
READABLE PROOFS

IN HOARE LOGIC
(AND SEPARATION LOGIC)

John C. Reynolds
Carnegie Mellon University

ETAPS 2009
York, March 25, 2009 (revised April 6)

c©2009 John C. Reynolds

1

Our Thesis

Formal proofs of program specifications (more precisely, proofs
that specifications follow from their verification conditions) are
best communicated by annotated specifications (sometimes called
proof outlines), in which intermediate assertions and other nota-
tions are interspersed within the specification.

These annotated specifications can be defined by inference rules
and mechanically translated into conventional formal proofs.

2

A Program for Fast Division

{x ≥ 0 ∧ y > 0}
newvar n := 0 in newvar z := y in

(while z ≤ x do (n := n + 1 ; z = z× 2) ;

q := 0 ; r := x ;

while n 6= 0 do

(n := n− 1 ; z := z÷ 2 ; q := q× 2 ;

if z ≤ r then q := q + 1 ; r := r − z else skip))
{x = q× y + r ∧ 0 ≤ r < y}

3

A Formal Proof for Fast Division

The invariants:

I0
def
= z = y × 2n ∧ n ≥ 0 ∧ x ≥ 0 ∧ y > 0

I1
def
= x = q× z + r ∧ 0 ≤ r < z ∧ z = y × 2n ∧ n ≥ 0

The proof:

1. (x ≥ 0∧ y > 0)⇒ (y = y× 20 ∧ 0 ≥ 0∧ x ≥ 0∧ y > 0)

2. {x ≥ 0 ∧ y > 0}
n := 0 ; z := y

{I0} (RAS,1)

3. (I0 ∧ z ≤ x)⇒
(z× 2 = y × 2n+1 ∧ n + 1 ≥ 0 ∧ x ≥ 0 ∧ y > 0)

4. {I0 ∧ z ≤ x}
n := n + 1 ; z = z× 2

{I0} (RAS,3)

5. {I0}
while z ≤ x do (n := n + 1 ; z = z× 2)

{I0 ∧ ¬ z ≤ x} (WH,4)

4

6. (I0 ∧ ¬ z ≤ x)⇒
(x = 0× z + x ∧ 0 ≤ x < z ∧ z = y × 2n ∧ n ≥ 0)

7. {I0 ∧ ¬ z ≤ x}
q := 0 ; r := x

{I1} (RAS,6)

8. (I1 ∧ n 6= 0)⇒
(x = (q× 2)× (z÷ 2) + r ∧ 0 ≤ r < (z÷ 2)× 2 ∧

z÷ 2 = y × 2n−1 ∧ n− 1 ≥ 0)

9. {I1 ∧ n 6= 0}
n := n− 1 ; z := z÷ 2 ; q := q× 2

{x = q× z + r ∧ 0 ≤ r < z× 2 ∧ z = y × 2n ∧ n ≥ 0}
(RAS,8)

10. (x = q× z + r ∧ 0 ≤ r < z× 2 ∧
z = y × 2n ∧ n ≥ 0 ∧ z ≤ r)⇒

(x = (q + 1)× z + (r − z) ∧ 0 ≤ r − z < z ∧
z = y × 2n ∧ n ≥ 0)

11. {x = q× z + r ∧ 0 ≤ r < z× 2 ∧ z = y × 2n ∧ n ≥ 0

∧ z ≤ r}
q := q + 1 ; r := r − z

{I1} (RAS,10)

12. (x = q× z + r ∧ 0 ≤ r < z× 2 ∧
z = y × 2n ∧ n ≥ 0 ∧ ¬ z ≤ r)⇒ I1

13. {x = q× z + r ∧ 0 ≤ r < z× 2 ∧ z = y × 2n ∧ n ≥ 0

∧ ¬ z ≤ r}
skip

{I1} (ISK,12)

14. {x = q× z + r ∧ 0 ≤ r < z× 2 ∧ z = y × 2n ∧ n ≥ 0}
if z ≤ r then q := q + 1 ; r := r − z else skip

{I1} (CD,11,13)

15. {I1 ∧ n 6= 0}
n := n− 1 ; z := z÷ 2 ; q := q× 2 ;

if z ≤ r then q := q + 1 ; r := r − z else skip

{I1} (MSQ,9,14)

16. {I1}
while n 6= 0 do

(n := n− 1 ; z := z÷ 2 ; q := q× 2 ;

if z ≤ r then q := q + 1 ; r := r − z else skip)
{I1 ∧ ¬ n 6= 0} (WH,15)

17. (I1 ∧ ¬ n 6= 0)⇒ (x = q× y + r ∧ 0 ≤ r < y)

18. {x ≥ 0 ∧ y > 0}
n := 0 ; z := y ;

while z ≤ x do (n := n + 1 ; z = z× 2) ;

q := 0 ; r := x ;

while n 6= 0 do

(n := n− 1 ; z := z÷ 2 ; q := q× 2 ;

if z ≤ r then q := q + 1 ; r := r − z else skip)
{x = q× y + r ∧ 0 ≤ r < y} (MSQ,2,5,7,15,17)

19. {x ≥ 0 ∧ y > 0}
n := 0 ; newvar z := y in

(while z ≤ x do (n := n + 1 ; z = z× 2) ;

q := 0 ; r := x ;

while n 6= 0 do

(n := n− 1 ; z := z÷ 2 ; q := q× 2 ;

if z ≤ r then q := q + 1 ; r := r − z else skip))
{x = q× y + r ∧ 0 ≤ r < y} (DC,18)

20. {x ≥ 0 ∧ y > 0}
newvar n := 0 in newvar z := y in

(while z ≤ x do (n := n + 1 ; z = z× 2) ;

q := 0 ; r := x ;

while n 6= 0 do

(n := n− 1 ; z := z÷ 2 ; q := q× 2 ;

if z ≤ r then q := q + 1 ; r := r − z else skip))
{x = q× y + r ∧ 0 ≤ r < y} (DC,19)

An Annotated Specification for Fast Division

{x ≥ 0 ∧ y > 0}
newvar n := 0 in newvar z := y in

({z = y × 2n ∧ n ≥ 0 ∧ x ≥ 0 ∧ y > 0}
while z ≤ x do (n := n + 1 ; z = z× 2) ;

q := 0 ; r := x ;

{x = q× z + r ∧ 0 ≤ r < z ∧ z = y × 2n ∧ n ≥ 0}
while n 6= 0 do

(n := n− 1 ; z := z÷ 2 ; q := q× 2 ;

{x = q× z + r ∧ 0 ≤ r < z× 2 ∧ z = y × 2n ∧ n ≥ 0}
if z ≤ r then q := q + 1 ; r := r − z else skip))

{x = q× y + r ∧ 0 ≤ r < y}

5

An Example from Separation of Logic: Relative Point-
ers

{emp}
x := cons(a, a) ;

{x 7→ a, a}
y := cons(b, b) ;

{(x 7→ a, a) ∗ (y 7→ b, b)}
{(x 7→ a,−) ∗ (y 7→ b,−)}
[x + 1] := y − x ;

{(x 7→ a, y − x) ∗ (y 7→ b,−)}
[y + 1] := x− y ;

{(x 7→ a, y − x) ∗ (y 7→ b, x− y)}
{∃o. (x 7→ a, o) ∗ (x + o 7→ b, − o)}.

6

Another Example (O’Hearn): Concurrent Buffering

{emp}
{emp ∗ emp}

{emp} {emp}
x := cons(. . . , . . .) ; get(y) ;

{x 7→ −,−} ‖ {y 7→ −,−}
put(x) ; “Use y” ;
{emp} {y 7→ −,−}

dispose y ;

{emp}
{emp ∗ emp}

{emp}

7

Annotation Descriptions

We will write the annotation description

A � {p} c {q}

to indicate thatA is an annotated specification proving the spec-
ification {p} c {q}.

(The letter A, with various decorations, will be a metavariable
ranging over annotated specifications and their subphrases.)

We will define the valid annotation descriptions by means of in-
ference rules.

8

A Surprise

Sometimes an annotated specification may contain fewer asser-
tions than its unannotated version. For example, we will regard

y := 2× y {y = 2k ∧ k ≤ n}

as an annotated version of

{2× y = 2k ∧ k ≤ n} y := 2× y {y = 2k ∧ k ≤ n},

and

k := k + 1 ; y := 2× y {y = 2k ∧ k ≤ n}

as an annotated version of

{2×y = 2k+1∧k+1 ≤ n} k:=k+1;y:=2×y {y = 2k∧k ≤ n}.

The main reason we can allow such incomplete specifications
is that, in such cases, for the command c and postcondition q,
one can calculate a weakest (liberal) precondition pw, which is
an assertion such that {p} c {q} holds just when p ⇒ pw. In
many such cases, we will take pw as an implicit precondition of
the annotated specification.

9

Assignment (AS)

v := e {q} � {q/v → e} v := e {q}.

Instances

y := 2× y

{y = 2k ∧ k ≤ n}

}
�


{2× y = 2k ∧ k ≤ n}
y := 2× y

{y = 2k ∧ k ≤ n}
and

k := k + 1

{2× y = 2k ∧ k ≤ n}

}
�


{2× y = 2k+1 ∧ k + 1 ≤ n}
k := k + 1

{2× y = 2k ∧ k ≤ n}.

10

Sequential Composition (SQ)

A1 {q} � {p} c1 {q} A2 � {q} c2 {r}
A1 ;A2 � {p} c1 ; c2 {r}.

For instance,

k := k + 1

{2× y = 2k ∧ k ≤ n}

}
�


{2× y = 2k+1 ∧ k + 1 ≤ n}
k := k + 1

{2× y = 2k ∧ k ≤ n}

y := 2× y

{y = 2k ∧ k ≤ n}

}
�


{2× y = 2k ∧ k ≤ n}
y := 2× y

{y = 2k ∧ k ≤ n}

k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}

}
�


{2× y = 2k+1 ∧ k + 1 ≤ n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}.

11

Strengthening Precedent (SP)

p⇒ q A � {q} c {r}
{p}A � {p} c {r}.

For instance,

(y = 2k ∧ k ≤ n ∧ k 6= n) ⇒ (2× y = 2k+1 ∧ k + 1 ≤ n)

k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}

}
�


{2× y = 2k+1 ∧ k + 1 ≤ n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}

{y = 2k ∧ k ≤ n ∧ k 6= n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}

 �


{y = 2k ∧ k ≤ n ∧ k 6= n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}.

12

Why Do We Ever Need Intermediate Assertions?

1. while commands and calls of recursive procedures do not
always have weakest preconditions that can be expressed
in our assertion language.

2. Certain structural inference rules, such as the existential
quantifier rule (or the frame rule), do not fit well into the
framework of weakest assertions.

3. Intermediate assertions are often needed to simplify verifi-
cation conditions.

13

Partial Correctness of while (WH)

{i ∧ b} A {i} � {i ∧ b} c {i}
{i}while b do A � {i} while b do c {i ∧ ¬ b}.

For instance,

{y = 2k ∧ k ≤ n ∧ k 6= n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}

 �


{y = 2k ∧ k ≤ n ∧ k 6= n}
k := k + 1 ; y := 2× y

{y = 2k ∧ k ≤ n}

{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

 �


{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

{y = 2k ∧ k ≤ n ∧ ¬ k 6= n}.

14

Weakening Consequent (WC)

A � {p} c {q} q ⇒ r

A{r} � {p} c {r}.
For instance,

{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

 �


{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

{y = 2k ∧ k ≤ n ∧ k 6= n}

y = 2k ∧ k ≤ n ∧ k 6= n ⇒ y = 2n

{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

{y = 2n}


�


{y = 2k ∧ k ≤ n}
while k 6= n do

(k := k + 1 ; y := 2× y)

{y = 2n}.

15

Alternative Axiom Schema (Assignment)

• Backward Reasoning (Hoare)

A{q} � {g(q)} c {q}

e.g. v := e {q} � {q/v → e} v := e {q}.

• Forward Reasoning (Floyd)

{p}A � {p} c {g(p)}

e.g. {p}v := e � {p} v := e {∃v′. v = e′ ∧ p′},

where v′ /∈ {v} ∪ FV(e) ∪ FV(p), e′ is e/v → v′, and p′ is
p/v → v′. The quantifier can be omitted when v does not
occur in e or p.

16

Completeness

We say that an annotated specification is right-complete if it ends
with a postcondition, left-complete if it begins with a precondi-
tion, and complete if it is both right- and left-complete. Then the
patterns

A
A{q}
{p}A

{p}A{q}


will

match
any


annotated specification.
right-complete annotated specification.
left-complete annotated specification.
complete annotated specification.

Inclusions of Patterns
A (Outward)

A{q} (Backward) {p}A (Forward)

{p}A{q} (Inward)

�
�

�
�

�
�

�
�

⊆
Q

Q
Q

Q
Q

Q
Q

Q

⊇

Q
Q

Q
Q

Q
Q

QQ

⊇ �
�

�
�

�
�

��

⊆

17

Forcing Completeness

We can force any specification to be left-complete by strength-
ening its precedent with the vacuous verification condition p⇒p:

p⇒ p A � {p} c {r}
{p}A � {p} c {r}.

For example,

2× y = 2k ⇒ 2× y = 2k

y := 2× y {y = 2k} � {2× y = 2k} y := 2× y {y = 2k}

{2× y = 2k} y := 2× y {y = 2k} �
{2× y = 2k} y := 2× y {y = 2k}.

Similarly, we can force any specification to be right-complete by
weakening its consequent with q ⇒ q.

18

Alternative Rules with Premisses (Conditionals)

• Backward-Preserving Reasoning (for weakest preconditions)

A1{q} � {p1} c1 {q}
A2{q} � {p2} c2 {q}

if b then A1 else (A2){q} �
{(b⇒ p1) ∧ (¬ b⇒ p2)} if b then c1 else c2 {q}

• Forward-Preserving Reasoning

{p ∧ b}A1 � {p ∧ b} c1 {q1}
{p ∧ ¬ b}A2 � {p ∧ ¬ b} c2 {q2}

{p}if b then A1 else (A2) �
{p} if b then c1 else c2 {q1 ∨ q2}

• Inward-Preserving Reasoning (my preference)

{p ∧ b} A1 {q} � {p ∧ b} c1 {q}
{p ∧ ¬ b} A2 {q} � {p ∧ ¬ b} c2 {q}

{p} if b then A1 else (A2) {q} �
{p} if b then c1 else c2 {q}

• Outward-Preserving Reasoning

A1 � {p1} c1 {q1}
A2 � {p2} c2 {q2}

if b then A1 else (A2) �
{(b⇒ p1) ∧ (¬ b⇒ p2)} if b then c1 else c2 {q1 ∨ q2}

19

Variable Declaration (DC) (Inward-Preserving)

{p} A {q} � {p} c {q}
{p} newvar v in A {q} � {p} newvar v in c {q},

when v does not occur free in p or q.

Skip (SK) (Backward)

skip {q} � {q} skip {q}.

20

More Structural Rules

In the following structural rules:

• In the unary rules a right brace is used to indicate the extent
of the single operand.

• In the binary rules the two operands are placed symmetri-
cally around the indicator DISJ, CONJ, or ‖.

(We assume that the annotated specifications in the premisses
will often be sequences of several lines.)

21

Vacuity (VAC) (Backward)

c}VAC {q} � {false} c {q}.

Here c contains no annotations, since no reasoning about its
subcommands is used. For example, using (VAC), (SP), (WH),
and (WC):

{s = 0 ∧ a− 1 ≥ b ∧ k ≥ b}
while k < b do

(k := k + 1 ;

s := s + k)

}
VAC

{s = 0 ∧ a− 1 ≥ b}.

22

Disjunction (DISJ) (Backward-Preserving)

A1 {q} � {p1} c {q} A2 {q} � {p2} c {q}
(A1 DISJ A2) {q} � {p1 ∨ p2} c {q}.

For example,

{true}

{a− 1 ≤ b}
s := 0 ; k := a− 1 ;

{s =
∑k

i=a i ∧ k ≤ b}
while k < b do

(k := k + 1 ; s := s + k)

DISJ

{a− 1 ≥ b}
s := 0 ; k := a− 1 ;

{s = 0 ∧ a− 1 ≥ b ∧ k ≥ b}
while k < b do

(k := k + 1 ; s := s + k)}VAC
{s = 0 ∧ a− 1 ≥ b}.

{s =
∑b

i=a i}.

23

Conjunction (CONJ)

• Forward-Preserving

{p}A1 � {p} c {q1} {p}A2 � {p} c {q2}
{p}(A1 CONJ A2) � {p} c {q1 ∧ q2},

• Outward-Preserving (Better?):

A1 � {p1} c {q1} A2 � {p2} c {q2}
(A1 CONJ A2) � {p1 ∧ p2} c {q1 ∧ q2}.

24

Concurrency (CONC) (Outward-Preserving)

• In Hoare Logic:

A1 � {p1} c1 {q1} A2 � {p2} c2 {q2}
(A1 ‖ A2) � {p1 ∧ p2} c1 ‖ c2 {q1 ∧ q2},

where no variable occurring free in p1, c1, or q1 is modified
by c2, and vice-versa.

The above rule is unsound for separation logic; instead we have:

• In Separation Logic (O’Hearn)

A1 � {p1} c1 {q1} A2 � {p2} c2 {q2}
(A1 ‖ A2) � {p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2},

where no variable occurring free in p1, c1, or q1 is modified
by c2, and vice-versa.

25

Existential Quantification (EQ) (Outward-Preserving)

A � {p} c {q}

A} ∃v � {∃v. p} c {∃v. q},
where v is not free in c.

Universal Quantification (UQ) (Outward-Preserving)

A � {p} c {q}

A} ∀v � {∀v. p} c {∀v. q},
where v is not free in c.

26

Constancy (CONST) (Outward-Preserving)

A � {p} c {q}

A} ∧ r � {p ∧ r} c {q ∧ r},
where no variable occurring free in r is modified by c.

(In separation logic, r must be pure.)

An Example

{f = fib(k) ∧ g = fib(k− 1) ∧ k < n}
{f = fib(k) ∧ g = fib(k− 1)}
t := g ;

g := f ;

f := g + t ;

{f = fib(k + 1) ∧ g = fib(k)}


∧ k < n

k := k + 1

{f = fib(k) ∧ g = fib(k− 1) ∧ k ≤ n}

27

Frame (FR) (O’Hearn) (Outward-Preserving)

A � {p} c {q}

A} ∗ r � {p ∗ r} c {q ∗ r},
where no variable occurring free in r is modified by c.

An Example

{∃j. x 7→ −, j ∗ list α j}
{x 7→ −}
[x] := a

{x 7→ a}

 ∗ x + 1 7→ j ∗ list α j

 ∃j

{∃j. x 7→ a, j ∗ list α j}

28

Substitution (SUB) (Outward-Preserving)

A � {p} c {q}

A}/δ � {p/δ} (c/δ) {q/δ},
where δ is the substitution v1 → e1, . . . , vn → en; v1, . . . , vn

are the variables occurring free in p, c, or q, and, if vi is modified
by c, then ei is a variable that does not occur free in any other
ej.

In the conclusion of this rule, A}/δ denotes an annotated spec-
ification in which “/” and the substitution denoted by δ occur liter-
ally, i.e., the substitution is not carried out on A.

29

An Example

In

{x = y} x := x + y {x = 2× y},

one can substitute x → z, y → 2× w − 1 to infer

{z = 2× w − 1} z := z + 2× w − 1 {z = 2× (2× w − 1)}.

But one cannot substitute x → z, y → 2×z−1 to infer the invalid

{z = 2× z− 1} z := z + 2× z− 1 {z = 2× (2× z− 1)}.

30

Simple Procedures

By “simple” procedures, we mean that the following restrictions
are imposed:

• Parameters are variables and expressions, not commands
or procedure names.

• There are no “global” variables: All free variables of the pro-
cedure body must be formal parameters of the procedure.

• Procedures are proper, i.e., their calls are commands.

• Calls are restricted to prevent aliasing.

An additional peculiarity, which substantially simplifies reason-
ing about simple procedures, is that we syntactically distinguish
parameters that may be modified from those that may not be.

31

Procedure Definitions

A simple nonrecursive (or recursive) procedure definition is a
command of the form

let h(v1, . . . , vm; v′1, . . . , v′n) = c in c′

letrec h(v1, . . . , vm; v′1, . . . , v′n) = c in c′,

where

• h is a binding occurrence of a procedure name, whose scope
is c′ (or c and c′ in the recursive case).

• c and c′ are commands.

• v1, . . . , vm; v′1, . . . , v′n is a list of distinct variables, called
formal parameters, that includes all of the free variables of
c. The formal parameters are binding occurrences whose
scope is c.

• v1, . . . , vm includes all of the variables modified by c.

32

Procedure Calls

A procedure call is a command of the form

h(w1, . . . , wm; e′1, . . . , e′n),

where

• h is a procedure name.

• w1, . . . , wm and e′1, . . . , e′n are called actual parameters.

• w1, . . . , wm are distinct variables.

• e′1, . . . , e′n are expressions that do not contain occurrences
of the variables w1, . . . , wm.

• The free variables of the procedure call are

FV(h(w1, . . . , wm; e′1, . . . , e′n)) =

{w1, . . . , wm} ∪ FV(e′1) ∪ · · · ∪ FV(e′n)

and the variables modified by the call are w1, . . . , wm.

33

Hypothetical Specifications

The truth of a specification {p} c {q} will depend upon an en-
vironment, which maps the procedure names occurring free in c

into their meanings.

We define a hypothetical specification to have the form

Γ ` {p} c {q},

where the context Γ is a sequence of specifications of the form

{p0} c0 {q0}, . . . , {pn−1} cn−1 {qn−1}.

We say that such a hypothetical specification is true iff {p} c {q}
holds for every environment in which all of the specifications in
Γ hold.

34

Generalizing Old Inference Rules

For example,

• Strengthening Precedent (SP)

p⇒ q Γ ` {q} c {r}
Γ ` {p} c {r}.

• Substitution (SUB)

Γ ` {p} c {q}
Γ ` {p/δ} (c/δ) {q/δ},

where δ is the substitution v1 → e1, . . . , vn → en; v1, . . . , vn

are the variables occurring free in p, c, or q, and, if vi is mod-
ified by c, then ei is a variable that does not occur free in any
other ej.

Note that substitutions do not affect procedure names.

35

Rules for Procedures

• Hypothesis (HYPO)

Γ, {p} c {q},Γ′ ` {p} c {q}.

• Simple Procedures (SPROC)

Γ ` {p} c {q}
Γ, {p} h(v1, . . . , vm; v′1, . . . , v′n) {q} ` {p′} c′ {q′}

Γ ` {p′} let h(v1, . . . , vm; v′1, . . . , v′n) = c in c′ {q′},
where h does not occur free in any triple of Γ.

• Simple Recursive Procedures (SRPROC)
(partial correctness only)

Γ, {p} h(v1, . . . , vm; v′1, . . . , v′n) {q} ` {p} c {q}
Γ, {p} h(v1, . . . , vm; v′1, . . . , v′n) {q} ` {p′} c′ {q′}

Γ ` {p′} letrec h(v1, . . . , vm; v′1, . . . , v′n) = c in c′ {q′},
where h does not occur free in any triple of Γ.

36

Some Limitations

To keep our exposition straightforward, we have ignored:

• Simultaneous recursion,

• Multiple hypotheses for the same procedure.

37

Two Derived Rules

From (HYPO):

• Call (CALL)

Γ, {p} h(v1, . . . , vm; v′1, . . . , v′n) {q},Γ′ `
{p} h(v1, . . . , vm; v′1, . . . , v′n) {q}.

and from (CALL) and (SUB):

• General Call (GCALL)

Γ, {p} h(v1, . . . , vm; v′1, . . . , v′n) {q},Γ′ `
{p/δ} h(w1, . . . , wm; e′1, . . . , e′n) {q/δ},

where δ is a substitution

δ = v1 → w1, . . . , vm → wm,

v′1 → e′1, . . . , v′n → e′n,

v′′1 → e′′1, . . . , v′′k → e′′k,

which acts on all the free variables in

{p} h(v1, . . . , vm; v′1, . . . , v′n) {q},

and none of the variables w1, . . . , wm occur free in the ex-
pressions e′1, . . . , e′n or e′′1, . . . , e′′k.

38

Annotated Specifications: Ghosts

In (GCALL):

Γ, {p} h(v1, . . . , vm; v′1, . . . , v′n) {q},Γ′ `
{p/δ} h(w1, . . . , wm; e′1, . . . , e′n) {q/δ},

where δ is a substitution

δ = v1 → w1, . . . , vm → wm,

v′1 → e′1, . . . , v′n → e′n,

v′′1 → e′′1, . . . , v′′k → e′′k,

which acts on

there may be ghost variables v′′1, . . . , v′′k that appear in δ but are
not formal parameters.

We will treat v′′1, . . . , v′′k as formal ghost parameters, and e′′1, . . . , e′′k
as actual ghost parameters.

39

For example,

{n ≥ 0 ∧ r = r0}
multfact(r; n)

{r = n!× r0}

 `


{n− 1 ≥ 0 ∧ r = n× r0}
multfact(r; n− 1)

{r = (n− 1)!× n× r0}

is an instance of (GCALL) using the substitution

r → r, n → n− 1, r0 → n× r0.

The corresponding annotated specification will be

{n ≥ 0 ∧ r = r0}
multfact(r; n){r0}
{r = n!× r0}

 `


{n− 1 ≥ 0 ∧ r = n× r0}
multfact(r; n− 1){n× r0}
{r = (n− 1)!× n× r0}.

Generalizing Annotation Descriptions

An annotated context is a sequence of annotated hypotheses,
which have the form

{p} h(v1, . . . , vm; v′1, . . . , v′n){v′′1, . . . , v′′k} {q},

where v′′1, . . . , v′′k is a list of formal ghost parameters (and all of
the formal parameters, including the ghosts, are distinct).

We write Γ̂ to denote an annotated context, and Γ to denote the
corresponding ordinary context that is obtained by erasing the
lists of ghost formal parameters. Then an annotation description
has the form:

Γ̂ ` A � {p} c {q},

meaning that Γ̂ ` A is an annotated hypothetical specification
proving the hypothetical specification Γ ` {p} c {q}.

40

Rules for Procedural Annotated Specifications

• General Call (GCALL) (Outward)

Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v′n){v′′1, . . . , v′′k} {q}, Γ̂
′ `

h(w1, . . . , wm; e′1, . . . , e′n){e′′1, . . . , e′′k} �
{p/δ} h(w1, . . . , wm; e′1, . . . , e′n) {q/δ},

where δ is the substitution

δ = v1 → w1, . . . , vm → wm,

v′1 → e′1, . . . , v′n → e′n,

v′′1 → e′′1, . . . , v′′k → e′′k,

which acts on all the free variables in

{p} h(v1, . . . , vm; v′1, . . . , v′n) {q},

and w1, . . . , wm are distinct variables that do not occur free
in the expressions e′1, . . . , e′n or e′′1, . . . , e′′k.

41

• Simple Procedures (SPROC)

Γ̂ ` {p} A {q} � {p} c {q}
Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v′n){v′′1, . . . , v′′k} {q} `

A′ � {p′} c′ {q′}
Γ̂ ` let h(v1, . . . , vm; v′1, . . . , v′n){v′′1, . . . , v′′k} =

{p} A {q} in A′

� {p′} let h(v1, . . . , vm; v′1, . . . , v′n) = c in c′ {q′},

where h does not occur free in any triple of Γ̂.

• Simple Recursive Procedures (SRPROC)

Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v′n){v′′1, . . . , v′′k} {q} `
{p} A {q} � {p} c {q}

Γ̂, {p} h(v1, . . . , vm; v′1, . . . , v′n){v′′1, . . . , v′′k} {q} `
A′ � {p′} c′ {q′}

Γ̂ ` letrec h(v1, . . . , vm; v′1, . . . , v′n){v′′1, . . . , v′′k} =

A in {p′} A′ {q′}
� {p′} letrec h(v1, . . . , vm; v′1, . . . , v′n) = c in c′ {q′},

where h does not occur free in any triple of Γ̂.

An Example

{z = 10}
letrec multfact(r; n){r0} =

{n ≥ 0 ∧ r = r0}
if n = 0 then

{n = 0 ∧ r = r0} skip {r = n!× r0}
else

{n− 1 ≥ 0 ∧ n× r = n× r0}
r := n× r ;

{n− 1 ≥ 0 ∧ r = n× r0}
{n− 1 ≥ 0 ∧ r = n× r0}
multfact(r; n− 1){n× r0}
{r = (n− 1)!× n× r0}

 ∧ n− 1 ≥ 0

{n− 1 ≥ 0 ∧ r = (n− 1)!× n× r0}
{r = n!× r0}

in

{5 ≥ 0 ∧ z = 10}
multfact(z; 5){10}
{z = 5!× 10}

42

How the Annotations Determine a Formal Proof

The application of (SRPROC) to the letrec definition gives rise
to the hypothesis

{n ≥ 0 ∧ r = r0} multfact(r; n){r0} {r = n!× r0}.

By (GCALL), the hypothesis entails

{n− 1 ≥ 0 ∧ r = n× r0}
multfact(r; n− 1){n× r0}
{r = (n− 1)!× n× r0}.

Next, since n is not modified by the call multfact(r; n − 1), the
rule of constancy gives

{n− 1 ≥ 0 ∧ r = n× r0 ∧ n− 1 ≥ 0}
multfact(r; n− 1){n× r0}
{r = (n− 1)!× n× r0 ∧ n− 1 ≥ 0}.

Then, we can strengthen the precondition to obtain

{n− 1 ≥ 0 ∧ r = n× r0}
multfact(r; n− 1){n× r0}
{r = (n− 1)!× n× r0 ∧ n− 1 ≥ 0}.

Also, by (GCALL), the hypothesis entails

{5 ≥ 0 ∧ z = 10} multfact(z; 5){10} {z = 5!× 10}.

43

Why Annotated Specifications Work

Proofs of
Specifications

Proofs of
Annotation

Descriptions

Proofs of
Specifications

Annotation
Descriptions

Annotated
Specifications

Proofs of
Specifications

?

Φ

?
concl

?
erase-spec

?
Ψ

-
erase-annspec

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

∼

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

'

• ' relates proofs that contain the same verification condi-
tions.

• ∼ relates proofs that contain the same verification condi-
tions, except for vacuous conditions of the form p⇒ p.

This proof depends upon the fact that we have not permitted
more than one rule for any particular command type or structural
situation.

44

Annotated Specifications for the Heap Commands

• Mutation (MUBR) (Backward)

[e] := e′ {p} � {(e 7→ −) ∗ ((e 7→ e′) −∗ p)} [e] := e′ {p}.

• Disposal (DISBR) (Backward)

dispose e {r} � {(e 7→ −) ∗ r} dispose e {r}.

• Allocation (CONSBR) (Backward)

v := cons(e) {p} � {∀v′′. (v′′ 7→e) −∗ p′′} v := cons(e) {p},

where v′′ is distinct from v, v′′ /∈ FV(e, p), and p′′ denotes
p/v → v′′.

• Lookup (LKBR1) (Backward)

v := [e] {p} � {∃v′′. (e7→v′′) ∗ ((e7→v′′) −∗ p′′)} v := [e] {p},

where v′′ /∈ FV(e)∪(FV(p)−{v}), and p′′ denotes p/v →
v′′.

45

Deriving Local and Global Rules

By taking p in (MUBR) to be e 7→ e′, and using the valid verifica-
tion condition

VC = (e 7→ −)⇒ (e 7→ −) ∗ ((e 7→ e′) −∗ (e 7→ e′)),

we may use (SP) to obtain a proof:

V C
[e] := e′ {e 7→ e′} �
{(e 7→ −) ∗ ((e 7→ e′) −∗ (e 7→ e′))} [e] := e′ {e 7→ e′}

{e 7→ −} [e] := e′ {e 7→ e′} � {e 7→ −} [e] := e′ {e 7→ e′}
of an annotation description corresponding to the local form (MUL).

In such a manner, one may derive local and global rules of the
form

{p} c {q} � {p} c {q}.

46

