

How to tell a logical story


Michael Schroeder
City University, London, msch@soi.city.ac.uk


Abstract


At the center of most plots in literature is a main charac-
ter, who is stuck in a conflict and considers different argu-
ments and options to resolve the conflict. In this paper, we
show how to formalise such an argumentation process and
we develop a formal argumentation framework, which caters
for a declarative semantics of an argumentation process and
an operational, efficient, goal-driven, top-down proof proce-
dure to compute the argumentation process.


Next, we give an overview of how the argumentation frame-
work is used in Ultima Ratio (Schroeder, Plewe, & Raab
1998; 1999), whose core is an argument knowledge base
taken from a variety of literature pieces. The system al-
lows one to define an agent, which is constituted by a set
of arguments and assumptions. Facing a particular world,
the agent’s believes may be inconsistent triggering a rational
monologue to deal with the situation.


Introduction
At the center of many literature pieces is a hero or hero-
ine, who is stuck in a conflict and tries to decide which of
the various options lead to the best solution. Consider, for
example, the excerpt of the third scene in the third act of
Shakespeare’s Hamlet: The hero is unsure whether to kill
Claudius - the assassin of Hamlet’s father - or not. He ar-
gues that he should kill Claudius to revenge the murder.
However, if he does kill him, Claudius, who is praying at
that very moment, goes to heaven, which is too good for
such a villain. A conflict.


In this paper, we use argumentation to model such plots.
Agents, such as Hamlet, are defined by a set of argu-
ments and assumptions. When facing a particular world,
the agent’s beliefs may be inconsistent triggering a rational
monologue to deal with the situation. We give a theoretical
account on how arguments attacking each other are used for
conflict resolution. Our work is closely related to rational
agents (Kowalski 1995) and logic programming and formal
argumentation (Prakken & Sartor 1997; Dung 1993; 1995;
Schroeder, Móra, & Alferes 1997; Schroeder 1999). Intu-
itively, argumentation treats the evaluation of a logic pro-
gram as an argumentation process, where a goal G holds


if all arguments supporting G cannot be attacked anymore.
Thus, logic programming is seen as a discourse involving
attacking and counter-attacking arguments.


Given such an argumentation framework, one can tell
logical stories by formalising plots as argumentation pro-
cesses. We review Ultima Ratio (Schroeder, Plewe, &
Raab 1998; 1999), which allows one to choose agents from
different literature pieces or to construct new agents from
scratch. When facing a particular world, the agents may be
stuck in a conflict and an argumentation process starts to
unfold the conflict and possibly remove it.


Formal Argumentation in Philosophy
Since Leibniz’s described the calculus raciocinator in
1679, researchers have been investigating how to automate
argumentation. A problem is that many figures of argu-
ments cannot be described formally. The Encyclopedia Bri-
tanica lists for example the following figures:


1. Semantical figures: Arguing by example, authority, or
analogy,


2. Syntactical figures: arguing from the consequences, a
pari (arguing from similar propositions), a fortiori (argu-
ing from an accepted conclusion to an even more evident
one), a contrario (arguing from an accepted conclusion
to the rejection of its contrary), undercut (Attacking pre-
misses), or rebut (Attacking conclusions)


The syntactical figures can be formally described by their
form, i.e. syntax, and can therefore be easily automated.
Although semantical figures such as arguing by authority
may be formalised for particular domains (see e.g. (Sierra
et al. 1997)), they are in general, not formalisable. This
should not put us off, because it turns out that the syntac-
tical figures of undercut and rebut are already sufficient to
define the semantics of logic programs, which - in turn -
makes logic programming the implementation language of
choice for argumentation tools (see also (Kraus, Sycara, &
Evenchik 1998)).







The relevance of an argument, i.e. should an agent accept
it or immediately reject it, is an important issue in classical
argumentation. Copi and Cohen (Copi & Cohen 1994) list,
for example, 17 fallacies of relevance of arguments, only
three of which can be expressed formally:


1. An argument from ignorance argues that a proposition is
true simply on the basis that it has not been proved false,
or that it is false because it has not been proved true.


2. Begging the question - also called circular argumentation
- assumes the truth of what it seeks to prove in the effort
to prove it.


3. Division assumes that what is true as a whole must be
true in its parts and vice versa.


Interestingly, these three examples of fallacies involve all
non-monotonic reasoning and require two kinds of nega-
tion:


1. Implicit negation not a to express the lack of evidence
for a;


2. explicit negation a to state that there is an explicit proof
for a.


3. The two negations are related in that a implies not a.


With the two kinds of negation we can express the three
fallacies mentioned above:


1. Arguments from Ignorance have the form a not a or
a not a.


2. Begging the question has the form of a positive loop, e.g.
a a or a not a in its most reduced form. For many
reasoning systems these positive loops and also negative
loops a not a lead to non-termination, while WFSX
(Alferes & Pereira 1996) and its implementation in the
REVISE system (Damásio, Pereira, & Schroeder 1997)
deal properly with these invalid arguments.


3. Division requires non-monotonic reasoning (NMR) and
contradiction removal. A typical example dealt with ex-
tensively in the NMR literature is a contradiction be-
tween flying birds and not-flying penguins: “Since birds
can fly and penguins are birds, Tweety can fly”. He
doesn’t, however. Statements like “birds fly” are usually
intended to be read as “birds usually fly” or “birds fly,
unless they are abnormal”. This can be expressed by im-
plicit negation: f lies X bird X not ab X Adding
the rule bird X penguin X and f lies X
penguin X and penguin tweety leads to a the contra-
diction for Tweeety. It can, however, be resolved by
changing the assumption not ab tweety and assuming
ab tweety . For details see e.g. (Damásio, Pereira, &
Schroeder 1997; Schroeder 1998).


In the next section, we present a formal argumentation
framework capable to represent and automate the features
discussed above.


Formal Foundations of Argumentation
During the last 5-10 years, researchers have been devoting
much work to the semantics of logic programs. Among the
different approaches that usually either emphasise an opera-
tional or a declarative view, argumentation semantics turned
out to be a very intuitive approach. Rather than defining a
semantics in technical terms, argumentation semantics uses
the metaphor of argumentation as used in politics, law, dis-
course, etc. and formalises a part of it sufficient to give
a meaning to extended logic programs (Alferes & Pereira
1996). Intuitively, argumentation semantics treats the eval-
uation of a logic program as an argumentation process,
where a goal G holds if all arguments supporting G can-
not be attacked anymore. Thus, logic programming is seen
as a discourse involving attacking and counter-attacking ar-
guments.


While argumentation in rhetoric comprises a variety of
figures as mentioned above, logic programming can be de-
scribed in terms of two figures: Reductio ad absurdum- and
ground-attack (Dung 1995) or equivalently rebut and under-
cut (Prakken & Sartor 1997). The former classifies an argu-
ment that leads to a contradiction under the current believes
and arguments, and the latter an argument that falsifies the
premise of one of the current arguments.


Argumentation with Extended Logic
Programming
Argumentation semantics in extended logic programming
has been defined in (Dung 1993; Prakken & Sartor 1997).
Our framework is based on (Prakken & Sartor 1997) with a
modification avoiding some unintuitive results (Schroeder,
Móra, & Alferes 1997).


Definition 1 Extended Logic Program, Constraints
An extended logic program is a (possibly infinite) set of
rules of the form L0 L1 Ll notLl 1 notLm 0
l m where each Li is an objective literal (0 i m). An
objective literal is either an atom A or its explicit negation


A. Literals of the form not L are called default literals. A
subset R of default literals which do not occur in the head
of a rule is called revisables. The set of all objective literals
is called the herbrand base P . A rule with head L0


is called integrity constraint. The symbol stands for fal-
sity. A program P is inconsistent iff P , otherwise it is
consistent.


While objective literals have a fixed truth values, default
literals have a default truth value. For revisables this truth
value may be changed. The limitation of revisability to de-
fault literals which do not occur as rule heads is adopted for
efficiency reasons, but without loss of generality. We want







to guarantee that the truth value of revisables is independent
of any rules. Thus we can change the truth value of a revis-
able whenever necessary without considering an expensive
derivation of the default literal’s truth value.


Consider the excerpt of the third scene in the third act of
Shakespeare’s Hamlet below:


1 Hamlet. [approaches the entry to the lobby]
Now might I do it pat, now a’is a-praying-


2 And now I’ll do’t, [he draws his sword] and
so a’ goes to heaven,


3 And so am I revenged. That would be scanned:
4 A villain kills my father, and for that
5 I his sole son do this same villain send
6 To heaven...
7 Why, this is bait and salary, not revenge.


Hamlet is caught in a conflict. On the one hand he wants
revenge for his father being murdered. On the other he
knows that having revenge by killing Claudius, the mur-
derer, is not possible since Claudius is praying at that very
moment and would go to heaven which contradicts the goal
of having revenge. The text can be formalised as follows:


a praying claudius
b in heaven X kills Y X praying X
c took revenge on X Y kills X Y
d killed claudius king
e took revenge on X Y in heaven Y


f
goal revenge X Y close X Z


killed Y Z not justified killed Y Z
g close hamlet king
h goal revenge X Y not took revenge on X Y
i revisable kills hamlet claudius false


In line 1, Hamlet realizes that Claudius is praying. This
is represented as a fact (a). In line 2, Hamlet continues
that Claudius would go to heaven if killed while praying.
Formally, this is an instantiation of the general rule (b). In
line 3, Hamlet states that killing Claudius satisfies Hamlet’s
desire for revenge. Or more general (c). In line 4, Ham-
let starts another line of thinking by mentioning the fact
that Claudius killed Hamlet’s father, the king (d). In line
7, Hamlet finds that he does not have revenge if he sends
Claudius to heaven (e). Beside this direct translation of
Hamlet’s monologue to logic, we have to add further facts
and rules which are mentioned throughout the scenes before
or which are given implicitly. First of all, we need a rule to
express when someone wants revenge (f). I.e. X wants to
take revenge on Y if Y killed a person Z being close to X ,
and the killing is not justified. Left implicitly in the piece
is the fact that Hamlet and his father are close to each other
(g). To specify conflicting goals we use besides facts and
rules integrity constraints. In this scene we state formally
that it is contradictory to want to take revenge and not have


it (h). Finally, we have to specify the assumptions Hamlet is
willing to change to solve conflicts. For this scene, Hamlet
adopts the default assumption of not killing Claudius. I.e.
(i) states that Hamlet killing Claudius is assumed false ini-
tially, but may be changed in the course of argumentation.


To formalise human argumentation as shown in the
previous example one has to detect first the assumptions
the protagonist is willing to change. These assumptions
are made revisable and are assigned to a default value.
Secondly, the problem domain has to be modeled in
terms of facts and rules. The two negations (not and


) are important for this modeling task. For example,
not justified killed X Y expresses that a murder is not
justified as long as there is no explicit proof for the contrary.
In contrast, took revenge on X Y in heaven Y states
that there is explicit evidence that X did not take revenge
on Y if Y ends up in heaven. Besides the three ingredients
of revisable assumptions, facts, and rules, we have to define
which conclusions are contradictory. Naturally, we say
that, for example, took revenge on X Y and its explicit
negation took revenge on X Y are contradictory, i.e.


took revenge on X Y took revenge on X Y ,
but for convenience we are at liberty to de-
fine further conflicts such as, for example,
goal revenge X Y not took revenge on X Y


The following definitions for argumentation are based on
(Dung 1993; Prakken & Sartor 1997). In contrast to the
latter we do not distinguish between strict and defensible
rules. However, our results can be extended to this direc-
tion.


Definition 2 Argument
Let P be an extended logic program. An argument for a
conclusion L is a finite sequence A rm rn of ground
instances of rules ri P such that 1. for every n i m,
for every objective literal L j in the antecedent of ri there
is a k i such that L j is the consequent of rk. 2. L is the
consequent of some rule of A; 3. No two distinct rules in the
sequence have the same consequent. A sequence of a subset
of rules in A being an argument is called subargument.


Example 3 An argument for the conclusion
goal revenge hamlet claudius is the sequence:


goal revenge hamlet claudius
close hamlet king
killed claudius king
not justified killed claudius king ;


close hamlet king true;
killed claudius king true;


The Process of Argumentation
There are two ways of attacking an argument for a con-
clusion L. We may prove that the argument for L leads to
a contradiction since there is also proof for L. Such a







counter-argument is called rebut. The second possibility is
to attack the premises of the argument for L. If L’s argu-
ment is based on an assumption not L we can attack the
argument with a counter-argument for L . Such an attack is
called undercut.


Definition 4 Undercut, Rebut
Let A1 and A2 be two arguments, then A1 undercuts


A2 iff A1 is an argument for L and A2 is an argu-
ment with assumption not L, i.e. there is an r : L0


L1 Ll not Ll 1 not Lm A2 and a l 1 j m
such that L L j. A1 rebuts A2 iff A1 is an argument for L
and A2 is an argument for L. A1 attacks A2 iff A1 under-
cuts or rebuts A2.


Example 5 The argument took revenge on hamlet
claudius kills hamlet claudius can be attacked by the
rebut


took revenge on hamlet claudius
in heaven claudius ;


in heaven claudius
kills hamlet claudius praying claudius ;


praying claudius true


Definition 6 Coherent, Conflict-free
An argument is coherent if it does not contain subarguments
attacking each other. A set Args of arguments is called
conflict-free if no two arguments in Args attack each other.


Definition 7 Defeat, Acceptable
Let A1 and A2 be two arguments, then A1 defeats A2 iff A1


is empty and A2 incoherent or A1 undercuts A2 or A1 rebuts
A2 and A2 does not undercut A1. A1 strictly defeats A2 iff
A1 defeats A2 but not vice versa. A1 is acceptable wrt. a
set Args of arguments iff each argument undercutting A1 is
strictly defeated by an argument in Args.


Our notion of acceptability deviates from Prakken and
Sartor’s definition (Prakken & Sartor 1997) where an argu-
ment A1 is accepted if each defeating argument is accepted.
Our notion is more credulous and leads to more intuitive
results.


Example 8 Consider the program P a not b;b
not a; a , then a and b not a are acceptable, whereas
a not b is not. For Prakken and Sartor’s definition of
acceptability there is no acceptable argument which con-
tradicts the intuition of a being a fact.


Definition 9 Characteristic Function
Let P be an extended logic program and S be a subset of
arguments of P, then FP S A A is acceptable wrt. S
is called characteristic function. A is justified iff A is in the
least fixpoint of FP. A is overruled iff A is attacked by a
justified argument. A is defensible iff A is neither justified
nor overruled.


Argumentation is closely related to logic programming.
While Dung uses argumentation to define a declarative se-
mantics for extended logic programs, Prakken and Sartor’s
work is driven by their application in legal reasoning. To
relate argumentation and extended logic programming, we
review WFSX (Alferes & Pereira 1996), a semantics for
extended logic programs. While the above fixpoint defi-
nition of justified, overruled, and defensible arguments is
suitable to give a declarative semantics to argumentation
we need additionally an efficient operational semantics. In
particular, we need the top-down approach to avoid heavy
recomputation when only deciding for or a against a con-
clusion or when generating a set of conflicting assumptions
which lead to a contradiction. Concerning the top-down
proof procedure defined in (Alferes & Pereira 1996) there is
an important connection to argumentation. The distinction
between undercut and rebut is not necessary in the proof
procedure because the simple transformation of adding the
default and strong negated not L to the body of a rule for
L covers any rebut L against L by an undercut L against
not L.


Proposition 10 Let A1 L Body;rn; ;rm be an argu-
ment, then A2 is a rebut against A1 iff A2 is an undercut
against A1 L Body not L;rn; ;rm.


With this proposition we can define the top-down proof
procedure as follows.


Definition 11
Let P be an extended logic program, then


P L iff P /0 /0 t L
P M L iff P /0 /0 M L
P LA GA M true
P LA GA M L1 L2 iff


P LA GA M L1 & P LA GA M L2


P LA GA M not L iff
P GA GA M L or
M t & P /0 GA tu L or
M tu & P GA GA t L


P LA GA t L iff
L LA & L L1 Ll notLl 1 notLm P &
P LA L GA L t L1 Ll notLl 1 notLm


P LA GA tu L iff
L LA & P GA GA t L &
L L1 Ll notLl 1 notLm P &
P LA L GA L tu L1 Ll notLl 1 notLm


The inference operator has three parameters M, LA, and
GA, where M is either t or tu indicating that we want to
prove verity (t) and non-falsity (tu), respectively, LA and
GA are lists of local and global ancestors that allow to de-
tect negative and positive loops which lead to inference of
non-falsity and failure, respectively; for details see (Alferes
& Pereira 1996). For consistent programs the above infer-
ence operator yields the same results as the argumentation
process (Schroeder, Móra, & Alferes 1997):







Proposition 12 Relation of and Argumentation
Let P be consistent. P t L, iff L is a conclusion from a
justified argument. P t notL, iff L is a conclusion from
an overruled argument. P t L and P tu L iff L is a
conclusion from a defensible argument.


To compute revisions, we define conflicts which are sets
of default assumptions that lead to a contradiction and show
how to solve the conflicts by changing the assumptions so
that all conflicts are covered. Such a cover is called hitting
set, since all conflicts involved are hit.


Definition 13 Conflict
Let P be an extended logic program with default literals D
and revisables R. Then C D is a conflict iff


P c not c C c c C


and a positive subset R not R of the defaults negated
revisables R is called revision iff P R has no conflicts.


Example 14 Consider the Hamlet example above.
There are two conflicts not kills hamlet claudius and


kills hamlet claudius and no revisions. I.e. Hamlet is
in the unfortunate situation that whether he kills Claudius
or not, he is always caught in a conflict.


To compute revisions we use REVISE 2.4 (Damásio,
Pereira, & Schroeder 1997) an algorithm which adopts Re-
iter’s hitting set algorithm (Reiter 1987; Greiner, Smith,
& Wilkerson 1989) for contradiction removal in extended
logic programs. The derivation procedure and contradiction
removal algorithm are extended to generate proof traces
which are then used for visualisation.


Having developed the argumentation theory we turn
now to the functionality of the implemented Utlima Ratio
(Schroeder, Plewe, & Raab 1998; 1999) system.


Reasoning Agents in Ultima Ratio
Similar to Hamlet, we formalised also Ilsa and Rick in
Casablanca, Siegfried, Krimhild, Brunhild, Hagen and Et-
zel of the German saga Nibelungenlied, Euripides’ Medea,
Molière’s Don Juan, the artist Duchamp and his ready-
mades, Robocop, and Macchiavelli. As it turns out, many
patterns occur in different settings. The same revenge mo-
tif governing Hamlet occurs also in the Nibelungenlied or in
Don Juan; the betrayal rule is part of Medea and Don Juan;
etc. Therefore, we grouped arguments not only according
to their literature pieces, but defined agent properties such
as revengeful, christian, aiming at happy love and marriage,
rivaling, idealistic, offensive, opportunistic, and faithful.


In the Ultima Ratio project (Schroeder, Plewe, & Raab
1998; 1999), we organised these arguments in a database
and implemented a system that allows the user to select a
predefined agent such as Hamlet, or to construct one, say a
revengeful christian, or to write one from scratch. These


Figure 1: Compass-like User Interface of Ultima Ratio


agents just comprise arguments and assumptions, but no
facts. Therefore there is not yet a conflict. But if the user
additionally lets them face a world, i.e. a set of facts, the
agents may be stuck in a conflict that needs to be resolved.
Here the user can select another option. Either conflicts are
only detected or also resolved (if possible). Alternatively,
it is also possible to ask specific queries or use an inverse
logic where all sensible arguements are negated.


As we already noted above, there is no solution to Ham-
let’s conflict, because by killing Claudius Hamlet sends him
to heaven which is too good. But what if there is no heaven.
Rather than Shakespearce’s Hamlet we select a revenge-
ful agent and let it face the same world as Hamlet where
the king is dead and Claudius is praying. Not being chris-
tian, the revengeful agent does not hasitate and comes up
with the solution of killing Claudius. Shakespearce’s piece
would have been considerably shorter and probably less
bloody.


Ultima Ratio’s Functionality
Figure 1 shows Ultima Ratio’s graphical user interface
whose form is derived from a compass. At the rim of the
compass one can select menus which appear as a sphere.
With a joystick the user rotates the sphere until the entry
of choice is in the centre. Via the compass menu the user
selects one of the following functions:


1. Cascades of Doubt - Struggling Agents. The user se-
lects an agent according to the author’s version. Cur-
rently the knowledge base contains Shakespearce’s Ham-
let, Ilsa and Rick in Casablanca, Siegfried, Krimhild,







Figure 2: Cascades of Doubt - Struggling Agents: Should
Hamlet take revenge on Claudius who is praying? In the
foreground the orange node labelled praying(claudius) in-
dicates the successful proof of this fact. Where possible
conclusions are adorned with suitable video sequences. The
background shows the rest of the proof tree.


Brunhild, Hagen and Etzel of the German saga Nibelun-
genlied, Euripides’ Medea, Molière’s Don Juan, the artist
Duchamp and his readymades, Robocop, and Macchi-
avelli. The arguments for these agents are online.1


Consider Hamlet, for example. The argumentation pro-
cess which is represented by a proof tree is visualised as
a 3D tree. Premises which are not yet proven are repre-
sented by rotating circular rims. If they are successfully
proven an orange disc moves to the rotating rim and fills
it out (see Figure 2). If the proof failed the disc is blue.
If the argumentation finally results in a conflict two ro-
tating and intersecting ellipses appear at the conflicting
nodes. If the potential conflict did not occur the ellipses
do not intersect. The user can navigate in the argumenta-
tion space or switch to auto-pilot. For the auto-pilot, we
combined top-down and bottom-up derivation. Techni-
cally, the system performs the proof top-down, but users
felt more comfortable with a bottom-up proof starting
with the facts and leading to a conflict in the end. We
have combined both by the camera moving directly from
the root of the proof tree to the leaves and then moving
step by step bottom-up from the facts.


2. Crossovers - Tracing Motifs. Crossovers allow to trace
motifs in the complete argumentation space. In the on-
line knowledge base2 one can see, for example, that the
arguments for revenge occurring in Hamlet are also part
of the Nibelungenlied and of the agent property “re-
vengeful”. Similarly, the topic of offences connects Don
Juan to Medea. Visually, the tree structure of the argu-
ments is shown and different regions in the 3D space cor-


1http://www.soi.city.ac.uk/homes/msch/cgi/aec/kbwww/cod.html
2http://www.soi.city.ac.uk/homes/msch/cgi/aec/kbwww/co.html


Figure 3: Crossovers - Tracing Motifs: Hamlet’s rules for
revenge are also part of Krimhild and Etzel, Agents of the
Nibelungensaga. The cubic bridge in the foreground con-
nects the arguments of both pieces one of which shown in
the background.


respond to different agents. The same argument occur-
ring in different regions is connected by a bridge of grey
cubes (see Figure 3) leading from one agent to another.
Besides this 3D visualisation, the above online knowl-
edge base provides an applet showing the dependencies
of arguments in 2D.


3. War of Convictions - Arguments as Forces. The war
of conviction function focuses on conflicts in general,
independent of their instances for particular agents and
worlds. The online knowledge base3 lists all conflicts
and arguments together with cross-references showing
on which arguments conflicts are based and how argu-
ments support and attack each other.


4. Reasoning Running Wild. In contrast to the above logi-
cal modes, Ultima Ratio also provides a visual metaphor
for reasoning running wild: The proof trees move very
fast so that their structure is not graspable anymore, ad-
ditionally the user’s head tracker is switched on leading
to a distorted view depending on the user’s head move-
ments.


Conclusion and Future Work
At the center of most plots in literature is a main charac-
ter, who is stuck in a conflict and considers different ar-
guments and options to resolve the conflict. As we ar-
gued in section , human argumentation can not be convinc-
ingly formlised in its entirety, but many aspects of it can.
To this extent, we showed how to employ extended logic


3http://www.soi.city.ac.uk/homes/msch/cgi/aec/kbwww/woc.html







Figure 4: Crossovers - Tracing Motifs: A 2D dependency
graph of all arguments.


Figure 5: Crossovers - Tracing Motifs: Similar representa-
tion to Figure 3, however, implemented in VRML.


programming under well-founded semantics to model argu-
mentation processes. In particular, we developed a declara-
tive argumentation framework, which is equivalent to the
operational top-down proof procedure introduced in def-
inition 11. This equivalence is vital to cater for a goal-
driven, and thus efficient, computation of an argumenta-
tion process. With the framework in place, we turned to
the Ultima Ratio project (Schroeder, Plewe, & Raab 1998;
1999). The system allows one to select pre-defined agents
(ranging from Hamlet to Robocop) or user-customised
agents and a world. If the agents are stuck in a conflict
an argumentation process starts to unfold the conflict and
possibly remove it. The system has been exhibited at Ars
Electronica, Linz, Austria, and the Canon Artlab, Tokyo,
Japan.


In recent work (Schroeder 1999), we extended
the framework to deal with multiple agents, which
may be credulous or sceptical reasoners (see
http://www.soi.city.ac.uk/homes/msch/cgi/aca). Fi-
nally, it would be interesting to extend our system to allow
for interactive story telling as in (Hayes-Roth & van Gent


1997), for example.


Acknowledgement I am very much indebted to Daniela
Plewe, who leads the Ultima Ratio project and developed
and realised Ultima Ratio’s concept, and Andreas Raab,
who implemented most of the graphics.


References
Alferes, J. J., and Pereira, L. M. 1996. Reasoning with
Logic Programming. (LNAI 1111), Springer-Verlag.


Copi, I. M., and Cohen, C. 1994. Introduction to Logic.
Prentice Hall.


Damásio, C. V.; Pereira, L. M.; and Schroeder, M. 1997.
REVISE: Logic programming and diagnosis. In Proceed-
ings of the Conference on Logic Programming and Non-
monotonic Reasoning LPNMR97. LNAI 1265, Springer–
Verlag.


Dung, P. M. 1993. An argumentation semantics for logic
programming with explicit negation. In Proc. of the 10th
International Conference on Logic Programming, 616–
630. MIT Press.


Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–357.


Greiner, R.; Smith, B. A.; and Wilkerson, R. W. 1989. A
correction of the algorithm in reiter’s theory of diagnosis.
Artificial Intelligence 41(1):79–88.


Hayes-Roth, B., and van Gent, R. 1997. Story-making
with improvistional puppets. In Proceedings of First In-
ternationl Conference on Autonomous Agents, AA97, 1–7.
ACM Press.


Kowalski, R. A. 1995. Using meta-logic to reconcile
reactive with rational agents. In Apt, K. R., and Turini,
F., eds., Meta-logics and Logic Programming. The MIT
Press. chapter 9, 227–242.


Kraus, S.; Sycara, K.; and Evenchik, A. 1998. Reaching
agreements through argumentation: a logical model and
implementation. Artificial Intelligence. To appear.


Prakken, H., and Sartor, G. 1997. Argument-based
extended logig programming with defeasible priorities.
Journal of Applied Non-Classical Logics 7(1).


Reiter, R. 1987. A theory of diagnosis from first princi-
ples. Artificial Intelligence 32(1):57–96.


Schroeder, M.; Móra, I.; and Alferes, J. J. 1997. Vivid
agents arguing about distributed extended logic programs.
In Proceedings of the Portuguese Conference on Artificial
Intelligence EPIA97. LNAI 1323, Springer–Verlag.







Schroeder, M.; Plewe, D. A.; and Raab, A. 1998. Ul-
tima Ratio - Should Hamlet kill Claudius? In Proceedings
of the second Conference on Autonomous Agents. Min-
neapolis, USA: ACM Press.


Schroeder, M.; Plewe, D. A.; and Raab, A. 1999. Ul-
tima Ratio - a visual language for argumentation. In Pro-
ceedings of the International Conference on Information
Visualisation. London, UK: IEEE Press.


Schroeder, M. 1998. Autonomous, Model-based Diagno-
sis Agents. Kluwer Academic Publisher.


Schroeder, M. 1999. An efficient argumentation frame-
work for negotiating autonomous agents. In Proceedings
of Modelling Autonomous Agents in a Multi-Agent World
MAAMAW99. LNAI1647, Springer-Verlag.


Sierra, C.; Jennings, N.; Noriega, P.; and Parsons, S.
1997. A framework for argumentation-based negotiation.
In Proc. Fourth Int. Workshop on Agent Theories, Archi-
tectures and Languages (ATAL-97), 167–182. Springer-
Verlag.






