
Realtime Machine Vision Perception and

Prediction

James Bruce

Advisors: Manuela Veloso and Tucker Balch

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3891

jbruce@cs.cmu.edu

May 2000



0.1 Introduction

0.1.1 Motivation

The need for sensing in truly autonomous robotics is ubiquitous. Among the
various sensors that can be applied, one of the most powerful and inexpensive
is through machine vision. Color-based region segmentation, where objects
in the world are identi�ed by speci�c color (but not necessarily uniquely),
has proved popular in robotics and automation, because color coding is a rel-
atively unobtrusive modi�cation of the environment. With the coding, balls,
goals, obstacles, other robots, and even people can be detected. Information
can be calculated such as egocentric angle to the object, rudimentary shape
characteristics, and with some domain knowledge, distance to the object.
While this type of environment has become popular in robotics domains, no
general vision library has been developed to �ll the need for an inexpensive
software-only solution, with performance that can keep up with camera frame
rates. Thus this serious need exists in realtime1 perception and prediction
tasks for autonomous systems, yet no library has fully met this need.

0.1.2 Problem

Although popular as a sensor due to low hardware cost, vision has proved
diÆcult due to high processing requirements and a large input stream to sift
through in order to generate perceptual information for higher levels in the
system. Thus the problem is that of mapping an input video stream to a
perceptually more salient representation for other parts of the agent. The
representation popular in hardware and domain-speci�c approaches to this
problem is to segment the video stream into colored regions (representing all
or part of a colored object). This is the representation we also choose, both
for consistency, and because this representation has proved successful [2].

0.1.3 Contributions

It is unclear what general prediction methods can be designed to satisfy
the wide variety of information an autonomous agent might perceive, or
what behaviors may be necessary to carry out a task. Thus we devoted

1We de�ne \realtime" as full frame processing at camera rates (at or above 30Hz.),
with bounded processing time guarantees.

1



our e�orts toward developing a vision system that provided all the common
information that popular prediction and behavior methods need in order to
operate eÆciently. This may appear at �rst to be a given, yet many previous
systems have been designed without thought of how they would be used.
The result has been a failure of general high performance vision systems
to replace ad-hoc solutions created for speci�c applications. It is our view
that taking care to enumerate the uses and demands of many behavioral
and prediction methods will �ll that gap. Thus our Color Machine Vision
Library was developed, or CMVision for short. It is the fastest freely available
visual tracking system to our knowledge, has been successfully applied in
three robotics systems already, and is poised to serve many more as it has
been released to the robotics community under a free non-commercial license.
In addition to high performance, the system also has predictable runtime
properties, making it a suitable design for soft or hard realtime vision. We
address only the former here, mainly out of need and availability, although
the points important for the latter will be outlined.

The rest of this report is organized into an evaluation of related work, an
exploration for approaches to solving parts of the problem we have identi�ed,
motivation for the choices we made, and a presentation of the system we de-
veloped. Several existing applications of it are described, and it is evaluated
in terms of its progress toward the outlined goals. Finally, documentation
for the current software distribution of what we developed is provided.

0.1.4 Related Work

We set out to match the performance of special purpose hardware approaches
to machine vision, and to approach the problem from the point of view
of what was needed by higher layers, rather than only by what is easy to
perform.

During our work we became aware of three similar software systems.
The �rst, XVision, was developed at Yale from 1993 to 1997 [13]. This
system began as an edge tracker, but had been extended with additional
tracking methods such as the colored region tracking in CMVision. We were
happy to �nd however, that our system o�ered between 10 and 30 times the
performance of XVision in color region tracking. Thus while it did implement
a similar feature set, practically it was out of the range of realtime perception
and prediction at camera speeds.

Recently two other available libraries have come to our attention, the Vis-

2



Lib library and the ACTS tracking system, both from ActivMedia robotics
[16]. Vislib is another implementation of a subset of XVision's capabilities,
but does not appear to be a signi�cant performance increase over it [14].
ACTS apparently has similar performance to CMVision, and is similar in the
information it provides. It was made available in early 2000, several months
after we �rst publicly outlined our approach at AAAI-99. It is not freely
available, and is not available in source form, making objective comparisons
diÆcult. Both these systems are also limited to the Brooktree BTV848-based
frame capture devices, while CMVision natively supports the video for Linux
I and II standards [18], and can easily be extended for other platforms or
drivers due to source availability and logical separation of vision processing
and image capture in the source code.

0.2 Approaches

Here we examine possible segmentation approaches common in machine vi-
sion, and evaluate their characteristics and applicability in �tting the goals
we wish to meet. Three approaches that often been used are color segmenta-
tion, edge or boundary detection, and texture based segmentation. For each,
common implementations will also be described.

0.2.1 Color Segmentation

By far the most popular approach in real time machine vision processing
has been color segmentation. It is currently popular due to the relative ease
of de�ning special colors as markers or object labels for a domain, and has
proved simpler than other methods such as the use of geometric patterns or
barcodes. Among the many approaches taken in color segmentation, the most
popular employ single-pixel classi�cation into discrete classes. Among these,
linear and constant thresholding are the most popular. Other alternatives
include nearest neighbor classi�cation and probability histograms.

Linear color thresholding works by partitioning the color space with linear
boundaries (e.g. planes in 3-dimensional spaces). A particular pixel is then
classi�ed according to which partition it lies in. This method is convenient
for learning systems such as neural networks (ANNs), or multivariate decision
trees (MDTs) [3].

A second approach is to use nearest neighbor classi�cation. Typically

3



several hundred pre-classi�ed exemplars are employed, each having a unique
location in the color space and an associated classi�cation. To classify a new
pixel, a list of the K nearest exemplars are found, then the pixel is classi�ed
according to the largest proportion of classi�cations of the neighbors [4]. Both
linear thresholding and nearest neighbor classi�cation provide good results
in terms of classi�cation accuracy, but do not provide realtime performance
using o�-the-shelf hardware.

Another approach is to use a set of constant thresholds de�ning a color
class as a rectangular block in the color space [2]. This approach o�ers good
performance, but is unable to take advantage of potential dependencies be-
tween the color space dimensions. A variant of the constant thresholding
has been implemented in the hardware vision device made by Newton Lab-
oratories [17]. Their product provides color tracking data at realtime rates,
but is potentially more expensive than software-only approaches on general
purpose hardware.

A �nal related approach is to store a discretized version of the entire joint
probability distribution [12]. So, for example, to check whether a particular
pixel is a member of the color class, its individual color components are used
as indices to a multi-dimensional array. When the location is looked up in
the array the returned value indicates probability of membership. This tech-
nique enables a modeling of arbitrary distribution volumes and membership
can be checked with reasonable eÆciency. The approach also enables the
user to represent unusual membership volumes (e.g. cones or ellipsoids) and
thus capture dependencies between the dimensions of the color space. The
primary drawback to this approach is high memory cost | for speed the
entire probability matrix must be present in memory.

0.2.2 Edge Detection/Segmentation

Edge detection uses relative contrast in nearby pixels to determine boundaries
in an image. Although popular in traditional machine vision and robotics,
it has been diÆcult to run this type of processing at real time rates without
specialized hardware. This is due to the usual representation requiring a
neighborhood of pixels in order to generate a value. Color segmentation
operates on individual pixels, and so does not incur the overhead of processing
areas of pixels.

By itself, the edge detection outlines an approach rather than a particular
method. This is because there are many de�nitions as to what constitutes

4



Original image

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
Image row intensity plot

Image filtered by Sobel edge detector

50 100 150 200 250 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Absolute value plot of row in filtered image

Figure 1: Comparison of original image and the image �ltered by a horizontal
Sobel operator. The white band in the images indicates the row used for the
intensity plots.

5



an edge value, and thus many representations. The most popular methods
generally employ linear shift-invariant �lters. These are generally 2D gener-
alizations of 1D signal processing �lters and applied through a convolution
of the original image[2]. One common such �lter is the Sobel operator, which
uses a locally weighted di�erence to compute an edge signal and generally
yields good results. The following is a horizontal edge �lter used to detect
horizontal edges:

1=4

2
6664

�1 0 1

�2 0 2

�1 0 1

3
7775

The output after applying it to an image can be seen in �gure 1. Speci�-
cally high values indicate a rising intensity edge and negative values a falling
edge. In conjunction with its transpose, the above �lter can be used de-
tect edges of any direction. Another alternative is a Laplacian of Gaussian
�lter[2], which is often approximated by the following 3x3 �lter:

1=12

2
6664

1 2 1

2 �12 2

1 2 1

3
7775

This is an omnidirectional �lter for detecting edge energy, and thus the
absolute value of the �ltered image can indicate where boundaries are likely
to exist [1].

There are many limitations to segmentation methods based on edges
alone, however. Many boundaries contain varying edge sharpness, and re-
gions with no edge at all. The human perceptual system �lls such gaps to
form completed contours, so these complications are not visible to humans
from the original image [7]. A good example would be the vertical pole
markers placed around the �eld in �gure 1, which demonstrate strong edge
signals in some areas, and little or none in others. Another ambiguity arises
in assignment of contours. Often, an edge represents a discontinuity where
one nearer object occludes a further one. There is little direct information
in the image to indicate which is which however, complicating object de-
tection by requiring what is often complex processing to assign edges and
form objects. Because of these limitations, and the relatively high computa-
tional cost of edge detection, the system we developed employed color-based
vision instead. Once processing power or hardware acceleration advance to
the point where both are possible at framerate processing speeds, edge and

6



color segmentation will likely be a good combination, since their processing
advantages are complimentary. Color segmentation helps de�ne object areas,
while edge detection aids in de�ning more exact edges and does not rely on
prior classi�cation de�nitions like color thresholds do [1].

0.2.3 Texture Segmentation

Texture image segmentation involves separation of objects based on texture
boundaries and texture gradients. Gradient detection involves techniques
that can extract perspective transformations of the repeated pattern in or-
der to gauge depth or orientation of surfaces. Texture boundary detection
involves the simpler method of assigning objects or regions of objects partic-
ular patterns, and separating regions where those patterns abruptly change.
Textures are often de�ned using statistical techniques such as co-occurrence
matrices. There are a vast number of overall approaches, and a good intro-
duction to several can be found in Jain [2].

Unfortunately, even the best methods are very slow, limited by strong
assumptions, or both. While arguably these methods can encode both color
and edge information, and thus are much more powerful or expressive, there
will not be extensive use of full texture information in realtime vision without
signi�cant algorithmic or processing breakthroughs. Shorter term enhance-
ments to vision systems may be available however, by extracting texture
statistics of regions segmented by some other method and employing the
measure in a object detection �lter. One such feature would be the variance
of a color across a colored region.

0.2.4 Object Detection

Object detection, although it can be considered separately, is often composed
out of the previous processing steps and treated as a higher level. Color seg-
mentation and edge detection are used to de�ne features which from which
objects can be detected. This is the approach commonly taken in machine
vision, although there is evidence for much more top-down interaction in
humans and animals, where high level knowledge in
uences relatively early
perceptual areas [6]. Such a complicated system is not possible nor neces-
sary at this point however, and a good approximation is to trace the main
signal evolution along the perceptual path. This is the bottom-up principle
described by Marr [1]. Eventually such complications will have to be taken

7



into account for a more robust system. Although not possible at this point,
it is clear that eventually a uni�ed perceptual vision system will employ all
the features we identi�ed before: edges, color, texture, and object knowledge.
This will require processing hardware and algorithmic advances in for it to
become useful at the pace of the world however.

0.2.5 Summary

The three most common approaches to segmentation use colors, edges, or
textures, or possibly some combination of them. Given the abilities and
limitations, and the available processing power in a software implementation
in software, we decided to use color segmentation. Although limited in its
power, it has proved fast enough to satisfy realtime requirements at camera
frame rates, without hardware acceleration. It has proved robust enough to
work well in several autonomous robotics applications, and is much simpler
than a hybrid approach that uses edge or texture processing in addition to
color.

0.3 System Requirements

The following listing identi�es the speci�c requirements of various domains we
would like to be able to support through our system. From these we extract
the core requirements that a vision and tracking system should attempt to
meet, for several types of consumers of a vision systems output data. Then
we asses how well our current system can achieve these goals.

1. Behavior Based/Reactive Agents require low latency sensing, so that
the internal state after processing will accurately model the current
external state in the world. This is due to the assumption that sensor
values can be mapped to actions, commonly without predictive world
models. Such agents are robust in the case of lost data or dropped
frames, and do not necessarily require a correspondence mapping of
objects in successive frames (interframe tracking). Finally, realtime
performance is not necessary, but is a desirable enhancement.

2. Active Tracking of visual �eld items requires interframe tracking or
object correspondence, in order to establish a location history for an
object over time. For calculating object velocity and acceleration, low

8



noise in the vision system's report of locations is a crucial aspect of per-
formance. Latency is normally not an issue, but realtime performance
and a low tolerance for lost data are.

3. Markov Prediction Methods have proven popular for describing general
tracking and prediction tasks where transitions of internal state are
either diÆcult to observe or fully hidden. Performance is highly de-
pendent on the ability to observe accurate interframe tracking data at
high rates. Latency and missing data can be handled, but saliency and
performance will degrade with large amounts of either.

4. History Based Prediction Methods log position data to yield long term
statistical position or action distributions. Low latency and realtime
performance are not crucial, and lost data recovery is usually unnec-
essary due to the ability to accommodate lost frames by not logging
the data in the distribution. Interframe object tracking is not needed
if only positional data is desired, although more complicated logging
features may require the tracking just to generate values to be added
to the distribution.

5. Geometric Tracking/Prediction Methods generate future position esti-
mates using evolution functions, such as Newton's law with predictive
function approximators, regression techniques, splines or other interpo-
lation techniques. These methods generally have short term saliency,
the latency and performance are important. Interframe tracking is
important for accurately modeling the immediate past, as is low posi-
tional noise so that predictions or estimations can be accurate. Geo-
metric methods can generally deal with mild amounts of missing data,
so recovery is not usually needed when frames are dropped.

The core requirements are thus as follows, and evaluations of CMVision's
applicability to each is discussed.

1. Low Latency. Because CMVision operates at camera frame rates on
single processor systems, with bounded computation, latency can be
less than one frame more than the camera. With high amounts of
computing power, and relatively low resolutions, practical applications
with latencies of less than 5ms from the time of image capture have
been achieved.

9



2. Interframe Object Tracking. Our system does not currently address
this directly, although it has been used as the basis for systems that
do. All of the robotics applications discussed later in this report have
some capacity to peform this type of tracking. This is an item slated
for future inclusion into the base library, but currently is relegated to
the later levels of processing.

3. Lost Data Recovery. Again, since tracking is not internal to CMVi-
sion, this is not currently implemented within the general low level
library. Preliminary results from the RoboCup F180 tracking system
(discussed later), indicate that dropped frames, aborted processing,
and the much more likely temporary occlusion of objects can be han-
dled well by relatively simple means. The F180 tracking system uses
linear interpolation of missing data points after the object reappears
to satisfy statistics and prediction methods that cannot handle missing
data internally (such as per-frame iterative procedures).

4. Realtime Performance. In addition to the performance described above,
the processing requirements internal to CMVision are all liner except
for one, region merging, which is a approximately linear for all practical
purposes. None require exponential or power running times in their
worst case, so accurate running time estimates and bounds can be
achieved. CMVision can fail if it overruns pre-allocated internal bu�er
space, but always aborts with a failure code in all such cases. Together
these properties allow hard realtime performance for operating systems
which support it, and soft realtime in the rest.

0.3.1 Color Spaces

The color space refers to the multidimensional space the describes the color at
each discrete point, or pixel, in an image. The intensity of a black and white
image is a segment of single dimensional space, where the value varies from
its lowest black value to its highest at white. Color spaces generally occupy
three spaces, although can be projected into more or fewer to yield other
color representations. The common RGB color space consists of a triplet of
red, green, and blue intensity values. Thus each color in the representation
lies in a cube with black at the corner (0,0,0), and pure white at the value
(1.0,1.0,1.0). Here we will describe the di�erent color spaces we considered

10



for our library, including RGB, a projection or RGB we call fractional YRGB,
and the YUV color space used by the NTSC and PAL video standards, among
other places.

In our choice of appropriate color spaces, we needed to balance what the
hardware provides with what would be amenable to our threshold represen-
tation, and what seems to provide the best performance in practice. At �rst
we considered RGB, which is a common format for image display and manip-
ulation, and is provided directly by most video capture hardware. It's main
problem lies in the intensity value of light and shadows being spread across
all three parameters. This makes it diÆcult to separate intensity variance
from color variance with a rectangular, axis aligned threshold. More complex
threshold shapes alleviate this problem, but that was not possible in our im-
plementation. An equally powerful technique is to �nd another color space
or projection of one that is more appropriate to describe using rectangular
thresholds.

This limitation lead us to explore a software transformed RGB color space
we called fractional RGB. It involves separating the RGB color into four
channels, intensity, red, green, blue. The color channels in this case are nor-
malized by the intensity, and thus are fractions calculated using the following
de�nition:

Y 0 = (R+G+B)
3

(1)

R0 = R

Y 0
(2)

G0 = G

Y 0
(3)

B0 = B

Y 0
(4)

The main drawback of this approach is of course the need to perform
several integer divides or 
oating point multiplications per pixel. It did
however prove to be a robust space for describing the colors with axis-aligned
threshold cubes. It proves useful where RGB is the only available color space,
and the extra processing power is available.

The �nal color space we tried was the YUV format, which consists of
an intensity (Y) value, and two chrominance (color) values (U,V). It is used
in video standards due to its closer match with human perception of color,
and since it is the raw form of video, it is provided directly by most analog
video capture devices. Since intensity is separated into its own separate pa-
rameter, the main cause of correlations between the color component values

11



Figure 2: The original video image on the left, and the image with colors
classi�ed by prede�ned YUV thresholds.

has been removed, and thus is a better representation for the rectangular
thresholds. This is because the implementation requires axis aligned sides
for the thresholds, which cannot model interactions among the component
color values. Thus YUV proved to be robust in general, fast since it was
provided directly by hardware, and a good match for required assumptions
of component independence in our implementation. An example YUV his-
togram, with a threshold shown outlining a target yellow color is given in
�gure 3

One color space we have not tried with our library is HSI, or hue, satu-
ration, intensity. In its speci�cation, hue is the angle on the color wheel, or
dominant spectral frequency, saturation is the amount of color vs. neutral
gray, and I is the intensity. Although easy for humans to reason in (hence
its use in color pickers in painting programs), it o�ers little or no advantage
over YUV, and introduces numerical complications and instabilities. Com-
plications come from the angle wrapping around from 360 to 0, requiring
thresholding operations work on a modular number values. More seriously,
at low saturation values (black, gray, or white), the hue value becomes numer-
ically unstable, making thresholds to describe these common colors unwieldy,
and other calculations diÆcult[9]. Finally, HSI can be approximated by com-
puting a polar coordinate version of the UV values in YUV. Since YUV is
available directly from the hardware, it is simplest just to threshold in the
pre-existing YUV space, thus avoiding the numerical problems HSI poses.

12



Figure 3: A YUV histogram of a RoboCup soccer �eld, pictured in �gure 2,
with a threshold de�ned for a yellow target color.

13



0.4 CMVision: The Color Machine Vision Li-

brary

0.4.1 Thresholding

The thresholding method described here can be used with general multidi-
mensional color spaces that have discrete component color levels, but the
following discussion will describe only the YUV color space, since general-
ization of this example will be clear. In our approach, each color class is
initially speci�ed as a set of six threshold values: two for each dimension in
the color space, after the transformation if one is being used. The mecha-
nism used for thresholding is an important eÆciency consideration because
the thresholding operation must be repeated for each color at each pixel in
the image. One way to check if a pixel is a member of a particular color class
is to use a set of comparisons similar to

if ((Y >= Ylowerthresh)

AND (Y <= Yupperthresh)

AND (U >= Ulowerthresh)

AND (U <= Uupperthresh)

AND (V >= Vlowerthresh)

AND (V <= Vupperthresh))

pixel_color = color_class;

to determine if a pixel with values Y, U, V should be grouped in the color
class. Unfortunately this approach is rather ineÆcient because, once com-
piled, it could require as many as 6 conditional branches to determine mem-
bership in one color class for each pixel. This can be especially ineÆcient on
pipelined processors with speculative instruction execution.

Instead, our implementation uses a boolean valued decomposition of the
multidimensional threshold. Such a region can be represented as the product
of three functions, one along each of the axes in the space (Figure 4). The
decomposed representation is stored in arrays, with one array element for
each value of a color component. Thus class membership can be computed as
the bitwise AND of the elements of each array indicated by the color component
values:

pixel_in_class = YClass[Y]

AND UClass[U]

AND VClass[V];

14



U

V

Y

U

Y

VVClass

UClass

YClass

Binary Signal Decomposition of Threshold

Visualization as Threshold in Full Color Space

Figure 4: A three-dimensional region of the color space for classi�cation is
represented as a combination of three binary functions.

The resulting boolean value of pixel in class indicates whether the pixel
belongs to the class or not. This approach allows the system to scale linearly
with the number of pixels and color space dimensions, and can be imple-
mented as a few array lookups per pixel. The operation is much faster than
the naive approach because the the bitwise AND is a signi�cantly lower cost
operation than an integer compare on most modern processors.

To illustrate the approach, consider the following example. Suppose we
discretized the YUV color space to 10 levels in each each dimension. So
\orange," for example might be represented by assigning the following values
to the elements of each array:

YClass[] = {0,1,1,1,1,1,1,1,1,1};

UClass[] = {0,0,0,0,0,0,0,1,1,1};

VClass[] = {0,0,0,0,0,0,0,1,1,1};

Thus, to check if a pixel with color values (1,8,9) is a member of the color
class \orange" all we need to do is evaluate the expression YClass[1] AND

UClass[8] AND VClass[9], which in this case would resolve to 1, or true
indicating that color is in the class \orange."

One of the most signi�cant advantages of our approach is that it can
determine a pixel's membership in multiple color classes simultaneously. By

15



exploiting parallelism in the bit-wise AND operation for integers we can de-
termine membership in several classes at once. As an example, suppose the
region of the color space occupied by \blue" pixels were represented as fol-
lows:

YClass[] = {0,1,1,1,1,1,1,1,1,1};

UClass[] = {1,1,1,0,0,0,0,0,0,0};

VClass[] = {0,0,0,1,1,1,0,0,0,0};

Rather than build a separate set of arrays for each color, we can combine the
arrays using each bit position an array element to represent the corresponding
values for each color. So, for example if each element in an array were a two-
bit integer, we could combine the \orange" and \blue" representations as
follows:

YClass[] = {00,11,11,11,11,11,11,11,11,11};

UClass[] = {01,01,01,00,00,00,00,10,10,10};

VClass[] = {00,00,00,01,01,01,00,10,10,10};

Where the �rst (high-order) bit in each element is used to represent \or-
ange" and the second bit is used to represent \blue." Thus we can check
whether (1,8,9) is in one of the two classes by evaluating the single expres-
sion YClass[1] AND UClass[8] AND VClass[9]. The result is 10, indicat-
ing the color is in the \orange" class but not \blue."

In our implementation, each array element is a 32-bit integer. It is there-
fore possible to evaluate membership in 32 distinct color classes at once with
two AND operations. In contrast, the naive comparison approach could re-
quire 32� 6, or up to 192 comparisons for the same operation. Additionally,
due to the small size of the color class representation, the algorithm can take
advantage of memory caching e�ects.

0.4.2 Connected Regions

After the various color samples have been classi�ed, connected regions are
formed by examining the classi�ed samples. This is typically an expensive
operation that can severely impact realtime performance. Our connected
components merging procedure is implemented in two stages for eÆciency
reasons.

The �rst stage is to compute a run length encoded (RLE) version for the
classi�ed image. In many robotic vision applications signi�cant changes in

16



2: Scanning adjacent lines, neighbors are merged

y

x

y

yy

x x

x

4: If overlap is detected, latter parent is updated

1: Runs start as a fully disjoint forest

3: New parent assignments are to the furthest parent

Figure 5: An example of how regions are grouped after run length encoding.

17



adjacent image pixels are relatively infrequent. By grouping similar adjacent
pixels as a single \run" we have an opportunity for eÆciency because sub-
sequent users of the data can operate on entire runs rather than individual
pixels. There is also the practical bene�t that region merging need now only
look for vertical connectivity, because the horizontal components are merged
in the transformation to the RLE image.

The merging method employs a tree-based union �nd with path com-
pression. This o�ers performance that is not only good in practice but also
provides a hard algorithmic bound that is for all practical purposes linear
[5]. The merging is performed in place on the classi�ed RLE image. This is
because each run contains a �eld with all the necessary information; an iden-
ti�er indicating a run's parent element (the upper leftmost member of the
region). Initially, each run labels itself as its parent, resulting in a completely
disjoint forest. The merging procedure scans adjacent rows and merges runs
which are of the same color class and overlap under four-connectedness. This
results in a disjoint forest where the each run's parent pointer points upward
toward the region's global parent. Thus a second pass is needed to compress
all of the paths so that each run is labeled with its the actual parent. Now
each set of runs pointing to a single parent uniquely identi�es a connected
region. The process is illustrated in Figure 5).

0.4.3 Extracting Region Information

In the next step we extract region information from the merged RLE map.
The bounding box, centroid, and size of the region are calculated incremen-
tally in a single pass over the forest data structure. Because the algorithm
is passing over the image a run at a time, and not processing a region at a
time, the region labels are renumbered so that each region label is the index
of a region structure in the region table. This facilitates a signi�cantly faster
lookup. A number of other statistics could also be gathered from the data
structure, including the convex hull and edge points which could be useful
for geometric model �tting.

After the statistics have been calculated, the regions are separated based
on color into separate threaded linked lists in the region table. Finally, they
are sorted by size so that high level processing algorithms can deal with the
larger (and presumably more important) blobs and ignore relatively smaller
ones which are most often the result of noise.

18



0.4.4 Density-Based Region Merging

In the �nal layer before data is passed back up to the client application, a
top-down merging heuristic is applied that helps eliminate some of the errors
generated in the bottom up region generation. The problem addressed here
is best introduced with an example. If a detected region were to have a single
line of misidenti�ed pixels transecting it, the lower levels of the vision system
would identify it as two separate regions rather than a single one. Thus a
minimal change in the initial input can yield vastly di�ering results.

One solution in this case is to employ a sort of grouping heuristic, where
similar objects near each other are considered a single object rather than dis-
tinct ones. Since the region statistics include both the area and the bounding
box, a density measure can be obtained. The merging heuristic is opera-
tionalized as merging pairs of regions, which if merged would have a density
is above a threshold set individually for each color. Thus the amount of
\grouping force" can be varied depending on what is appropriate for objects
of a particular color. In the example above, the area separating the two re-
gions is small, so the density would still be high when the regions are merged,
thus it is likely that they would be above the threshold and would be grouped
together as a individual region.

0.5 Applications

0.5.1 RoboCup Sony Quadruped League

The vision for the Sony Quadruped employed most of the features of the
CMVision library, except that the hardware provided the YUV thresholding
capability natively. The system processed images captured by the robot's
camera to report the locations of various objects of interest relative to the
robot's current location. In the RoboCup soccer domain these include the
ball, 6 unique location markers, two goals, teammates, and opponents. The
features of the approach, as presented below, are:

1. Image capture/classi�cation: images are captured in YUV color
space, and each pixel is classi�ed in hardware by predetermined color
thresholds for up to 8 colors.

2. Region segmenting: pixels of each color are grouped together into
connected regions.

19



3. Region merging: colored regions are merged together based on satis-
faction of a minimum density for the merged region set for each color.

4. Object �ltering: false positives are �ltered out via speci�c geometric
�lters, and a con�dence value is calculated for each object.

5. Distance and transformation: the angle and distance to detected
objects are calculated relative to the image plane, and then mapped
into ego-centric coordinates relative to the robot.

The onboard camera provides 88x60 images in the YUV space at about
15Hz. These are passed through a hardware color classi�er to perform color
classi�cation in realtime based on learned thresholds.

When captured by the camera, each pixel's color is described as a 3-tuple
of 8 bit values in YUV space. The color classi�er then determines which
color classes the pixel is a member of, based on a rectangular threshold for
each class in the two chrominance dimensions (U,V). These thresholds can
be set independently for every 8 values of intensity (Y). An example of the
results of classi�cation is provided in Figure 6.

The �nal result of the color classi�cation is a new image indicating color
class membership rather than the raw captured camera colors. From this
point the standard CMVision processing can follow, although extensions spe-
ci�c to the robot were employed to enhance the system's performance in its
speci�c environment.

The next two stages follow the standard model described above, where
the run length encoding is applied, and the union �nd computation joins
the connected color regions. Next, region information is extracted from the
merged RLE map. The bounding box, centroid, and size of each region are
calculated incrementally in a single pass over the forest data structure.

After the statistics have been calculated, the regions are separated by
color into separate threaded linked lists in the region table. Finally, they are
sorted by size so that later processing steps can deal with the larger (and
presumably more important) blobs, and ignore relatively smaller ones which
are most often the result of noise.

The next step attempts to deal with one of the shortcomings of object
detection via connected color regions. Due to partial occlusion, specular
highlights, or shadows, it is often the case that a single object is broken into
a few separate but nearby regions. A single row of pixels not in the same
color class as the rest of the object is enough to break connectivity, even

20



Figure 6: An example of our image classi�cation on the Sony robots is on
the right, along with the corresponding original video image on the left.
The images are a composite of objects: a position marker (top), a goal area
(middle) and three soccer balls (bottom).

21



though the object may occupy many rows. In order to correct for cases when
nearby regions are not connected but should be considered so, a density based
merging scheme was employed. Density is represented here as the ratio of
the number of pixels of the color class in the connected region to the overall
area of its bounding box. By this measurement heuristic, two regions that
have a small separation relative to their sizes will likely be merged, since they
would tend to have relatively high density.

The next step is to �nally calculate the location of the various objects
given the colored regions. Various top down and geometric object �lters
are applied in each case to limit the occurrence of false positives, as well as
serving the basis for con�dence values.

For the ball, it is determined as the largest orange blob below the horizon.
The con�dence value is calculated as the error ratio of the density of the
detected region and the actual density of a perfect circle. The distance is
estimated as the distance required for a circular object to occupy the same
area as the observed region. The �eld markers are detected as pink regions
with green, cyan, or yellow regions nearby. The con�dence is set as the error
ratio of the di�erence between the squared distance between the centers of
the regions and the area of each region (since they are ideally adjacent square
patches, these two should be equal).

The colored blob on the marker indicates position along the length of the
�eld. The relative elevation of the pink and colored regions disambiguates
which side of the �eld the marker is on given the assumption that the robot's
head is not upside-down. Thus the marker represented by a pair of regions
can be uniquely determined. In case of multiple pairs which are determined
to be the same marker, the one of maximal con�dence is chosen. The distance
to the marker is estimated from the distance between the centers of the two
regions, since they are of known size.

The goals are detected similarly. They are the largest yellow or cyan
regions with centers below the horizon. The distance measure is a very coarse
approximation based on the angular height of the goal in the camera image,
and the merging density is set to a very low value since many occlusions are
possible for this large, low lying object. The con�dence is estimated based
on the di�erence in comparing the relative width and height in the image to
the known ratio of the actual dimensions.

The �nal objects detected are opponents and teammates. Due to the mul-
tiple complicated markers present on each robot, no distance or con�dence
was estimated, but regions were presented in raw form as a list of patches.

22



Figure 7: The �rst minnow robot tracking a soccer ball.

These simply indicate the possible presence of an opponent or teammate.
Finally, the vision system must transform from image coordinates to ego-

centric coordinates. The system performed well in practice; it had a good
detection rate and was robust to the unmodeled noise experienced in a com-
petition due to competitors and crowds. The distance metrics and con�dence
values were also useful in this noisy environment.

For a more detailed description of the other components of the system,
see Veloso et. al[8].

0.5.2 Minnow Autonomous Robot

The second application of the vision system is the minnow autonomous robot
project. Minnow's goal is to investigate teams consisting of simple, reliable,
and inexpensive robots, cooperating to perform complex tasks. The platform
is a Cye robot[10], with local control through a single board computer with
a camera and video capture card. The computer has an AMD K-6 350
processor, and runs CMVision and the TeamBots[11] robot architecture on
top of Linux operating system.

The vision system is the primary sensor, and processes 160x120 images
at 30Hz. It currently tracks a ball, obstacles, and a goal. Tracking of other
possible features in the RoboCup soccer domain is currently being explored.
CMVision is linked to the Java TeamBots architecture using a JNI API,
which is included in the TeamBots distribution.

23



Figure 8: General design of automated biological tracking system.

0.5.3 RoboCup F180 Small Robot League

The next robotics application, which is currently being developed, is a re-
altime tracking system for RoboCup's F180 Small Robot League. In this
domain, 18cm maximum diameter robots play 5 on 5 competitive soccer on
a �eld the size of a ping-pong table. Control is usually o�board, and global
sensors are allowed, which is typically a camera mounted above the �eld.
Robot speeds in excess of 2m/s, and ball speed up to 5m/s are now possible
by some teams, making this a challenging domain in which to apply and de-
velop vision based tracking and prediction systems. CMVision is fast enough
to track the objects using full frame processing, although extensions are be-
ing developed to handle the relatively small segmented regions (often only
2x2 pixels), applying post processing to remove false positives due to noise
pixels in the acquired image, and to accurately locate the visible markers and
objects with subpixel resolution.

0.5.4 Biological Agent Tracking

The newest application of CMVision is to track biological agents using ma-
chine vision as part of an automated logging system to observe behaviors.
Currently the system can track �sh, and work is underway to track ants even
on natural backgrounds. Work in these highly noisy environments with nat-
ural colors is indicating enhancements to be made to the system in order to
deal with such objects more robustly. Ultimately, if the system proves robust
enough to log long term activity, we hope to be able to make statistically
sound statements about group behavior in natural organisms. It also o�ers

24



Figure 9: The experimental apparatus set up to track �sh.

a good test bed for improving the robustness of our visual tracking system
for use in less arti�cial domains.

0.6 Conclusion

We have presented a new system to accelerate low level segmentation and
tracking using color machine vision. We evaluated the properties of existing
approaches, chose color thresholding as a segmentation method, and YUV or
fractional YRGB as robust color spaces for thresholding. We then presented
a system that can perform bounded computation, full frame processing at
camera frame rates. The system can track up to 32 colors at resolutions up
to 640x480 and rates at 30 or 60Hz without specialized hardware. Thus the
primary contribution of this system is that it is a software-only approach
implemented on general purpose, inexpensive, hardware. This provides a
signi�cant advantage over more expensive hardware-only solutions, or other,
slower software approaches. The approach is intended primarily to accelerate
low level vision for use in realtime applications where hardware acceleration
is either too expensive or unavailable.

Building on this lower level, we were able to incorporate geometric object

25



detection, and are working on high performance tracking and prediction lay-
ers. Successful applications have been made using the software in the Sony
Quadrupeds, the Minnow robots, the RoboCup F180 League, and tracking
animals.

In our continuing work we hope to address higher processing levels of
tracking and more elaborate prediction models. We are looking at meth-
ods to perform automatic online recalibration of thresholds, and detection
of more types of visual features such as lines or color transitions. We are
also exploring hybrid systems with edge detection or texture processing in
conjunction with color vision to provide a more robust system where higher
processing power permits.

26



Bibliography

[1] D. Marr. Vision: A Computational Investigation into the Human Rep-
resentation and Processing of Visual Information. W. H. reeman and
Company, San Francisco, 1982.

[2] R. Jain, R. Kasturi, and B.G. Schunck. Machine Vision. McGraw-Hill,
1995.

[3] C.E. Brodley and P.E. Utgo�. Multivariate decision trees. Machine
Learning, 1995.

[4] T.A. Brown and J Koplowitz. The weighted nearest neighbor rule for
class dependent sample sizes. IEEE Transactions on Information Theory,
pages 617{619, 1979.

[5] R.E. Tarjan. Data structures and network algorithms. Data Structures
and Network Algorithms, 1983.

[6] T. Watanabe, S. Miyauchi. Roles of Attention and Form in Visual Mo-
tion Processing: Phsychophisical and Brain Imaging Studies High Level
Motion Processes: Computational, Neurobiological, and Psychophysical
Perspectives, Ed. Takeo Watanab. MIT Press, Cambridge Massachusetts,
1998, p95-113

[7] M. Singh, D.D. Ho�man, M.K. Albert. Contour Completion and Relative
Depth: Petter's rule and support ratio. Psychological Science, Vol 10(5),
1999, 423-428.

[8] M. Veloso, E. Winner, S. Lenser, J. Bruce, T. Balch. Vision-Servoed
Localization and Behaviors for an Autonomous Quadruped Legged Robot
Arti�cial Intelligence Planning Systems, 2000

27



[9] The Color FAQ http://www.inforamp.net/ poynton/ColorFAQ.html

[10] The Cye Personal Robot http://www.probotics.com, 2000

[11] The TeamBots Robot Control Architecture
http://www.teambots.org, 2000

[12] E.M. Silk. Human detection and recognition for an hors d'oeuvres serv-
ing robot. http://www.cs.swarthmore.edu/ silk/robot/, 1999.

[13] A Brief Tour of XVision. http://www.cs.yale.edu/AI/VisionRobotics/XVision/,
1997.

[14] VisLib vision library. http://robots.activmedia.com/vislib/, 1997.

[15] ACTS vision library. http://robots.activmedia.com/acts/, 1997.

[16] ActivMedia Robotics. http://www.activrobots.com.

[17] Newton Laboratories. Cognachrome image capture device.
http://www.newtonlabs.com, 1999.

[18] Video For Linux II. http://millennium.diads.com/bdirks/v4l2.htm,
2000.

0.7 Appendix

0.7.1 Machine Vision Hardware and Drivers

For our work, we have successfully used several BTV848-based capture cards
using the Video4LinuxI driver under 2.2.x series Linux kernels, starting with
2.2.6. We have not had success getting these cards to work with beta
Video4LinuxII drivers used 2.2.x or 2.3.x kernels, although success has been
reported elsewhere. We expect this will be easier once Video4LinuxII is a
more stable API, and the drivers have matured.

We have used the Winnov Videum AV series capture cards successfully
under Video4LinuxII, with 2.2.x series kernels starting with 2.2.12. The
available driver has not been updated for 2.3.x kernels as of this writing.

Finally, the vision processing library has been compiled and run under
Microsoft Windowstm using the available AVI capture facilities. It was com-
piled under Visual C++ 4.0.

28



0.7.2 CMVision Library Documentation

Global Types

struct yuv422{

unsigned char y1,u,y2,v;

};

A structure for the common YUV422 standard machine color format. Most
video capture cards that are capable of capturing YUV support this color for-
mat. Each structure describes two adjacent pixels in the image, each with an
intensity value (y1,y2), and shared u,v values. The reason the chrominance
values are half-sampled is because the NTSC (and PAL) video standards
favor high quality intensity at the cost of color signal quality. The balance
in the sampling thus accurately re
ects the available information from the
input video stream. Each component value can range from [0..255].

struct rgb{

unsigned char red,green,blue;

};

The RGB color structure, common for computer display systems. It is present
in CMVision for output purposes, and for visually identi�cation of color
thresholds in test output. Each component ranges from [0..255].

CMVision Public Types

struct CMVision::region{

int color; // id of the color

int area; // occupied area in pixels

int x1,y1,x2,y2; // bounding box (x1,y1) - (x2,y2)

float cen_x,cen_y; // centroid

int sum_x,sum_y; // temporaries for centroid calculation

region *next; // next region in list

};

This is the region structure returned by CMVision for object feature descrip-
tion. The members are de�ned as follows:

29



1. color This identi�es the color of the region. Each threshold or color
class is identi�ed by a value from [1..31]. The number is assigned by its
location in the con�guration �le, with 1 being the �rst color threshold
in the �le, and increasing from there.

2. area This describes the area in pixels of the connected region, where
each pixel was determined to be a member of the color class color by
the current thresholds.

3. (x1,y1)-(x2,y2) This identi�es the bounding box of the connected re-
gion, with (x1,y1) being the smaller screen coordinates of the bounding
box, and (x2,y2) being the larger. The screen coordinate system follow
the common \matrix" numbering convention, where (0,0) is the top left
of the image, and x increases to the right, and y increases downward.

4. (cen x,cen y) This is the centroid of the connected region, with equal
weighting on every pixel in the region. This is in subpixel resolution
screen coordinates.

5. sum x,sum These are calculation temporaries used in the calculation of
centroids, among other possible uses. When passed to the user program
no particular value should be assumed, thus the values are unde�ned.

6. next This member is a pointer to the next region structure. Regions
are passed back to the user program in the form of a linked list, thus
each item indicates the next item in the list using this �eld.

CMVision Public Methods

CMVision();

This is the CMVision constructor method. No external initialization is made
by this function other than setting internal structure values to guarantee
consistent results if member functions are called while in an uninitialized
state. User programs should call the \initialize" method before attempting
to use the other methods.

~CMVision();

30



This is the destructor, which is an alias for the explicit \close" method.
No harm is caused by redundant calls to \close", and user programs are
encouraged to call \close" when they are done using CMVision, rather than
waiting for the CMVision object to fall out of scope. This alias is provided
when such would not be convenient.

bool initialize(int nwidth,int nheight);

This is the main initialization function, which initializes internally allocates
structures for vision processing, at the speci�ed video resolution. If memory
initialization is successful, true is returned. Otherwise, false is returned.
Before calling region and processing methods, the thresholds should be set
explicitly or loaded from an options �le.

bool loadOptions(char *filename);

This is a function for loading an options �le. See \colors.txt" in the CMVision
distribution for an example of the �le format. The options �le contains the
color class name, visualization color, and the default YUV thresholds for that
color class.

bool saveOptions(char *filename);

This method saves the current color information in a new options �le, in-
cluding any modi�cations made to the threshold values. This is expected to
be used by interactive programs for setting thresholds or automatic adaptive
threshold systems before shutdown.

void close();

This method is the main uninitialization call. It removes all allocated internal
state if any is present. May be called redundantly without any ill-e�ects.

bool testClassify(rgb *out,yuv422 *image);

This method classi�es a video frame, and outputs the representative color
(stored in the threshold information �le) for in an equally sized RGB output
frame. An example of such output can be seen in �gure 6. Use of this
method is intended primarily for visualization and debugging, and not for
normal autonomous operation, thus it is not optimized heavily.

31



bool getThreshold(int color,

int &y_low,int &y_high,

int &u_low,int &u_high,

int &v_low,int &v_high);

This method returns the maximum and minimum y,u,v threshold values. As
per the machine representation, each value is in the range [0..255]. The
color parameter speci�es which threshold to retrieve, and ranges within
[1..CMV MAX COLOR] (currently 32). If the color value is out of range,
false is returned and none of the output parameters are set, otherwise they
are set to the current values and true is returned.

bool setThreshold(int color,

int y_low,int y_high,

int u_low,int u_high,

int v_low,int v_high);

This method sets the current threshold values using the same representation
as getThreshold. If color is out of range, false is returned and no threshold
values are set. Otherwise the current thresholds are set to those in the
parameters, and true is returned.

char *getColorName(int color);

This method returns the human readable identi�er for color, as appears in
the initialization �le. The color parameter speci�es which color name to
retrieve, and ranges within [1..CMV MAX COLOR].

bool processFrame(yuv422 *image);

This method performs full processing on the passed video image, applying
the current thresholds and extracting the connecting regions and their associ-
ated statistics. If processing was fully successful, true is returned and region
structures may be retrieved with getRegions. On failure, false is returned,
and the regions are set in a consistent, but possibly incomplete state. Thus
if false is returned, processing was aborted and the regions retrieved with ge-
tRegions are accurate, but may be incomplete in the form of missing regions.
The most likely cause of failure is due to a full intermediate bu�er caused by
excessive noise in the image. If required the library can be recompiled with
larger internal bu�ers.

32



int numRegions(int color_id);

Returns the number of regions of the speci�ed color that were last processed
by a processFrame operation. Color is the color identi�er, with the range as
before.

region *getRegions(int color_id);

Returns the head of the regions list for the speci�ed color, as last created
in by a processFrame operation. The list is sorted by area, with the largest
occurring �rst, and terminated by a NULL in the region's \next" �eld.

33


