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Abstract

This paper proposes a method for improving the performahééeb servers servicing static HTTP re-
quests. The idea s to give preference to those requesthatgaquick, or have small remaining processing
requirements, in accordance with the SRPT (Shortest-RengaProcessing-Time) scheduling policy.

The implementation is at the kernel level and involves adlitig the order in which socket buffers
are drained into the network. Experiments use the Linuxatpey system and the Flash web server. All
experiments are repeated under a range of server loads ded lbioth trace-based workloads and those
generated by a Web workload generator.

Results indicate that SRPT-based scheduling of connexcyiids significant reductions in mean re-
sponse time, mean slowdown, and variance in response tite /eb server. Most significantly, and
counter to intuition, théarge requestsare only negligibly penalized (or not at all penalized) assuit of

SRPT-based scheduling.

*This research is funded by Cisco Systems via a grant fromittebérgh Digital Greenhouse 00-1 and by NSF-ITR 99-167 ANI
0081396. Equipment was also provided by the Parallel Data La



1 Introduction

Today’s busy Web servers may be servicing hundreds of résjaéshe same time. This can cause large
gueueing delays at the Web server, or close to it. Our ovgaall in this paper is to minimize the queueing
delay at a Web server.

The idea is simple. Recent measurements [22] have sugdkat¢de request stream at most Web servers
is dominated bygtaticrequests, of the form “Get me a file.” For such requestssiteof the requegt.e. the
time required to service the request) is well-approximatethe size of the file, which is well-known to the
server. Thus far, (almost) no companies or researchersrhasle use of this information. We propose to use
the knowledge of the size of the request to affect the scireglolder in which requests are serviced by the
Web server, and in this way minimize the queueing delay at\tble server.

Traditionally, requests at a Web server are scheduled amimtly of their size. The requests are time-
shared, with each request receivinda@r share of the Web server resources. We propose, insteathir
schedulingin which priority is given tashortrequests, or those requests which hstwert remaining timgin
accordance with the well-known scheduling algorithm SégirRemaining-Processing-Time-first (SRPT).

There is an obvious reason wimpnfair schedulings not used. Unfair scheduling seems to imply that
some requests will “starve,” or at least be harshly pendl{zee Section 2 for a list of references to this
effect). This intuition is usually true. However, we haveeawrtheoretical paper, [7], which proves that in
the case of (heavy-tailed) Web workloads, this intuitidisfapart. In particular, for Web workloads, even
the largest requests an®t penalized (or negligible penalized) by SRPT schedulingeséhnew theoretical
results have motivated us to reconsider “unfair” schedplin

It's not immediately clear what SRPT means in the context\Wedb server. The SRPT scheduling policy
is well-understood in the context of a single-queue, singource system [27]: at any moment in time, give
the full resource to that one request with the shortest neimg.processing time requirement. However a Web
server is not a single-resource system; thus it would belyigkfficient to schedule onlgnerequest at a
time to run in the Web server. Furthermore, it is not even obswhichof the Web server’s resources need
to be scheduled.

After experimenting with various Web servers and varioubWerkload generators, we've reached the
conclusion that for Web servers the network is bioétleneck resourceAccess links to Web sites (T3, OC3,
etc.) cost thousands of dollars per month, whereas CPU &pdhecomparison. Thus the CPU is never the
bottleneck (since it is inexpensive to add more CPU). Lileandisk utilization remains low since most files
end up in the cache. In this paper we use a 10Mb/sec link outrofeb server, because it is easy to saturate
the link in experimentation. While the link bandwidth is watted, the CPU utilization and disk utilization
remain extremely low.

Since the network is the bottleneck resource, we try to affdySRPT idea at the level of the network.



Our idea is to control the order in which socket buffers ar@irdrd. Recall that for each (non-persistent)
request a connection is established between the clientrend@/eb server, and corresponding to each con-
nection, there is a socket buffer on the Web server end iniohnthe Web server writes the contents of the
file requested. Traditionally, the different socket budfare drained in Round-Robin Order (each getting
a fair share of the bandwidth of the outgoing link). We indt@aopose to give priority to those sockets
corresponding to connections for small file requests or eiileeremaining datarequired by the request is
small. In Sections 3 and Sections 8, we describe the high-#d low-level issues, respectively, involved in
implementing priority scheduling of socket buffers.

Our experiments use the Linux operating system and the Flthserver [23]. We chose the Linux
0.s. because of its popularity. We could have used any Welersesince our modifications are primarily
in the o.s., but we chose Flash simply because it was easy owith (substantially fewer lines of code
compared with other Web servers). In order to perform steaidy meaningful experiments, our clients use
a request sequence taken from a Web trace, or generated by avdvkload generator (See Section 4.2).
This request sequence is controlled so that the server émadins below 1 and so that the same experiment
can be repeated at different server loads (the server Idad Isad at the bottleneck device — in this case the
network link out of the Web server). The experimental setugetailed in Section 4.

Each experiment is repeated in two ways:

e Under the standard Linux o.s. (fair-share draining of sbbkéfers) with an unmodified Web server.

We call thisfair scheduling.

¢ Under the modified Linux o.s. (SRPT-based draining of sobkiéfers) with the Web server modified
only to update socket priorities. We call tt8®PT-based scheduling

We experiment with different Web workloads, different gystloads, and different lengths of experi-
ments. For each experiment we measure mean response tima@ceain response time, mean slowdown,
and variance in slowdown. We also measure the mean resporesad a function of the request size, to exam-
ine the question of whether the mean response time for jedatgest requests is higher under SRPT-based

scheduling as compared with fair scheduling. We find theWailhg results:
e SRPT-based scheduling decreases mean response time byrafé— 5 for loads greater thanb.
¢ SRPT-based scheduling decreases the mean slowdown byadb2t— 7 for loads greater thanb.

¢ SRPT-based scheduling helps small requests a lot, whilkgitdy penalizing large requests. For
example, under a load 0f8, our experiments show th&0% of the requests improve by a factor of
close to 10 under SRPT-based scheduling, with respect to mesponse time, and all but the top

0.5% of the requests improve by a factor of over 5 under SRPT-bsefeeduling, with respect to mean



response time. In contrast, the very largest request sufieiincrease in mean response time under

SRPT-based scheduling of a factor of only 1.2.

e The variance in the mean response time for most requests GRdeT-based scheduling is far lower

for all requests, in fact several orders of magnitude lower for mezpiests.

¢ SRPT-based scheduling (as compared with FAIR scheduloep dot have any effect on the network
throughput or the CPU utilization.

The results are detailed in Section 5 and are in agreemehthé@bretical predictions (see Section 6.1).

In Section 3 we take a closer look at the Linux kernel intesnalan attempt to explain why the fair
scheduling experiment resulted in such poor performaneefivi that although the Linux kernel is supposed
to implement fair scheduling, the particular structurewdges in the Linux kernel inadvertently creates some
bias againssmall requeststhus beinginfair to small requests

The above observations about Linux lead us to propose akKdixtto Linux, with the following results:

¢ The performance of the smallégi% of the requests improves by a factor of 10 with respect to mean

response time under the “quick-fix”.

¢ The largest0% of the requests are not negatively impacted whatsoever éoyoiick-fix.” In fact,

many benefit.

The “quick-fix” and its results are discussed in Section 7.

It is important to realize that this paper is just a prototypdlustrate the power of using SRPT-based
scheduling. In Section 10, we elaborate on broader apitabf SRPT-based scheduling, including the ap-
plication of SRPT-based scheduling to other resourcesGRg, to cgi-scripts and other non-static requests,

and finally the application of SRPT-based scheduling toei@uthroughout the Internet.

2 Relevant Previous Work

We first discuss related implementation work and then disoeisvant theoretical results.

Many recent papers have dealt with the issue of how to obt#fierentiated quality of service in Web
servers, via priority-based scheduling of requests. Thapers are generally interested in providing different
levels of QOS to different customers, rather than usingexs&sed scheme like our own. Various ideas have
been tried to implement such prioritization schemes. Weritas these below.

Almeida et. al. [2] use both a user-level approach and a kéemel implementation to prioritizing
HTTP requests at a Web server. Tier-levelapproach in [2] involves modifying the Apache Web server

to include a Scheduler process which determines the ordethioh requests are fed to the Web server.



This modification is all in the application level and themefaloes not have any control over what the o.s.
does when servicing the requests. Kaenel-levelapproach in [2] simply involves setting the priority of
the process which handles a request in accordance with ithétypof the request. Observe that setting the
priority of a process only allows very coarse-grained aariwer the scheduling of the process, as pointed
out in the paper. The user-level and kernel-level appraaahéhis paper are good starting points, but the
results show that more fine-grained implementation worlesded. Specifically, the high-priority requests
only benefit by up t®0% and the low priority requests suffer by up260%.

Another attempt at priority scheduling of HTTP requests trenclosely related to our own because it
too deals with SRPT scheduling at Web servers [12]. Thisémgintation does not involve any modification
of the kernel. The authors experiment with connection saliegl at theapplication levelonly. They design
a specialized Web server which allows them to control theoirdwhichr ead() andwri t e() calls are
made, but does not allow any control over the low-level salind which occurs inside the kernel, below
the application layerg.g, control over the order in which socket buffers are drain& the experimental
Web server, the authors are able to improve mean responsdyim factor of close to 4, for some ranges of
load, but the improvement comes at a price: a drop in throutihyp a factor of almost 2. The explanation,
which the authors offer repeatedly, is that scheduling ataghplication level does not provide fine enough
control over the order in which packets enter the networlartier to obtain enough control over scheduling,
the authors are forced to limit the throughput of requeskds Will not be a problem in our paper. Since the
scheduling is done at the kernel, we have absolute conteolgackets entering the network. Our performance
improvements are greater than those in [12] and do not cottie @bst of any decrease in throughput.

The papers above offer coarser-grained implementatianpriority scheduling of connections. Very
recently, many operating system enhancements have agpehich allow for finer-grained implementations
of priority scheduling [16, 25, 3, 4]. In this paper we worktlvone of these implementations, known as the
Diffserv patch, as described in Section 3.

Several papers have considered the idea of SRPT schedulingary.

Bender, Chakrabarti, and Muthukrishnan [9] consider biaged scheduling in Web servers. The authors
reject the idea of using SRPT scheduling because they prateSRPT will cause large files to have an
arbitrarily highmax slowdownHowever, that paper assumes a worst-case adversanial agguence of Web
requests. The paper goes on to propose other algorithnhsding a theoretical algorithm called Dynamic
Earliest Deadline First (DEDF), which does well with regpecmax slowdown and mean slowdown.

Roberts and Massoulie [26] consider bandwidth sharing amkaahd survey various scheduling policies.
They suggest that SRPT scheduling may be beneficial in tleeafasheavy-tailed (Pareto) flow sizes.

The primary theoretical motivation for this paper, comesrfrour own paper, [7]. This is a theoretical

paper on the starvation properties of SRPT scheduling. Ttieoes prove bounds on how much worse a



request could perform under SRPT scheduling as comparddRt (processor-sharing, a.k.a. fair-share
time-sharing) scheduling, within an M/G/1 setting. Thehaus$ also corroborate their results using a trace-
driven simulation with real arrival stream. The authorsverthat the penalty to large requests under SRPT
(as compared with PS) is not severe. In particular, they gheivfor a large range dfeavy-tailed Pareto)
distributionsgvery single requesincluding the very largest request, performs better uSERIPT scheduling

as compared with PS scheduling. The case of heavy-tailateségize distributions is important because
heavy-tailed distributions have been shown to arise in negngirical computer workloads [21, 18, 10, 20,
24]. In particular measurements\¢eb file sizeandHTTP request timelsave been shown to be heavy-tailed
[8]. We use the theoretical results in [7] to corroboratertimilts in this paper.

The general idea of size-based scheduling for heavy-taite#tloads has also been explored in arenas
other than Web servers. Shaikh, Rexford, and Shin [28] dsoouting of IP flows (which have heavy-tailed
size distributions) and propose routing long flows difféhefrom short flows. Harchol-Balter [19] considers
scheduling in distributed server systems where requestsarpreemptible, request sizes are unknown, and
where the workload is heavy-tailed. She proposes sizedbsd®eduling using an algorithm for gradually

learning sizes.

3 Implementation of prioritized socket draining: high-level descrip-
tion

In Section 3.1 we explain how socket draining works in statidlenux. In Section 3.2 we describe an existing
patch for Linux versions 2.2 and above, known as the Diffgatech [1]. This patch is supposed to enable
the draining of sockets in a prioritized fashion. Sockebpties are actually derived, set, and dynamically
updated by the Web server. Section 3.3 describes the imptatien end at the Web server and also deals
with the algorithmic issues of determining which file sizeswld fall within which priority classes.

The implementation of prioritized socket draining in Linuxned out to be a more involved process than
we initially believed. For readability, we postpone a dission of these low-level issues to Section 8. In
Section 8.1 we describe our many failed attempts at gettingDiffserv patch to work, and the fixes that
we finally came up with. Obtaining a priority capability alrhowever, is not enough to make size-based
gueueing work. One problem is that for small requests, @lpartion of the time to service the request is

spentbeforethe size of the request is even known. Section 8.2 descrilresotution to this problem.

3.1 Default Linux configuration

Figure 1 shows our understanding of the flow of control indéad Linux. This understanding was obtained

via extensive experiments which we don’t have room to dbschiere. Observe that the model that we



describe in this section and in the subsequent sectinatigsible by looking at the Linux code alone.

There is a socket buffer corresponding to each connecticata Btreaming into each socket buffer is
encapsulated into packets which obtain TCP headers andalfetse Throughout this processing, the packet
streams corresponding to each connection is kept sepdfatally, there is asingle“priority queue”, into
whichall streams draifairly. Our experiments show that this single “priority queuethaligh bounded, can

get quite long. Packets leaving this queue drain into a $ftbernet card queue and out to the network.

Socket 1 IP1
ﬁ //
Socket 2 P 2 J/ Single Priority Queue Ethernet Card
— ‘ —_— — Network
Wire
Socket 3 IP 3
—
DRAIN
FAIRLY,
TAKING
TURNS

Figure 1:Flow of control in Standard Linux. The important thing to ebee is that there is ainglepriority

gueue into which all connections drain fairly.

3.2 How Linux with Diffserv patch works

Figure 2 shows our understanding of the flow of control in kimmnder Diffserv patch This understanding
was obtained via extensive experiments and by reading tlesviag papers: [16, 25, 3, 4].

Again, there is a socket buffer corresponding to each cdrmre®ata streaming into each socket buffer is
encapsulated into packets which obtain TCP headers andalfetse Throughout this processing, the packet
streams corresponding to each connection is kept separiially, there are 16 priority queues. These are
called bands and they range in number from 0 to 15, where bahddlowest priority and band O has highest
priority. All the connections of priority drain fairly into theith priority queue. The priority queues then
drain in a prioritized fashion into the Ethernet Card qudRrgority queue is only allowed to drain if priority
gueuesl through: — 1 are all empty. Again we note that our experiments indicade tie priority queues

can become quite long in practice.

1we used the Diffserv patch [1] in our experiments. More régensions of Linux include priority scheduling as an optiathough

this mechanism needs to be enabledivdan order for the priorities to work.



Socket 1 P 1 1st Priority Queue

—_— > || |||

%‘r&fthemet Card

Socket 2 P2 Network

2nd Priority QUeV > Wire
drained

Socket 3 P3 / second.

Figure 2: Flow of control in Linux with Diffserv Patch. It is importand observe that there are several

priority queues, and queuedrains only if all of queue8 throughi — 1 are empty.

3.3 Setting of priorities in the Web server and Algorithmic issues inapproximating
SRPT

Very few changes must be made to the Web server itself. THeespdorities must be initialized (using the
set sockopt () system call) based on the initial size of the request. Ldtersbcket priorities must be
updated, in agreement with the remaining size of the file.

SRPT assumes infinite precision in ranking the remaininggssing requirements of requests. In prac-
tice, we are limited to a small fixed number of priority bani§)(

It turns out that the way in which request sizes are part#ibamong these priority levels is important
with respect to the performance of the Web server. In theraxgats throughout this paper, we use only 5
priority classes to approximate SRPT. Our choice of sizeftsitn this paper is rather ad hoc. We believe
that more optimal size cutoffs exist, but we didn't have timelo a proper search.

Our SRPT-like algorithm is thus as follows:
1. Priorities 1, 2, 3, 4, and 5 are associated with size rangesre 1 denotes highest priority.

2. When a request arrives, it is given a socket with priorityf@is is animportantdetail which allows

SYN ACKS to travel quickly. This is explained in depth in Seat8.2.

3. After the request size is determined (by looking at the WRthe file requested), the priority of the

socket corresponding to the request is reset based on thefdize request.

4. As the remaining size of the request diminishes, the ipyiof the socket is dynamically updated to

reflect the remaining size of the request.



4 Experimental Setup

4.1 Architecture

Our experimental architecture involves two machines edtham Intel Pentium Il 700 MHz processor and
256 MB RAM, running Linux 2.2.14, and connected by a 10Mb/sgeduplex Ethernet connection. The
Flash [23] Web server is running on one of the machines. Therahachine hosts up to 200 clients which

send requests to the Web server.

4.2 Workload

The clients’ requests are generated either Waled workload generatqiwe use a modification dsur ge

[8]) or viatraces Throughout this paper, all results shown are for a trace-dzhworkload We have included

in the Appendix thesame full set of results for theSur ge workload. We have chosen to deemphasize
the Sur ge-based results because we discovered some shortcomings$aitge workload that made us

guestion thesur ge-based results.

4.2.1 Traces

The traces come from the Soccer World Cup 1998, and were dewatl from the Internet Traffic Archive
[17]. We used only 7 minutes of the trace (from 10:00 p.m. t®I(.m.). We incorporated only static
requests in our experiment.

Some statistics about our trace workload: The mean file gigaasted is 5K bytes. The min size file
requested is a 41 byte file. The max size file requested is H@4A2MB file. There are approximately
90,000 requests made, which include requests for over admaidifferentfiles. The distribution of the file
sizes requested fits a heavy-tailed Pareto distribution.tfib largest: 3% of the requests make up 50%
of the total load, exhibiting a strong heavy-tailed propes0% of files have size less than 1K byt&8.% of

files have size less than 9.3K bytes.

4.2.2 Web workload generator

We also repeated all experiments using a Web workload gemefdese results are shown in the Appendix.

4.2.3 Determination of System Load

As mentioned earlier, it is important that we understandsystem load under which each experiment is
being run. We have derived a formula for system load. Fortaudil verification, this formula was derived

in two independent ways.



Since the bandwidth is the bottleneck resource, we defingystem load to be the ratio of the bandwidth
used on average and the maximum bandwidth available . Thau iérrival sequence is such that 8Mb of
bandwidth is utilized on a 10Mb/s link, we say that our systemunning at a load of 0.8.

We start by describing the analytic method for finding thesatrate which corresponds to a desired load.
This is very simple. Since we know the average number of lpgeesequest, we can estimate the fraction of
the total bandwidth that would be used under any arrival rate

However this method does not allow us to obtain a very acewstimate of load, since the data transfered
over a link includes the size of the various network protdeders. Moreover we cannot be sure that the
maximum bandwidth available is exactly 10Mb/s. So our lostith@ate might be inaccurate.

To obtain a very accurate estimate of the load, we start wétlhall arrival rate and measure the network
bandwidth utilization (rather than calculating it). Thew imcrease the rate slowly and again measure the
bandwidth. The bandwidth increases linearly with the afnate, but then stops increasing when the arrival
rate reaches a value at which the system load first become® hoW this critical arrival rate. To obtain a
loadp < 1 we just set the arrival rate ptimes the critical arrival rate.

Throughout our experiment, we verify that our estimatesddads using all the methods agree, since even

a small difference (say 0.8 as opposed to 0.9) can createfddference in the results.

5 Experiments and Experimental Results

We run a series of experiments comparing:
Standard Linux with FAIR Scheduling versusLinux with our SRPT-based Priority Scheme
Each experiment is run for 10 minutes. For each experimentvwaluate the following performance metrics:

¢ Mean response timeThe response time of a request is the time from when thetdiginmits the

request until the client receives the last byte of the reiques

¢ Mean slowdownThe slowdown metric attempts to capture the idea thattdiare willing to tolerate
long response times for large file requests and yet expedt iggponse times for short requests. The
slowdown of a request is therefore its response time divimeds size in bytes. Slowdown is also
commonly known asiormalized response tinaad has been widely used [14, 5, 18]. Mean slowdown

is the average of the slowdown of each of the requests.

o Mean response time as a function of request.sid@is will indicate whether big requests are being

treatedunfairly under SRPT as compared with FAIR-share scheduling.

o Coefficient of variation of response time as a function ofies= size



Before presenting the results of our experiments, we matk® smportant comments.

¢ In all of our experiments the network was the bottleneckuesa CPU utilization during our experi-

ments ranged from% in the case of low load t6% in the case of high load.

e The measured throughput and bandwidth utilization underetperiments with SRPT scheduling is
identicalto that under the same experiments with FAIR scheduling,iafmbth cases the maximum

possible throughput is achieved, given the request sequenc
e The same exact set of requests complete under SRPT schgedntrunder FAIR scheduling.

e There is no additional CPU overhead involved in SRPT sctiegak compared with FAIR scheduling.
This can be explained by two observations. First, the owtliie to updating priorities of sockets is
insignificant, given the small number of priority classegttive use. Second, the preemption overhead
under SRPT-based scheduling is actuldlyerthan under FAIR scheduling. See [7] for a proof of this

fact.

Figure 3 shows the mean response time under SRPT schedsltwrgpared with the traditional FAIR
scheduling as a function of load. For lower loads the meaporese times are the same under the two
scheduling policies. However for loads0.5, the mean response time is a factor of 2 — 5 lower under SRPT
scheduling. These results are in agreement with our tHeakeredictions in [7].

The results are even more dramatic for mean slowdown. F@shews the mean slowdown under SRPT
scheduling as compared with the traditional FAIR schedubBis a function of load. For lower loads the
slowdowns are the same under the two scheduling policieswekter for loads> 0.5, the mean slowdown is
a factor of 2 — 7 lower under SRPT-based scheduling as comhpétie FAIR scheduling.

The important question is whether the significant improvaei:ién mean response time come at the price
of significant unfairness to large requests. Figure 5 shbe/aiean response time as a function of request size,
in the case where the load(is, 0.8, and0.9. In the left column of Figure 5, request sizes have been grdup
into 60 bins, and the mean response time for each bin is showheigraph. The 60 bins are determined
so that each bin spans an inter{ia) 1.2z]. It is important to note that the last bin actually contaimngyo
one request. Observe that small requests perform far hettlesr SRPT scheduling as compared with FAIR
scheduling, while large requests, thasel MB, perform only negligibly worse under SRPT as compared
with FAIR scheduling. For example, under load)df (see Figure 5(b)) SRPT scheduling improves the mean
response times of small requests by a factor of clogdé tavhile the largest request is penalized by a factor
of only 1.2. The right column of Figure 5 is identical in content to th#& lumn, but this time we see
the mean response time as a function of the percentile oetigest size distribution, in increments of half
of one percent (i.e. 200 percentile buckets). From thislyrigs clear that in fact at lea$9.5% of the

requests benefit under SRPT scheduling. In fact3€¥ smallest requests benefit by a factor 6f and alll
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Figure 3: Mean response time under SRPT scheduling versus traditi®dR scheduling as a function of

system load, under trace-based workload.

Mean Slowdown vs. Load

1400

~- FAR
—— SRPT j
1200+ S

1000+ / 1

800+ / .

Slowdown

600 / 1
400f y ]

200¢ P o

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load

Figure 4:Mean slowdown under SRPT scheduling versus traditionaBgheduling as a function of system

load, under trace-based workload.

11



10

=
o
3
T

Mean response time (microsec)

-
(=}
T

10’

=
o
3
T

Mean response time (microsec)
o

-
(=}
T

1

f

4 Il

N P
il e\ ey

I

Iy
A o AT
AT

10 10 s s ‘
10 10° 10° 10" ° 10° 10 0 20 40 60 80 100
Size of request (bytes) Percentile of requested file size
(a)load = .6
10° 107

10°F

Mean response time (microsec)

=
o
T

Mean response time (microsec)

w
T

10
10°F E
~. LT

4
10 : : : : : 10 ‘ ‘ s s

10 10° 10° 10" 10° 10° 10 0 20 40 60 80 100

Size of request (bytes) Percentile of requested file size

10°

[N
o
2,
T

Mean response time (microsec)

10*

=
o
T

Mean response time (microsec)

-
(=}

10

10" 10°
Size of request (bytes)

6

10

(¢)load = .9

40 60 80 100
Percentile of requested file size

Figure 5:Mean response time as a function of regpgst size under trased workload, shown for a range of
system loads. The left column shows the mean response tmfelastion of request size. The right column

shows the mean response time as a function of the percefitie equest size distribution.



requests outside of the tdi¥ benefit by a factor of> 5. For lower loads, the difference in mean response
time between SRPT and FAIR scheduling decreases, and thena¥s to big requests becomes practically
nonexistent. For higher loads, the difference in mean respdime between SRPT and FAIR scheduling
becomes greater, and the unfairness to big requests atsases. Even here though, itis only the top half of
one percent of all requests which have worse performancer8fPT, as compared with FAIR scheduling.

The most dramatic improvements of SRPT are in the area ofveei reduction. Figure 6 shows the
variance in response time for each request size and theaeeffiof variation in response time for each
request size, as a function of the percentile of the requestdistribution. This figure shows the case of
load equal ta).8. The improvement under SRPT with respect to variance inoresptime is 3 orders of
magnitude for th&0% smallest files; 2 orders of magnitude for files in #igh to 99.5th percentiles and 1
order of magnitude for files in the tdp5%-tile. The results for coefficient of variation are similaxcept
that now the improvement is by 1.5 orders of magnitude, ratien three.

It is interesting to observe that the SRPT results curvel@ively smooth, except for a few odd spikes.
The spikes represent occasional packet loss. When packsisstin a small file, there is a 3 second delay

(because RTT has not yet been adjusted). This can throwenffdhiance quite a bit.

6 Explanation of Results

The results in the previous section may appear surprisimthi$ section we offer both theoreticaland an

implementation-levedxplanation for the previous results.

6.1 Theoretical Explanation of Results

Itis well-known that the SRPT scheduling policy always proes the minimum mean response time, for any
sequence of requests. However, it has also been suspectadryythat SRPT is a very unfair scheduling
policy for large requests. The above results have showntifssuspicion is false for Web workloads.

It is easy to see why SRPT should provide huge performancefiteefor the small requests, which get
priority over all other requests. In this section we desetibefly why the large requests also benefit under
SRPT,in the case of a heavy-tailed workload

In general a heavy-tailed distribution is one for which
Pr{X >ua} ~a™"
wherel < a < 2. A set of request sizes following a heavy-tailed distribathas some distinctive properties:

1. Infinite variance (and i < 1, infinite mean). In practice there is a finite maximum reqsis, which

means that the moments are all finite, but still quite high.

13



1014

1013 L

1012 L|

Variance
(=
o
.
[
.

=
o
(N
o
T

!
AR
Lol sy

AR __\‘._4‘.1‘.!/“."\

lo Il Il Il Il
0 20 40 60 80 100

Percentile of requested file size

(a)Variance in response time as a function of request size.

10>

— FAR
~ - SRPT

=
o
(N

=)

Coefficient of variation squared
=
o

|
0 20 40 60 80 100
Percentile of requested file size

(b)Squared coefficient of variation of response time as a fanaif request size.
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2. The property that a tiny fraction (usualy 1%) of the very longest requests comprise over half of the

total load. We refer to this important property as bieavy-tailed property

Request sizes are well-known to follow a heavy-tailed thation [11, 13]. Thus Web workload gen-
erators likeSur ge specifically use a heavy-tailed distribution in their mod@ur traces also have strong
heavy-tailed properties. (In our trace the largesi% of the requests make up 50% of the total load.)

The important property of heavy-tailed distribution is theavy-tailed property. Consider a large re-
quest, in the&99%-tile of the request size distribution. This request wiliedly do much better under SRPT
scheduling than under FAIR scheduling for a heavy-taileddload. The reason is that this big request only
competes againsi0% of the load under SRPT (the remainifi§% of the load is made up of requests in
the top1%-tile of the request size distribution) whereas it compeigasinst100% of the load under FAIR
scheduling. The same argument could be made for a requéstdf.6%-tile of the request size distribution.
However, it is not obvious what happens to a request irl 6¥%-tile of the request size distribution (i.e. the

largest possible request). To understand this, we refeetder to [7].

6.2 Implementation-level Explanation of Results

Section 6.1 concentrated primarily on why the SRPT-basédypmerformed so well. Another perspective is
to ask why the FAIR policy performed so poorly. To see thigisider more carefully Figure 1 which shows
flow of control in standard Linux. Observe that all socketférs drain into the same single priority queue.
This queue may grow long (though it is still bounded in leniggha Linux parameter). Now consider the
effect on a new short request. Since every request has tonithie priority queue, which may be long, the
short request typically incurs a cost of close to 200 ms joistMaiting in this queue (assuming high load).
This is a very high startup penalty, considering that theisertime for a short request should really only be
about 20 ms. Our SRPT-based implementation allows shouestg to wait in their own separate priority
gueue which has a very low load and therefore is much shdités.explains why the response time for short

requests improves by close to an order of magnitude undef SBR.ompared with FAIR schedulihg

7 How to get SRPT-like improvements without using SRPT

The results of the previous section were good, but requifed anplementation of the SRPT algorithm. In
this section we explore a “quick fix” to Linux. We use only 2quty bands. All SYN ACKS and all small
requests go to the high priority band. All other requestsathé low priority band. We define the cutoff

2Observe that the lovely mechanism of [15] which maintaineasate queue for each connection all the way down to théirdata

level will likely fix this problem in Linux, if applied at theesver end.
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between “small” and “large” such tha0% of the requests are small aftl% are large (note, this is not the
same thing as equalizing load, but works better for this)case

We find that this “quick fix” alone is quite powerful. Figure Baws the mean response time as a func-
tion of file size in the case of system loa&k. Compare this figure with the results using the full SRPT
implementation, shown in Figure 5(b). The “quick fix” bengfite smallesio% of requests by a factor of 5,
while not harming the large requests at all. This resultsfactor of2.5 improvement in mean response time
and a factor of 5 improvement in mean slowdown. Note that thekgfix only helps50% of the requests as
compared t®9.5% which were helped in the SRPT implementation. Nonethethegjuick fix still presents

significant improvement over traditional FAIR scheduling.

8 Implementation of prioritized socket draining: low-level details

8.1 Why the Diffserv patch may not work for you, and how to fix it

This section describes some of our attempts at getting thexiDiffserv patch to work. We hope that this
section will be useful to others. All of our experiments itwexrl a 10 Mb/sec Ethernet connection.

After installing the Diffserv patch, we tried a simple exjpeent: We opened two TCP connections and
flooded both connections with data. Specifically, we repiaterote 1K data into each socket within an
infinite write loop (note that the writes are non-blockingye gave high priority to connection 1 and low
priority to connection 2. We expected that the packets omihewould all be connection 1 packets. In truth,
however, onlys1% of the packets on the wire were connection 1 packetsiafidwere connection 2 packets.

We repeated the above experiment, but this time with two UBihections and saw &% /40% split
between connection 1 packets and connection 2 packets.

We next observed that when we increased the number of caongétom 2 to 10, we always achieved
the desired 00%/0% ratio, however we desired a solution that did not requireentiban 2 connections.

After various other such experiments, we reached the cesiweiuhat the critical parameter in achieving
differentiated services is the size of the server’'s senlletdmuffer and the client’s receive socket buffer. All
the experiments in this paper using Linux Diffserv have besnwith the send socket buffer increased by a
factor of 3 and the receive socket buffer increased by a fadtd.5 (from 64K to 100K). In this mode, we

are able to gefull priority scheduling {00%/0% ratio of connection 1 packets to connection 2 packets).

8.2 Further changes necessary to make size-based algorithms show effélae prob-

lem of high startup overhead

Having made the adjustments described in the previousosedgtiseems that one should now be able to

execute prioritized size-based scheduling by simply agsipsockets for small requests to priority queues

17



with high priority (these have low band numbers) and assigsiockets for large requests to low priority
gueues (these have high band numbers).

It turns out, however that this is not sufficient to get goodfggenance improvement. The reason is
somewhat subtle. A lot of the time for servicing a requestaslenup by connection startup time: specifically,
the sending of the SYN ACK by the server. The Linux 0.s. sefidsiah control commands to one particular
priority band (band 0). This is not under our control. It ipiantant that when assigning priority bands to

sockets we:
1. Never assign any sockets to priority band 0.

2. Make all priority band assignments to bandsosfer priority than band 0, so that SYN ACKs always
have highest priority.

This fix makes connection startup time very low, so that itshitedominate the response times of small files.

Note that standard Linux (without the Diffserv patch) seatigpackets, including SYN ACKs, to the
same single priority quedeThus SYN ACKs have to wait in a long queue, which results i0@r@s startup
time for all requests. This 200ms startup time gets addexltiveé response time for short requests, which
keeps short requests from doing well.

By keeping the SYN ACKs in their own priority queue, this stigr cost can virtually eliminated. This
observation was also made very recently in [6]. Thistfigether withgiving short requests priority over long
ones, enables the performance of short requests to improvensely, which is at the heart of our observed
improvements. Observe also that giving highest priorityh SYN ACKs does not negatively impact the
performance of requests since the SYN ACKs themselves nakaly a negligible fraction of the total load.

In Section 7, we described the effect of implementing a “Rdiec’ which only uses 2 priority bands. All
SYN ACKS and all small requests go to the high priority bantl.ogher requests go to the low priority band.

As we saw this “quick fix” alone is quite powerful.

9 Conclusion

This paper presents a kernel-level implementation of SRIA€duling of connections in a Web server, and
demonstrates that this implementation can significantfyrove performance at the Web server.

Mean response time can improve B§0% under low loads and as much a80% under high loads.
Mean slowdown can improve by as much788% under high loads. Variance in response time can improve
by orders of magnitude. All the while, the SRPT-based imgletation hardly penalizes large requests (by
“large” requests we mean those that comprise the(t6f of the request size distribution). Furthermore

these gains are achieved under no loss in byte throughpetjaest throughput.

Sltis actually possible to have 3 priority queues, but theaditfis that only one is used.
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This paper also takes a closer look at the Linux kernel fromeuging perspective. Quick fixes to the
Linux kernel are proposed which have the effect of limitihg gueueing in the kernel, and which benefit

many requests without hurting any.

10 Limitations of this paper and Future work

The following are some limitations of this paper and plandtiture work.

The experiments in this paper involved a specific operatystesn (Linux), a specific Web server (Flash),
and specific workloads (both synthetic and trace-driveivi@us extensions to this work include extending
it to other operating systems, other Web servers, and othedead tests. We do not believe that our results
will change for different Web servers or operating systdms$these must be verified.

Our current setup is limited in that we have zero propagatielay. Adding propagation delay may
increase the scope of the problem dramatically. For exgnoplee propagation delay is introduced, it is no
longer even clear what we mean by the “size” of a request. I8l@uequest for a small file from a client
who is far away be considered small or large? If propagatédaydis significant, it also might be desirable to
consider giving priority to text over images.

Our current setup involves onbtatic requests. In future work we plan to expand our technology to
schedule cgi-scripts and otheon-static requests, where size is not necessarily known ai goigt might be
able to be guessed, or deduced over time. We expect thatféwe @f SRPT scheduling might be even more
dramatic for cgi-scripts because such requests have magedeunning times.

In this paper we have concentrated on reductions in meaomssgime, mean slowdown, and variance
in response time. Another area worth studying is the effé@RPT-based scheduling on improving the
responsivenessf a Web server. Web requests are often comprised of textsjand images. A client can
not make progress until all the text and icons are loadechéutoes not require all the images to be loaded.
SRPT-based scheduling would give priority to text and io@visich represent small requests), reducing the
time for the Web server to retrieve text and icons by a factabout 10.

Our current setup considers network bandwidth to be thddneitk resource and does SRPT-based
scheduling of that resource. In a different application reh@me other resource was the bottleneck (e.g.,
CPU), it might be desirable to implement SRPT-based sciraglaf that resource.

Lastly, at present we only reduce mean delay atsdreer A future goal is to use SRPT connection-
scheduling at proxies. Our long-term goal is to extend ouP'BBonnection-scheduling technology to routers
and switches in the Internet. In this way, the benefit of SREhEduling is not just limited to Web servers

and other application end-nodes, but rather can help reshrgestion throughout the Internet.
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12  Appendix

The following are results for the same experiments as showine paper, except that this time with use the
Sur ge-modified workloads rather than the trace-driven worklpadsexplained in Section 4.2.

The Web workload generator we use is an adaptation of thelmofur ge Web workload generator
[8]. Sur ge generates HTTP requests that follow the size distributf@mpirically-measured request sizes,
namely a heavy-tailed distribution with-parameter .1, where most files have size less than 5K bytes, but
mean file 11108 bytes. In addition to HTTP request siZes,ge’s stream of HTTP requests also adheres
to measurements of the sizes of files stored on the servergldigse popularity of files on the server; the
temporal locality present in the request stream; and thia¢jiof request arrivals at the server.

We have modifiedsur ge in several ways. First of all, thBur ge workload generator usesciosed
gueueing model. We have modified the code to createpesmmodel. This allows us more careful control
over the system load, while still adhering to the statistotearacteristics of th&ur ge requests. We use
1000 different file sizes at the Web server, ranging from 7&Byo 2 MB, with mean 13727 Bytes.

Second, th&ur ge system provides an overly-optimistic view of starvatidnge it only records response
times for those requests which have completed. Thus if tiseadarge request which never completed (is
still sitting in the queue) during the experiment under SRRat request would not be recorded yr ge.
This is a flaw in many papers which uSer ge and yields a lower mean response time for large requests
than is actually the case. Since starvation is a central éhiarthis paper, we have taken extra care in this
area. We have modifigBur ge so that the response times of these large requests whiclinrembe queue
are included in the mean calculation. We measured meannssione for large requests before this change
to Sur ge and then after this change $oir ge. We found that the mean response time for large requests was
significantly higher after this modification ®ur ge. All our plots depict these higher starvation numbers.

We discovered several anomaliesSuar ge’s behavior, which we think warrant attention: First, we no-
ticed that the results und8ur ge are very much influenced by the duration of the experimenis iEfdue to
the fact that the load und&ur ge changes widely. For example, in one experiment we adjuledystem
load top = 0.8, but we noticed that the load during the first 5 minutes of #peement was actually = 0.6,
and the load during the second 5 minutes of the experimenautasllyy = 1.0. Thus, our results depended
on the duration of the experiment. We did not find these fluaina to be present in the trace.

Another issue was th&ur ge’s Zipf distribution for generating file popularity seemambtsevere. In
some cases we found that closel@¥ of our load was being created by just one medium-size file.

Nonetheless, for completeness, we have repeated all exgras using our modification &ur ge.
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Figure 8: Mean response time under SRPT scheduling versus traditi®R scheduling as a function of
system load, unde€8ur ge-modified workload.
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