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Abstract

Distributed systems frequently exhibit properties of interest which
span multiple entities. These properties cannot easily be recognized
from any single entity, but can be readily detected by combining the
knowledge of multiple entities. Testing for distributed properties is
especially important in debugging or verifying software for modular
robots. We have developed a technique we call distributed watchpoint
triggers which can efficiently recognize distributed conditions. Our
watchpoint description language can handle a variety of temporal,
spatial and logical properties spanning multiple robots. In this paper
we present the specification language, describe the distributed online
mechanism for detecting distributed conditions in a running system
and evaluate the performance of our implementation.
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1. Introduction
1.1. Modular Robotics

Modular robotics has attracted considerable research attention
over the past decade by pursuing the idea that many simple, of-
ten homogeneous modules can form an ensemble whose func-
tionality meets or exceeds that of a traditional monolithic ro-
bot. The flexibility of such a composite system could be high
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and the fabrication of individual modules would benefit from
the economies of scale inherent in fabricating larger numbers
of similar units (Chen and Burdick 1995; Pamecha et al. 1996).
There are (generally speaking) two main classes of modular
robots: lattice type and chain type. Lattice-type robots are ar-
rayed in some regular repeating structure and move only be-
tween the grid points in the lattice (Kotay et al. 1998). Chain-
type robots operate without a constraining lattice and typically
form one or more chains (either open or closed) of modules
(Stgy 2004; De Rosa et al. 2006).

In addition to the expected work on hardware design and
control for such robots, modular robotics has proven to be a
fertile research area for inquiry into a variety of distributed
programming tasks. In the modular robotics community, no-
table work has been published on such topics as distributed
sensor fusion, distributed localization (Reshko 2004), leader
election and distributed motion planning (Stgy 2004; De Rosa
et al. 2006).

Modular robotic ensembles of the order of tens of modules
have been constructed for research purposes (Yim et al. 1997;
Murata et al. 2002; Jorgensen et al. 2003), but ensembles of
larger sizes are much less common. This has not stopped sev-
eral projects (Nagpal 2001; Stgy 2004; Goldstein et al. 2005;
Fitch and Butler 2006) from exploring algorithms for thou-
sands to millions of robots, but such experiments must cur-
rently be carried out in simulation.

Debugging tools for robots are typically integrated into a
simulation (Collett et al. 2005) or development (Tansley 2007)
frameworks and provide support for debugging motion plans
and other algorithm details for single or small groups of ro-
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bots (Gerkey et al. 2003). Stand-alone debugging tools for ro-
botics are relatively rare (Lamine and Kabanza 2002) and, to
the best of our knowledge, there are currently no generally ac-
cepted techniques for debugging the distributed behavior of
large numbers of robots.

1.2. Distributed Debugging

Designing algorithms for distributed systems is a difficult and
error-prone process. Concurrency, non-deterministic timing
and state-space explosions all contribute to the likelihood of
bugs in even the most meticulously designed software. These
factors also make the detection of such bugs very difficult.

Tools to assist programmers in debugging distributed algo-
rithms are few in number and generally inadequate. Most are
forced to fall back on standard debugging methods, such as de-
buggers (e.g. GDB; see FSF (2007)) or logging through con-
sole input/output (I/O) such as printf(). Both debuggers and
logging must be used very cautiously, or their file/console I/O
can impose unintended serialization (altering the timing be-
havior of the robot ensemble) and possibly masking some bug
manifestations. Debuggers are useful for detecting errors local
to an individual thread or process, but are not effective for er-
rors resulting from the interactions or states of multiple threads
of execution that span multiple modules. Console or file log-
ging may be used to detect some of these errors, but this re-
quires collecting all potentially relevant state information at
each robot. The information must then be centrally collected,
correlated and post-processed in order to extract the details of
the error condition. This requires significant effort, skill and
even luck on the part of the programmer.

One would like to have a tool that can allow programmers
to easily specify and detect distributed conditions in a multi-
robot ensemble. Such conditions constitute logical relations
between state variables that are distributed both temporally
and spatially across the ensemble. In general, distributed con-
ditions cannot be detected by observing the state of any single
robot or even the whole system at any single time. For exam-
ple, in debugging a distributed motion planning algorithm, we
may wish to detect whether two adjacent modules each initiate
motion within four iterations of their respective main loops. A
tool which can detect such conditions can provide insights into
the logical and temporal behavior of the systems and help to
pinpoint defects in distributed algorithms.

Unfortunately, detecting arbitrary distributed conditions
which may range freely inside an ensemble of modular ro-
bots can be quite difficult, given the large number of mod-
ule subsets that must be examined. As an example, a con-
dition that can occur in any three-module subset within an
ensemble of 1,000 modules would require examining almost
10° possible subsets of size three. To avoid this problem, we
limit ourselves to the subclass of conditions which can be de-
tected within fixed-size, connected subensembles of the entire

ensemble. That is to say, there must be at least one network
connection (and usually physical adjacency) between each el-
ement of the subensemble and some other element of the same
subensemble. Taking the above example, given a condition in-
volving three modules, in a topology where each module has at
most four neighbors, one would have to examine at most 4 mil-
lion different subensembles. This is a reduction of nearly three
orders of magnitude when compared with the unconstrained
case above.

We have developed a distributed watchpoint mechanism
that permits programmers to easily specify spatiotemporal
conditions across an ensemble of robots and trigger debug-
ging actions when they are detected: We have also developed a
corresponding fully distributed, online detection algorithm that
can be used to efficiently detect such distributed spatiotempo-
ral conditions in both simulated robotics systems and physical
hardware.

The remainder of this paper is primarily devoted to the in-
troduction of our mechanism for specifying distributed condi-
tions and our design and implementation of a distributed algo-
rithm to detect these conditions. We also present an evaluation
and analysis of the distributed watchpoint system, followed by
a discussion of its potential applicability to other disciplines.

2. Related Work

In considering the design of a distributed debugging system
for modular robots, there are three relevant areas of research
to consider. The first of these is distributed and parallel de-
bugging, including the Chandy—Lamport global snapshot al-
gorithm (Chandy and Lamport 1985) and subsequent related
work on global predicate evaluation (Fromentin et al. 1994;
Chase and Garg 1998; Hurfin et al. 1998). Snapshotting and
global predicate evaluation are valuable tools, but they are
geared towards the problem of finding a single instance of a
particular global configuration, where the conditions that man-
ifest in modular robots can be numerous and localized to con-
nected subensembles. In addition, global snapshots require the
aggregation of all relevant data at a central point, resulting in
a large communications overhead (Yang and Marsland 1992).
A related technique is deterministic replay (Bacon and Gold-
stein 1991; Xu et al. 2003), which provides the capability to
reproduce the distributed actions of a multi-agent system by
capturing the order and timing of messages. Unfortunately, de-
terministic replay algorithms typically require a shared bus or
memory and assume that all important causal channels can be
recorded and replayed (which is not the case for modular ro-
bots). Other important parallel debugging tools include static
code analysis tools such as race detectors (Savage et al. 1997;
Carr et al. 2001), which can detect many (but not all) data
races. While race detectors are important tools, they are not
general debugging aids.
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Another relevant research area involves the development
of logic-based verification and proof tools. Specifically, linear
temporal logic (Pnueli 1977), an instance of a modal tempo-
ral logic, is capable of representing and reasoning on infinite
state sequences, such as those that might be generated by FSM-
style robot programs. This capability of linear temporal logic
was exploited by Lamine and Kabanza (2002), who developed
a linear temporal logic-based model verification tool for single
mobile robots.

Finally, declarative overlay network systems, such as P2
(Loo et al. 2005), provide a general purpose tool for the com-
putation of distributed flow functions, which could include
debugging primitives. In fact, P2 includes debugging support
which leverages the system’s ability to compute arbitrary dis-
tributed functions (Singh et al. 2006). However, the focus of
the P2 project is not on robotics, and as such it does not ex-
plicitly deal with the dynamic point-to-point topologies found
in modular robotics. In addition, the use of P2 for debugging
implies the adoption of the P2 programming paradigm, which
may not be appropriate for all applications.

3. Describing Errors

The first step in detecting distributed error conditions is being
able to represent them concisely. To that end, we have created
a simple watchpoint description language, based on a frag-
ment of linear temporal logic with the addition of predicates
for state variable comparison and topological restriction (Fig-
ure 1). Linear temporal logic serves as the inspiration for this
simple descriptive syntax and provides meaningful semantics
for several of the operators.

3.1. Abstract Machine Model

We consider a simplified machine model for each modular ro-
bot: each module is represented by a number of named nu-
meric state variables and an array of neighbors. We assume
that each module iterates through three atomic phases: compu-
tation, state variable assignment and communication. Compu-
tation may take an arbitrary amount of time and each module
can communicate only with its neighbors via a reliable first
in first out (FIFO) channel. Furthermore, we assume that each
module has a copy of the watchpoint and that each module
has the state variables needed by the watchpoint expression.
We explicitly do not require that all modules have the same
code image, merely that they have compatible state variables.
Finally, we assume no synchronous execution or shared clock
between modules. This simplified model does not entail loss
of generality, as we can express run-loop, finite-automata or
event-driven programs using it.

(watchpoint) —— (module decl.) (bool)

modules (string™)
not (bool)

| (bool) and (bool)
| (bool) or (bool)

| neighbor (string string)

(module decl.) —

(bool) —

| ( {compare) )

| ({bool))
string

| last. (module)

(module) —

| next. (module)
(compare) —— (numeric) (c-op) (numeric)
(numeric) .—- (state var)
| integer
| ((numeric) (m-op) (numeric))
(state var) ~— (module) . string
<|>|==|t=]|>=|<=

+-1*1/

(cop) —

(m-op) —

Fig. 1. Extended BNF grammar for the watchpoint description
language.

3.2. Watchpoint Expressions

As was mentioned in Section 1.2, for practical representation
of distributed error conditions, we make a key assumption:
the error must be able to be represented by a fixed-size, con-
nected subensemble of robots in specific states. Allowing dis-
connected subensembles would imply an exponential search
through all appropriately sized subsets of the total ensemble
and distributing information between the members of these
subsets would require significant multi-hop messaging.
Watchpoint descriptions begin with a named list of module
variables. The length of this list defines the size of the match-
ing subensemble (the connected subgroup whose state satisfies
the watchpoint expression) and is implicitly quantified over
all connected subgroups of this size in the ensemble. The lan-
guage includes the standard boolean and grouping primitives,
basic mathematical operators, topological restrictions and state
variable comparisons. Topological restrictions take the form
of the predicate neighbor (a b), and indicate that the two
specified modules are neighbors (i.e. in physical or network
connectivity). When used in combination and in conjunction
with the boolean negation operator, arbitrary module topolo-
gies can be expressed. State variable comparisons allow for
the comparison of named state variables in one module against
constants, other local variables or remote variables on other
robots. In addition, state variable comparisons may include ar-
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Fig. 2. A gradient field with several non-smooth values (high-
lighted).

bitrarily nested uses of the last and next temporal modal
operators, which provide access to the past and future states
of the robot’s state variables. In the case of the next opera-
tor, this implies that the watchpoint triggers in the “future” and
that the state of the robots would need to be rolled back one or
more timesteps when the watchpoint triggers.

These simple primitives give us the ability to representvery
complex distributed conditions. We can reason along three dif-
ferent axes of a configuration: numeric state variables, topo-
logical configuration and temporal progression. Topological
restrictions allow us to model (in an abstract fashion) the
configuration space of the robots, so that error states related to
the physical positioning of neighboring modules may be rep-
resented. Temporal modal operators can be used to represent
sequences of states, a useful capability for debugging distrib-
uted finite state automata.

4. Example Watchpoints

To clarify the use of the watchpoint description language, we
present three example watchpoints that demonstrate the detec-
tion of errors in common algorithms found in modular robot-
ics: gradient fields, leader election and token-passing.

4.1. Gradient Fields

In many distributed algorithms for modular robotics, gradient
fields are used to disseminate information to an entire ensem-
ble of robots and to provide (in the case of monotonic gradi-
ents) a shortest-path function available at all points. Gradient
fields have been used for motion planning (Stgy 2004) and for
localization/role assignment (Nagpal 2001).

In the example configuration of Figure 2, we have a two-
dimensional array of robots in a rectilinear lattice. Gradient

values are propagated from the center to the edge, decreasing
by one at each hop. The gradient as a whole should maintain
a property of smoothness. However, there are several nodes
(marked with dashed circles) where the gradient value has
been miscalculated by the underlying algorithm. These errors
cannot be detected merely through inspection of a single ro-
bot’s gradient value, as the property of smoothness exists only
in the context of two (or more) gradient values. To repre-
sent this error state, we can use the watchpoint shown in Fig-
ure 3(a). This watchpoint detects when two neighboring robots
have a gradient value that differs by more than one.

An interesting observation about this watchpoint is that we
do not need two clauses or an absolute value operator to detect
the case where the difference between the values is less than
—1. This is due to the fact that this watchpoint is implicitly
evaluated for all size-two connected subgroups in the ensem-
ble, and thus will detect the case when a difference is less than
—1 by examining the separate subensemble where the assign-
ments of the variables a and b are reverse, giving a difference
of more than 1. This saves effort in one way, but turns out to be
a false economy;, as it will require the examination of twice as
many subensembles. This suggests an as-yet undiscovered op-
timization may be possible for expressions with similar logical
symmetry.

4.2. Leader Election

Figure 4 shows a hexagonally packed array of robots which are
attempting to select leaders using some (unspecified) leader
election protocol. Each leader must have a path distance of at
least two hops to any other leader. It is obvious from inspec-
tion of Figure 4 that the algorithm has yielded incorrect results,
as there are two leaders within two hops of each other. While
this is readily discernible from an omniscient perspective, any
single robot will not be able to detect this error condition with-
out communicating with its neighbors. To represent this er-
ror state, we use the watchpoint shown in Figure 3(b). De-
constructing the watchpoint expression, we have a connected
subensemble of three distinct modules, where two claim to be
leaders. As there can be at most two hops between any two
modules, the presence of two modules in such a group which
are both leaders constitutes a violation of the path distance
property from above. It should be noted that this approach will
grow significantly more expensive as the hop-distance require-
ment grows larger (as the size of the watchpoint will increase
with the number of hops between leaders).

4.3. Token Passing

As a slightly more complex example, let us consider the prob-
lem of token passing in a closed ring network (Figure 5). We
would like to enforce the condition that, if robot x has the to-
ken, then exactly one of its neighbors must have had the token
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a) modules(a b); (a.gradient - b.gradient > 1)
g g
(b) modules(a b c¢); (a.isLeader = 1) and (c.isLeader = 1)

(¢) modules(a x b); neighbor(a x) and neighbor(x b) and (x.tok = 1)
and (((last.a.tok = 1) and (last.b.tok = 1)) or

((last.a.tok = 0) and (last.b.tok = 0)))

Fig. 3. Example Watchpoints.

Fig. 4. Incorrect two-hop leader election. Conflicting leaders
(with a path distance of less than two hops) are circled-

Fig. 5. Part of a token-passing ring. Previous states shown
stacked behind current states.

in the last timestep. We can express the violation of this con-
dition with the watchpoint shown in Figure 3(c). Here we have
three modules, with module x currently holding the token. An
error occurs if both or neither of neighbors of x previously had
the token. Note that we need to use topological restriction in

this watchpoint, as the requirement that x, a, b form a con-
nected subensemble is insufficient to ensure that both a and b
are neighbors of x.

4.4. Summary

The above examples illustrate some of the unique and impor-
tant characteristics of our watchpoint description system. From
the first example, we see that watchpoints are implicitly quan-
tified over all connected subensembles of appropriate size,
meaning that we do not have to explicitly represent the transla-
tions, rotations or skews of possible matching subensembles.
The second and third examples together show the conditions
where topological restrictions are and are not needed. The
third example also shows how reasoning over distributed se-
quences of states allows for the detection of time-sensitive con-
ditions.

5. Detecting Errors

The main component in our distributed watchpoint imple-
mentation is the PatternMatcher object (Figure 6). A Pattern-
Matcher consists of three subunits:

e an ordered list of » named slots that hold robot id num-
bers;

e an n x n bit adjacency matrix;

e an expression tree that both represents the watchpoint
expression and stores any accumulated state variables.

A PatternMatcher may be empty (with none of its slots
filled), partially filled (with some slots and state variables
filled) or completely filled. A given PatternMatcher may be
in one of three states: matched, failed or indeterminate. The
indeterminate state occurs when there is insufficient infor-
mation in a partially filled PatternMatcher to decide whether
its expression is satisfied. Each PatternMatcher is a mobile
data structure which represents one particular search to satisfy
the watchpoint condition. A partially filled PatternMatcher
is a search which is still in progress, where the empty slots
are the incomplete portion of the search. A given module
can host many PatternMatchers, representing various searches
which are passing through the module, collecting states via the
process described in the following.
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adjacency matrix
| slots a|x|b

P

Fig. 6. PatternMatcher object. The expression tree corresponds
to the watchpoint expression of Figure 3(c). Variables are
shown with dotted outlines.

5.1. Populating PatternMatcher Variables

In order to use PatternMatchers to determine whether watch-
point expressions have been satisfied, we populate the com-
ponents of the PatternMatchers with information from differ-
ent modules. This process has three stages that occur at each
timestep: (i) filling the next available slot; (ii) filling the ex-
pression tree; and (iii) updating the adjacency matrix. When
filling slots, we proceed in order: find the first slot that has not
been assigned a value, then copy the local module’s unique
id number to that slot variable. The name of the slot vari-
able is then used in the second phase, where we traverse the
expression tree and instantiate any references to the current
slot’s state variables with the values from the current module.
Finally, we query the module for its current list of neighbors
and update the adjacency matrix with any connections between
the current module and any modules in previously filled slots.
These steps are repeated for every module that the Pattern-
Matcher acquires state information from.

As an example, we illustrate the action of the populating
process on the watchpoint expression from Figure 3(a). We
examine a single PatternMatcher as it is populated by two
modules in succession. The two modules have unique ids 4
and 5, and gradient values of 12 and 10, respectively (Fig-
ure 7(a)). The PatternMatcher is first populated by module 4.

slots

adjacency matrix

state

Fig. 7. The population process, with arrows indicating where
data is added. (a) Module configuration, showing gradient
value and module id. (b) Initial (empty) PatternMatcher for the
expression in Figure 3(a). (c) PatternMatcher after being pop-
ulated with module id 4. (d) PatternMatcher after being popu-
lated with module id 5.

This places the value 4 in slot a and the value 12 in the vari-
able a.gradient, as indicated by the arrows in Figure 7(c).
The PatternMatcher is then populated by module 5. This fills
the slot b and the variable b . gradient. In addition, as a is a
neighbor of b, the relevant entries in the adjacency matrix are
updated. The expression tree is now satisfied and the Pattern-
Matcher has matched the condition described by the watch-
point expression.

5.2. Centralized Algorithm

Our initial implementation relied on a single centralized proce-
dure to update all PatternMatchers across an entire (simulated)
ensemble. A a set of vectors maintained each robot’s state vari-
ables. At each timestep, the current values of all state variables
used by active watchpoints were appended to the vectors, pro-
viding state history for the variables. The simulator also main-
tained a single set of PatternMatchers (S), which were updated
and processed every timestep as described in Algorithm 1. This
centralized algorithm is useful for simulated robot ensembles,
but debugging actual hardware (or even multi-threaded sim-
ulations) required the development of a distributed technique
for detecting watchpoint conditions.
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Algorithm 1 Centralized watchpoint update.

Algorithm 2 Distributed algorithm: message handler.

S=0
for all modules m do
create new PatternMatcher p from the watchpoint text
populate first open slot of p with m
S=SUp
end for
while S # ¢ do
T=9
for all PatternMatchers p € S do
if p matches then
execute trigger action for p
else if p is indeterminate then
for all neighbors n of modules in p’s slots do
p1 = clone(p)
populate first open slot of p; with n
T=TU D1
end for
else
#failure: PatternMatcher is ignored
end if
S=8S-p
end for
S=T
end while

message m received by module n
if m.isMultihop then
if m.dest = n then
n.R=n.RUm.p
else
r = nextRoutingStep(n,m.dest,m.p)
m.source =n
send m to r
end if
else
if !m.possible Dup or lisDuplicate(m, n) then
nS=nSUm.p
end if
end if

isDuplicate(message m,module 1)
iy = index of m.s in m.p’s slots
imax =max index of n’s neighbors in m. p’s slots
return iy > imax

nextRoutingStep(module s,module d,PatternMatcher p)
calculate BFS over p’s adjacency matrix (from s)
r = minimal path from s to d (using BFS distances)
return the first element of »

5.3. The Need For Multi-hop Messaging in a Distributed
Implementation

To detect the presence of distributed conditions without the
presence of a central control entity, we use PatternMatchers
as mobile state aggregators. PatternMatchers are transmitted
from module to module via single-hop messaging, accumulat-
ing state until they fail or trigger. Unfortunately, using single-
hop messaging, the subensemble topologies that can be de-
tected are quite limited. Consider the two subensembles in Fig-
ure 8. Figure 8(a) illustrates a subensemble whose modules lie
in a linear path, but are not ordered sequentially. With only
single-hop messaging, there is no way to propagate the slots
(A B C D) in order. Figure 8(b) shows a subensemble which
has an ordered path, if one is allowed to “backtrack” to previ-
ously visited modules. In order to implement this backtrack-
ing (and thus detect this class of subensembles) we introduce
multi-hop messaging and rerouting.

Multi-hop messaging is used to move a PatternMatcher
back through previously visited modules, so that it can con-
tinue to propagate from a different point in the subensem-
ble. PatternMatchers that return to a module that they have
already visited in this way are said to have been rerouted to
the module. Multi-hop messaging and rerouting allow us to
detect subensembles of the kind seen in Figure 8(b), which we
term non-linear ensembles, but not to detect those seen in Fig-

900000
§5ncne
000000

sensse
80008e
ssseve

Fig. 8. (a) Unordered and (b) non-linear subensembles for the
set of modules (A B C D).

ure 8(a), which are unordered. To detect unordered subensem-
bles we would have to reorder the slots of the PatternMatcher
to correspond to the ordering in the subensemble. To detect
all such unordered configurations, we would have to search all
permutations of the slots, a potentially expensive proposition
(as a watchpoint of size four would have 24 such permuta-
tions).

5.4. Distributed Algorithm

The distributed implementation of our watchpoint system in-
volves two components on each module: an update function
and a message handler for incoming PatternMatchers. The
update function is used at each timestep to create, populate
and spread PatternMatchers. Each module maintains three data
structures:
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Algorithm 3 Distributed algorithm: PatternMatcher update.
on each module n
create new PatternMatcher p’ from the watchpoint text
S=Sup
for all PatternMatchers p; € S do
populate first open slot of p; with n
if p; matches then
execute trigger action for p;
else if p; is indeterminate then
message m; = (pj,false,** *)
send m to each of n’s neighbors
for all modules d in p;’s slots s.t. d # n do
message my = (py,true,*,n, d)
module » =nextRoutingStep(n,d,p;)
send m, to r
end for
else
#failure: PatternMatcher is ignored
end if
end for
for all PatternMatchers p; € R do
message m = (p,,false,true,*,*)
send m to each of n’s neighbors
end for
S=0,R=190

1. aset S of active PatternMatchers;
2. aset R of rerouted PatternMatchers;

3. alocal history of watched state variables (used by the
populate routine).

The PatternMatcher update function of the algorithm is ex-
ecuted at each timestep and is composed of four phases. In the
first phase, a new (empty) PatternMatcher is created and added
to the set S. Then for each PatternMatcher in S, its first open
slot (and associated expression tree variables) is populated
with information from the local module. If a PatternMatcher’s
expression tree is satisfied, the trigger action for the watch-
point is executed. If still indeterminate, the PatternMatcher is
then spread via two types of messages: local messages sent to
each of the module’s neighbors and multi-hop messages sent
to all of the other modules already identified as being in the
PatternMatcher’s slots. Every rerouted PatternMatcher in R is
then sent via a local message to all of the module’s neighbors.
Finally, the sets S and R are cleared.

All messages used in the distributed algorithm carry five
data fields:

1. the PatternMatcher p;

2. aboolean flag isMultihop;

3. aboolean flag possibleDup;
4. the destination module dest; and
5. the source module source.

We represent a complete message as (p,isMultihop,
possibleDup, source,dest). “x” is used to denote field val-
ues that we do not care about. Message handling is based on
whether a given message is multi-hop or local. Local messages
are handled by adding their PatternMatcher p to the local set
S of active PatternMatchers.

Multi-hop messages are examined to see if their ultimate
destination is the current module. If the message is in transit to
another module, a breadth-first search from the current mod-
ule to the destination is.conducted within the adjacency matrix
of the message’s PatternMatcher. This provides the next step
in routing the message to its destination, and the message is
forwarded on to this next hop. If the message is meant for this
module, its PatternMatcher p is added to the local set R of
rerouted PatternMatchers.

5.5. Example

To illustrate how the distributed algorithm functions, we use
the watchpoint expression in Figure 9, applied to the five-
module ensemble in Figure 10(a). We note that the two
subensembles which satisfy this watchpoint are [3 4 2] and
[4 3 2]. For clarity of explanation, we assume that all actions
at each step occur simultaneously and that message propaga-
tion incurs no delay.

The algorithm begins by converting the text of the watch-
point expression into a PatternMatcher (Figure 10(b)). As the
contents of the expression tree and adjacency matrix have been
described elsewhere, we abbreviate the PatternMatcher as just
the sequence of numbers stored in its slots (Figure 10(c)).
Thus, an empty PatternMatcher will be abbreviated [- — —],
while one that had been populated by module 3 and then by
module 4 would be [3 4 —].

Once an empty PatternMatcher has been created at a mod-
ule, its first slot is filled by that module (step (a)). Pattern-
Matchers which have failed at this point are then discarded
(step (b)). Conversely, those which succeed activate their as-
signed trigger actions. The remaining PatternMatchers are then
spread to the single-hop neighbors. In this example, the Pat-
ternMatcher [3 — —] at module 3 is spread to modules 2
and 4 (step (c)). All PatternMatchers are then filled by the
module that they occupy (step (d)) and failed PatternMatch-
ers are again discarded (step (e)). As the PatternMatchers have
two slots filled, they are now spread both by single-hop mes-
saging (to modules 2 and 5) and by rerouting (to modules 3
and 4). Rerouted PatternMatchers are marked with a star and
are not filled by the module they arrive at (step (f)). Finally,
the rerouted PatternMatchers are spread to the neighbors of the
modules they occupy (step (g)), where they are filled again.
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modules(a b ¢); (a.var = 0) and (b.var = 0) and (c.var = 2)

Fig. 9. Watchpoint for the distributed algorithm example.

1

adjacency matri x

id:
a) value: ‘

Fig. 10. a) Module configuration. (b) Empty PatternMatcher. (c) Abbreviated PatternMatcher.

id: 1 2 3 4 5 1 2 3 4 5
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0000 0FR00000N

PatternMatchers:

1 2 3 4 5 1 2 3 4
. 90000 900

5 1

2 3 4
"100000

1.2 3 4 s 12 3 4 5

5

Fig. 11. Distributed algorithm execution. Rerouted PatternMatchers are indicated with a star, while those that have triggered are

marked with a double border.

6. Operational Concerns
6.1. Machine Model

As mentioned in Section 3.1, the algorithms we have de-
scribed assume a specific machine model: namely one that
loops through three atomic phases: computation, communica-
tion and state variable assignment. This abstract model is eas-
ily adapted to accommodate more general programming styles.
We address the applicability of our machine model to three
common styles: state machine, event-handling and run-loop.
The state-machine programming style (popular in embed-
ded devices) treats the robot as a finite-state automata, which
transitions to different states upon the reception of input sig-
nals. In this case, we can treat each state transition as a period
of computation, followed by variable assignment (the new au-
tomata state and any associated variables). The generation and
reception of input signals are then the communications phase.

Event-handling systems are similar in nature to state ma-
chines, as they respond to external interrupts with event-
handling routines. These systems lack the requirement of re-
maining within a transition system containing a finite number
of states and typically handle many more interrupts than a state
machine handles transitions. In this case, we can potentially
treat each interrupt service request as a discrete timestep, with
the interrupt serving as the communications phase. As this may
impose an excessive burden on the communications infrastruc-
ture (it would imply sending out PatternMatchers after every
interrupt is handled) we can group a number of closely spaced
interrupt requests together to form a timestep. In this case, the
interrupt handlers may access the same state variables, so one
can either discard the intermediate values assigned within a
timestep or create additional intermediate state variables that
can be used to track them.

Run-loop programming is the simplest of all programming
styles to adapt for our purposes. We can treat each pass through
the main loop as a timestep and record only the variable values
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that are present at the end of each loop. If a program sends or
receives messages multiple times within the run loop, we can
arbitrarily designate one of those occurrences to be the “end”
of the loop, and thus mark the point where variable values are
recorded and PatternMatchers are propagated. Alternatively,
we can make every instance of inter-module communication
correspond to the end of a timestep, at which point a single
pass through the run loop may contain multiple timesteps.

6.2. Snapshot Correctness

In any distributed algorithm which requires state from multiple
asynchronously executing programs, there arises the question
of consistency. Without some prior guarantees on the length of
a timestep or the presence of a shared clock, there is generally
no way to obtain a “snapshot” of the state of multiple mod-
ules that corresponds to one instant of wallclock time. What
can be obtained is a consistent snapshot or a snapshot that rep-
resents a set of states that could exist without any messages
passed between the modules. We examine the issue of snap-
shot coherence in two phases: in linear subensembles (which
do not require multi-hop messaging) and then in non-linear
subensembles.

In linear subensembles, the movement of a PatternMatcher
from module to module serves as both the marker and
state aggregator for a bounded-size Chandy—Lamport snapshot
(Chandy and Lamport 1985). This allows us to capture a con-
sistent snapshot of the modules’ state for any state variables
whose values persist for at least one timestep.

In non-linear subensembles, the problem becomes more
complicated. As the multi-hop messaging phase of the algo-
rithm introduces additional delays in state capture, it is no
longer possible to ensure a consistent snapshot with the Pat-
ternMatchers alone. There are two possible solutions to this
problem. If the timesteps of all modules are known to be of
equal length, then one can simply apply a backward temporal
shift of 1 to all unfilled variables whenever a PatternMatcher
moves as part of multi-hop routing. This ensures that the data
the PatternMatcher collects when it reaches a new module has
“aged” an amount equal to the number of multi-hop routing
steps, which will be equal to the number of timesteps that have
elapsed (by the assumption above and the abstract machine
model).

If there is no guarantee as to the length of timesteps on dif-
ferent modules, the following approach may be used. When a
PatternMatcher with m slots is created, it is given a timestamp
by the local module. That timestamp is broadcast to all neigh-
bors within m hops, which record the relevant state values and
associate them with the timestamp. When a PatternMatcher ar-
rives at a module, it requests the state variables associated with
its timestamp. This is equivalent to separating the beacon and
state aggregation phases of the Chandy—Lamport snapshot al-
gorithm. The beacon is the timestamp broadcast and the aggre-
gation is performed by the rerouted PatternMatcher.

6.3. Hardware Overhead

The resources required to implement this technique on real
rather than simulated modular robots are modest: RAM needs
per module would typically be tens of kilobytes or less (in-
cluding storage for pattern matchers plus local state memory).
Each module should ideally have a unique identifier, but lack-
ing such a facility, a randomized identifier with low likelihood
of local repeats would be sufficient (as module ids are needed
only to identify modules in the context of a small local group
of modules).

The full implementation of our distributed implementation
is less than 1,500 lines of C++, so code size is modest as
well. In many cases the required communications could be pig-
gybacked onto other pre-existing messages between modules
and since exchanges are limited to nearest neighbors many
designs would be able to take advantage of nearest-neighbor
wired or infrared links for such data. The most constrained
resource would probably be CPU for systems already operat-
ing close to their computational or communications limits. In
those cases, the additional load of transmitting and process-
ing PatternMatchers may result in the system breaking poten-
tial real-time constraints. However, it is increasingly feasible
to provision all but the smallest robot modules with powerful
processors.

7. Optimizations

To reduce the storage, processing and communications de-
mands of our watchpoint system, we implement three opti-
mizations: temporal span detection, early termination of can-
didate pattern matchers and aggressive neighbor culling.

7.1. Automatic Temporal Span Detection

For each state variable, we must determine the minimum
amount of history that must be maintained by each robot. We
call this quantity the temporal span of the variable. In addition,
we must determine the minimum amount of total state (all state
variables plus neighbor information) that must be maintained
to allow for watchpoints that trigger in the future. This is the
temporal extent of the system. To calculate the temporal span
of a variable, we inspect each use of that variable in the watch-
point expression. For each use of the variable, we calculate the
temporal extent by assigning a value of 41 to each next and
a value of —1 to each last. The sum is then the temporal ex-
tent for that particular use of the variable. The temporal span
for the variable is the maximal difference between any two
temporal extents. This is the amount of history which must be
maintained for that variable. Similarly, the maximum positive
extent over all variables specifies the size of the total state vec-
tor that must be maintained.
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7.2. Early Termination

To reduce the number of active PatternMatchers and thus the
bandwidth and processing cost of the algorithm, we aggres-
sively cull PatternMatchers that have no chance of succeed-
ing. Before propagating a PatternMatcher to other modules, we
first check whether the expression tree can ever match. Just as
with short-circuit evaluation of a boolean expression in pro-
gramming languages such as C, even if the PatternMatcher is
not completely filled, subclauses of the expression tree may
have already made the whole unsatisfiable. If a match can al-
ready be ruled out, the PatternMatcher is deleted and no mes-
saging and computation is required to check any descendant
PatternMatchers that would have propagated from it.

7.3. Neighbor Culling

Finally, we reduce the set of neighbors to which a given Pat-
ternMatcher can spread by examining the topological con-
straints of the expression tree. If the constraint neighbor (a
b) exists in the watchpoint, b is the next open slot, and a is al-
ready filled, then the PatternMatcher can only spread to neigh-
bors of a. In the case of multiple topological restrictions, we
generate a set of possible neighbors by traversing the tree from
the bottom up, treating and as set intersection and or as set
union. Without this optimization, we could conceivably spread
a PatternMatcher to a large number of other modules whose
connectivity relationships would prevent the watchpoint ex-
pression from being satisfied.

8. Evaluation and Analysis

We evaluated the algorithms using a massively multi-threaded
multi-robot simulator. To more accurately measure the differ-
ential overhead of watchpoint support, we disabled the physics
and graphic rendering portions of the simulator. All tests were
performed on 100 to 1,000 robots arranged in a cubic lat-
tice packing in stacked planes of 10 x 10 modules. Simula-
tions were conducted for 100 virtual timesteps, where each
timestep allowed for arbitrary computation, including message
transmission/reception. As computation at each module was of
very similar duration, we used the temporal shift technique de-
scribed in Section 6.2 to ensure snapshot correctness. Message
travel time was one timestep. Test configurations were moni-
tored for total execution time, number of active PatternMatch-
ers (segmented by number of slots populated) and the number
of successful matches.

8.1. Evaluation Criteria

When evaluating the performance of the algorithms, we noted
four significant variables that controlled system performance:

1. the size of the ensemble;
2. the behavior of the program being debugged;

3. the watchpoint detection algorithm (centralized or dis-
tributed);

4. the topological restrictions present in the watchpoint ex-
pression.

To express the behavior of the program being debugged,
in terms of its effect on the PatternMatchers, we used the
watchpoint expressions shown in Figure 12: x; through x4 are
four independent uniformly-distributed integer random vari-
ables generated by the host program. Each variable x, ranges
over the integral values from zero to max,, —1. We can thus
represent the behavior of the host program with the tuple
[max,, :max,, :max,,:max.,]. For example, the tuple [2:2:2:2]
will cause half of all PatternMatchers to be discarded after each
slot is filled. In contrast, the tuple [4:1:1:1] will cause three-
quarters of all PatternMatchers to be discarded after filling the
first slot, but then all remaining PatternMatchers will survive
until they are fully filled, at which point they will match.

To vary the topological restrictions found in the watchpoint,
we compared the results of monitoring the expressions in Fig-
ure 12: (a) contains no neighbor restrictions, meaning that it
can match any ordered, non-linear subensemble that passes the
other criteria in the watchpoint; (b) is the opposite extreme, re-
quiring that all modules in the subensemble lie in an ordered
linear path.

8.2. Host Program Dependence

With these test cases we can now examine how variation
in host program behavior impacts the number of active Pat-
ternMatchers (and thus the execution time). We begin with
the “worst case” tuple, [1:1:1:1], where all generated Pattern-
Matchers will always survive, leading to an exponential explo-
sion of PatternMatchers as seen at the top of Figure 13 (note
the log scale). After 100 timesteps on 100 robots, over 250,000
successful matches have accumulated in the linear case, while
over 1.2 million have been found in the non-linear case (upper
line of Figure 13). We can easily halve the number of active
PatternMatchers by using the tuple [2:1:1:1], which halves the
number of PatternMatchers that survive having the first slot
filled. Halving the number of active PatternMatchers at each
step (as in [2:2:2:2]) results in the expected decrease by an
additional factor of eight (middle line of Figure 13). Com-
paring [1:1:1:100] and [100:1:1:1] is quite instructive. Both
eventually generate an almost identical number of successful
matches, but over wildly different trajectories, as can be seen
in the area under the curve in Figure 13. The tuple [1:1:1:100],
which culls almost all of its PatternMatchers after the last slot
has been filled, is much less efficient than [100:1:1:1]. This
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(a) modules(a b ¢ d);(a.x1 = 0) and (b.x2 = 0) and (c.x3 = 0) and (d.x4 = 0)

(b) modules(a b ¢ d);neighbor(a b) and neighbor(b c) and neighbor(c d) and (a.x1 = 0)
and (b.x2 = 0) and (c.x3 = 0) and (d.x4 = 0)

Fig. 12. Watchpoint expressions for evaluating host program dependance. x1 through x4 are per-module independent random
variables. (a) Non-linear watchpoint. (b) Linear watchpoint.

Table 1. Successful matches versus execution time.

Linear Non-linear
Number of Centralized Distributed Number of Centralized Distributed
Program tuple matches time(s) time(s) matches time(s) time(s)
[1:1:1:1] 265,600 28.1 31.0 1,278,400 72.3 175.2
[2:1:1:1] 133,855 15.2 159 647,817 37.0 84.7
[2:2:2:2] 17,231 4.5 7.2 81,447 12.0 24.8
[1:2:4:8] 3,981 10.4 10.1 20,544 15.0 31.1
[8:4:2:1] 4,174 3.0 3.0 20,648 33 5.0
[1:1:1:100] 2,547 36.1 31.7 13,388 78.3 181.7
[100:1:1:1] 3,047 2.5 2.5 10,838 2.5 3.2

10000000 | 8.3. Expected Behavior of PatternMatchers

=& [1:1:1:1]
—=—[2:1:1:1]
oo || A 2222 ® The host program behavior dependency that we have illus-
o —*—[8:4:2:1] trated above is due to a simple fact: there is an exponential
—— F;;nooi (in the number of slots) number of PatternMatchers generated
—t+—[100:1:1:1

by the spreading of each PatternMatcher to all of a robot’s
neighbors after each slot is filled. By shifting the criteria that
are least frequently true to early in the watchpoint evaluation,
we can dramatically cut execution time, even though the total
number of successful matches remains the same.

We can illustrate this with a simple governing equation that
will give an upper bound on the number of active Pattern-
Matchers for any number of filled slots. Using the same pro-
gram tuple formulation as above, we have an m-slot Pattern-

100,000

10,000

1,000 -

Active PatternMatchers (log scale)

100

1 5 ‘ 3 ‘ 4  Matcher with an associated program tuple [x;:x;:- - - :x,,]. In
Slots Filled an ensemble of n modules, whose connectivity is of degree k,
we arrive at the following expression for the number (p) of
Fig. 13. Active PatternMatchers versus slots filled. active matchers with ¢ slots filled:
t .
. r==1I
can be seen at the bottom of Table 1, especially in the non- X1y X

linear case, where [1:1:1:100] takes over 60 times as long as
[100:1:1:1]. Continuing to examine Table 1, we note a general
linear increase in the amount of time taken by the distributed '

. . n k
algorithm as the number of successful matches increases. p=— H —.

For a fully linear watchpoint, the expression becomes

We note that both expressions are exponential in m (with
base k) and linear in n. That is to say, the number of active
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Fig. 14. Execution time versus ensemble size.

PatternMatchers is exponential in the number of slots (as each
additional slot can be filled with at least k neighbors), but only
linear in the number of modules (as each module begins the
search process in parallel). Comparing this with the results
above, we have an ensemble of size 100, over 100 timesteps,
with program tuple [1:1:1:1] and degree 3 (an approximation),
giving an expected number of matches of 270,000, which is
quite close to the actual value of 265,600.

8.4. Watchpoint System Overhead

We also analyzed the overall execution time of the algorithms,
and their scaling behavior as the size of the robot ensemble
grows (Figure 14). In these tests, we used the same watch-
point expressions as above, with the host program generating
random variables according to the [2:2:2:2] scheme. Each ro-
bot also ran a data aggregation and landmark routing program,
to simulate a medium-intensity workload on the system. Tests
were run on ensembles of various sizes, using the centralized
and distributed implementations, as well as without any watch-
points enabled (for comparison).

The overhead for linear expressions is quite reasonable,
with the centralized algorithm having an average penalty of
540% and the distributed algorithm an average of 582%.
The overhead for both algorithms is well within the range
of other debugging tools such as GDB (FSF 2007) and Val-
grind (Nethercote and Seward 2003). Unfortunately, the over-
head for non-linear expressions is much higher, being as high
as 2,708% in the worst case. While this may seem unac-
ceptably high, we must consider the number of successful
matches being found via the algorithm. With 1,000 modules,
the non-linear watchpoint finds 3.59 million matches over 100
timesteps. If we plot the time expended per match (Figure 15),

04
[ central/linear
_ [ distributed/linear
035 1| M central/nonlinear
M distributed/nonlinear _
03 1 i B
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B e
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&
=
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(X
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Fig. 15. Time per match versus ensemble size.

we see that the time required as a function of the number of
matches is actually quite low: less than 1 ms per match. If we
assume that the system will be used to detect relatively infre-
quent events, then this level of performance is quite adequate.

To test the hypothesis that the large number of matches
plays a dominant role in the system’s overhead, we compared
a set of experiments on 1,000 modules using the [100:1:1:1]
program tuple. Results were quite encouraging, with an over-
head of only 41% (a reduction by a factor of 10) for linear
subensembles detected via the centralized algorithm and 194%
(areduction by a factor of almost 14) for non-linear subensem-
bles detected with the distributed algorithm.

8.5. Topology Dependence

Finally, we explored the effect that the topology of the ensem-
ble has on the runtime and communications cost of the sys-
tem. As we varied the number of modules from 100 (a single
10 x 10 plane) to 1,000 (a 10 x 10 x 10 cube), we noted that the
average degree of the modules increased from 3.6 to 5.4, as-
ymptotically approaching 5.6. This happens as the fraction of
“interior” modules to “surface” modules increases as we move
to a taller and taller prism of modules. This increases the num-
ber of possible neighbors at each step in the search process
and thus the number of different subensembles that must be
searched.

This increase in degree causes a corresponding increase
in the number of messages required to propagate a Pattern-
Matcher to all neighbors. We can see this clearly in Figure 16.
Note that the largest increases in per-module communications
cost occurs as we move from 100 to 200 modules (moving
from a maximum degree of 4 to a maximum of 5) and 200 to
300 modules (moving from 5 to 6). Similarly, the computation
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Fig. 16. Messages per module versus ensemble size.
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time per node increases asymptotically, as the average degree
increases (Figure 17).

9. Conclusions

We have demonstrated two contributions: (1) the ability to ex-
press a large class of distributed error conditions; and (2) a
set of algorithms to detect these conditions in modular robotic
ensembles. Our watchpoint description language allows for
the concise expression of multi-robot conditions that include
state variables, temporal offsets and restrictions on module
topology. These conditions are quantified over all connected
subensembles of robots by our detection algorithms. The two
presented algorithms have execution overheads low enough to

make them practical in most cases. Finally, we explored the
system’s dependencies on host program behavior and illus-
trated the importance of attaching criteria that eliminate large
percentages of the PatternMatchers to the earlier slots of the
watchpoint.
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