1994.

[21] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E.
Gehrke. Online scheduling to minimize avarage strech. In
Proc. 40th Symp. Foundations of Computer Science (FOCS),
pages 433—443. IEEE, 1999.

[22] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal
time-critical scheduling via resource augmentation.
Algorithmica, pages 163-200, 2002.

[23] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In
Handbook on Scheduling. CRC Press, 2004.

