Capturing the Spatio-Temporal Behavior of
Real Traffic Data *

Mengzhi Wang, Anastassia Ailamaki, and Christos Faloutsos

Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213

{mzwang ,natassa,christos}@cs.cmu.edu

Abstract

Traffic data, such as disk and memory accesses, typically exhibits burstiness, tem-
poral locality, and spatial locality. However, except for qualitative speculations, it
is not even known how to measure the spatio-temporal correlation, let alone how to
re-produce it realistically. In this paper, we propose the “entropy plots” to quantify
the correlation and develop a new statistical model, the “PQRS” model, to cap-
ture the burstiness and correlation of the real spatio-temporal traffic. Moreover, the
model requires very few parameters and offers linear scalability. Experiments with

multiple real data sets show that our model can mimic real traces very well.
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locality, entropy

1 Introduction

System design is typically evaluated through trace-driven simulations in which real traces

are fed into the system [2,19]. Collecting traces involves system instrumentation or system
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simulation [17], which is expensive in terms of time and human resources. Modeling traffic
data with a simple and accurate statistical model, on the other hand, has several advantages.
Firstly, we can run ’what if’ scenarios, by generating as long or as short a trace as we want;
or by varying the load, burstiness and other parameters of our statistical model. Secondly,
we need much less storage space: a statistical model typically requires only a handful of
parameters. Finally, we can do analytical performance studies. If we know, for instance, that
our traffic is Poisson, we can estimate analytically queue length distributions at a server with

a given service time distribution.

There have been significant efforts on modeling the temporal burstiness and spatial
locality of traffic data. However, none of them explicitly measures the spatio-temporal corre-
lation or provides statistical models to incorporate the correlation. When designing a model

to approximate traffic data, we need to address the following concerns:

e Capture the temporal behavior. Various types of traffic data have been shown to exhibit
self-similarity and burstiness.

e Capture the spatial behavior. Are all the disk blocks equi-probable (e.g., random accesses
in credit card applications), piece-wise uniform, or Zipf-like?

e Capture the spatio-temporal correlation. Should we worry about the issue?” How close to
reality is the (convenient) independence assumption?

Given these requirements, the problem is formalized as follows:

Problem 1 Given a two-dimensional trace, Y = {(t,s)}, (i.e. (t,s) defines a request of
arrival time t on address s.), develop a mathematical model that can generate a synthetic

trace, Y' = {(t', ")}, that has “similar” spatio-temporal behavior as'Y .

Evaluation of such a model includes comparing the synthetic trace to the real trace in
terms of both statistical measures (i.e., mean, burstiness, and correlation) and performance
behavior (i.e., response time distributions for disk traces). The latter, in our opinion, is more
important for practical reasons. In addition, the model should be compact and efficient. A
naive model can simply remember the given trace and reproduce it as a synthetic trace, but

this hardly saves any space or effort, nor allows for generation of longer traces.

This paper instroduces the PQRS model that addresses all of the above requirements.
The PQRS model (1) requires only 4 parameters, (2) captures both the temporal and spatial
behavior of the trace, and (3) preserves the spatio-temporal correlation. In addition, the
PRRS model is extremely accurate as our experiments on real data sets show. Finally, the
model is efficient; both the trace generation and parameter fitting algorithms scale linearly



to the number of requests in the traces.

The paper is organized as follows. Section 2 reviews the related work. Section 3 studies
the behavior of the real world traffic and Section 4 provides a measure for both the burstiness
and the correlation. Section 5 introduces the PQRS model. Section 6 evaluates the model

using real traffic data. Section 7 concludes the paper and provides some future directions.

2 Related Work

Traffic modeling has recently attracted much attention, arguably thanks to the discovery
of self-similarity in multiple forms of computer generated traffic [15,8,12,14], as well as thanks
to the emergence of new applications like web caching. This section outlines past and current
research efforts toward traffic modeling.

Focusing only on temporal modeling, one approach is to employ some mathematical mod-
els to capture the self-similarity in the request arrival time exhibited in the real traffic data.
Successful such models include the fractional Brownian motion [15], fractal ARIMA [11],
the ON/OFF model used in the SURGE web trace generator [3], Multifractal Wavelets [16],
and the b-model [20]. Related efforts on memory and web proxy trace characterization ulti-
mately aim to estimate cache hit-ratios, for memory or web caches. Several groups identified
Zipf-like distributions in document popularity and used the Independent Reference Model
or segregated IRM to generate web proxy traces [1,4,5].

Contrary to the modeling of web workloads, modeling I/O workloads can not afford to
ignore the location of each request, because both the arrival time and the location are needed
to determine its service time. Some of the few exceptions that pay attention to both time
and location [19,13] use a mixture of sequential and random access patterns. Although a
step to the correct direction, these models require a large number of parameters and they
propose no way to measure the spatio-temporal locality, nor do they guarantee that their
synthesized traces will exhibit similar locality properties.

The PQRS model introduced in this paper is the first statistical model that captures not
only the temporal and spatial behavior, but also their correlation. It achieves the goal by a
surprisingly small number of parameters.
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Fig. 1. Time-space plot of cello disk trace and an i-model trace. Both have the same marginals.

3 Observing Data: Naive Model

Understanding the real traffic data is crucial before we can start to build the model. This

section studies the behavior of the real world traffic data.

3.1 Burstiness

We use the time-space plot to get a basic feeling about the characteristics of real traffic
data. The time-space plot Cr g is similar to the memory reference map: The value of Cr s(t, s)
is the number of requests of arrival time ¢ and address s. Figure 1 shows the time-space plot
for cello disk trace [17]. Further projection of the trace onto time and space gives the
“marginal” one-dimensional traces Cr and Cg, in which Cr(t) (Cs(s)) tells the number of

requests of arrival time ¢ (on disk block s).
We observe “bursty” behavior (i.e., non-uniformity) in both marginals.

e Temporal burstiness. The temporal burstiness is expected: various traffic traces, such
as disk I/0O traffic [12] and network traffic [15,8], have all been shown to be bursty.
e Spatial burstiness. Similarly, Cs is bursty, too, as noticed before [7]. Some blocks are

more popular than others.

It is tempting to conjecture that the marginal distributions are Zipf. To settle the issue,
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Fig. 2. Rank-frequency plots (in log-log scales) for time and location of cello trace. Left: Rank
of temporal interval (10 seconds) versus number of requests in that interval. Right: Rank of disk
blocks (aggregated in 1000 disk blocks) versus number of requests on these disk blocks. The slopes
of the fitting lines are 0.404 and 0.788 respectively.

we give Figure 2, which presents the “rank-frequency” plots for the temporal and spatial
marginals in log-log scale. Specifically, Figure 2(a) gives the number of disk requests per time
interval (10 seconds), versus the interval-ids sorted in decreasing popularity. Figure 2(b) gives
the number of disk requests per 1000 disk blocks, versus the block-ids sorted in decreasing
popularity. All axis are logarithmic. The plots are close to lines, leading to the conjecture that
they follow generalized Zipf distributions, with slopes 0.40 and 0.79 respectively. However,
closer inspection shows a flattening at the left top. This phenomenon had been observed in
several data sets even by Zipf himself, who coined the term “top concavity” [21], and who
went into great lengths to try to explain it. On the contrary, models that use multifractals,
like the upcoming PQRS model, naturally lead to curving rank-frequency distributions [9]

and thus provide even better fits.

As mentioned earlier, there are many successful models to capture the temporal behavior
of the traffic data. Similarly, they should be able to capture the spatial behavior since the
temporal and spatial burstiness looks similar. That is, we can synthesize the marginal traces
using existing models. However, a combining algorithm is necessary to combine the marginals

into two-dimensional traces. The straight-forward combining algorithm is the i-model.

3.2 I-Model

The i-model generates a two-dimensional trace by “multiplying” two marginal traces.
For example, if 10% of the total requests arrive at time ¢ and 5% of the total requests occur
on address s, 10% x 5% of the total requests have arrival time ¢ and address s. Formally, the



i-model specifies that given Cr and Clg,

CT,S(t,S):CT(t) XCS(S)/M, t=1,2,..., 8:1,2,..., (1)

where M is the total number of requests in the trace.

The i-model preserves the temporal and spatial burstiness because the marginals of Cr g

are exactly Cr and Cs. In addition, it requires no parameters.

Despite of these advantages, the i-model ignores a very important property of the traffic:
strong spatio-temporal correlation. The strong correlation suggests that requests coming close
in time tend to access nearby objects. Figure 1 (b) shows a two-dimensional i-model trace.
Although the i-model trace has the same marginals as the real trace, we observe significant
differences between the two traces. The differences are attribute to the existence of strong
spatio-temporal correlation in the real trace. In fact, the i-model leads to grossly pessimistic

results, as we will show in Section 6.

4 Proposed Method to Quantify Correlation

The i-model ignores the strong spatio-temporal correlation of the real traffic data. Per-
formance behavior of the traffic data heavily depends on the degree of spatio-temporal corre-
lation because requests close in address space take less time to finish. This section introduces

the entropy plot to measure the correlation.

4.1 Definitions

Mutual information [18] measures the correlation between two events. We give a brief
description of the related concepts. (Please refer to Table 1 for the symbols used in the

paper.)

Entropy measures the uniformity of a discrete probability function. Entropy on a ran-

dom variable E, (e.g., disk block id of a random request), is defined as

H(E) = - %pi log, pi, (2)

i=1

where p; is the probability that event E; will happen (e.g., the i-th block will be hit) and
N is the total number of possible outcomes (e.g., total number of disk blocks). H is close



Prs(t,s) | Probability that a request on location s arrives at time ¢.

t) Probability that a request arrives at time £.

(
(s) | Probability that a request is on location s

H(E) Entropy of a random variable E

H%n) Temporal entropy at aggregation level n

Ry Slope of the temporal entropy plot

Hén) Spatial entropy at aggregation level n

Rg Slope of the spatial entropy plot

H;n% Joint entropy on time and space at aggregation level n

Rr g Slope of the joint entropy plot

(p,q,7,s) | Parameters to the PQRS model

M Total number of requests in a trace

Table 1
Symbols table.

to 0 if the distribution is highly skewed and H reaches its maximum value of log, N when
the distribution is uniform. In another word, H measures the burstiness of the probability

function.

The joint entropy on two random variables is defined similarly: for a given probability
function P = {p; ;} on two random variables { E} and {F'}, (e.g., arrival time and disk block
id of a random request), where p; ; gives the probability that both event E; and event F}; will
happen, (e.g., a disk request at block id j arrives at ), the joint entropy on E and F' is

H(E,F) ==Y p;;log,pi- (3)

Y]
Definition 2 The mutual information I(F; F') on two random variables E and F' is

I(E;F)=H(E)+ H(F)— H(E, F). (4)

The mutual information I(E; F') indicates the degree of correlation between E and F'.

It becomes zero if £ and F' are independent.
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Fig. 3. Entropy plot for cello disk trace.

4.2  Entropy Plots

We can apply the above definitions to traffic data to measure the burstiness and spatio-
temporal correlation. The question is, then, at what the granularity. If we calculate the
entropy on the finest resolution, the mutual information on time and space will be very close
to zero because no correlation will be observed. Our answer is to calculate the entropy values
at all “aggregation” levels.

To find the entropy values at aggregation level n, the time-space plot of the trace is
divided into 2" x 2" grids. For example, Figure 3 (a) shows the 4 x 4 grids at aggregation
level 2. P}"g describes the probability that a request falls into each grid; that is, the request
has arrival time ¢, (t; < t < t5), and address s, (s; < s < s3). }n) and Pén) are the projections

of PT(,"S), on time and space. All the Ps can be easily derived from the given trace.

Definition 3 The entropy plot for a given trace is defined by plotting the entropy values
against the aggregation level n, where the entropy on time, space and the joint entropy at

aggregation level n are

The entropy plot provides an insight on how the burstiness and correlation change across
different resolution levels. The points form a line if the burstiness and correlation are stable
at all granularities. Interestingly, real traffic has stable burstiness and correlation as the



linear entropy plot of the sample disk trace suggests (Figure 3 (b)). This further confirms
the self-similarity of the disk I/O workloads.

Lemma 4 For a trace of stable temporal and spatial burstiness and spatio-temporal correla-

tion, all the entropy plots are linear:

4

H™ = nRy;
9 Hé") = nRg; (6)

é{% = TLRT’S.

\

All the proofs are omitted from the paper for brevity. Rr and Rg measure the temporal
and spatial burstiness respectively. The intuition behind Ry is the rate of information con-
tained in one more bit of time-stamp. For example, when all the requests come in a burst, all
the time-stamps will be the same and all the bits are useless, which leads to R = 0. When
the requests are uniformly distributed along time, all the bits in the time-stamps are useful

and Rr, in this case, is 1. Similarly, Rg gives the rate of information in the address bit.

Ry, defined as Ry + Rs — Ry, tells the mutual information per bit (e.g., how much
information the time-stamp bit tells about the location of the request). When R; equals to

0, the time-stamps and the addresses of the requests is independent.

The real traffic data shows strong spatio-temporal correlation. The estimated value of
Rr, Rs, and Ry g (Figure 3 (b)) are 0.722, 0.573, and 0.881, leading to R; ~ 0.414. The
large value of R; indicates strong spatio-temporal correlation in real traffic data. R; for the
i-model trace, on the other hand, is 0.001, suggesting independence between time and space.
(Hence the name i-model.)

5 Proposed Model: PQRS Model

The independence assumption in the i-model leads to totally different performance be-
havior even when the synthetic traces and the real traces have the same temporal and spatial
characteristics as we will show later in Section 6. Therefore, it’s important to incorporate
the correlation in the model. This section presents a new statistical model, called the PQRS

model, to capture the stable burstiness and correlation of the real traffic data.
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Fig. 5. Recursive trace generation process for the PQRS model.

5.1 Generation: PQRS Model

The PQRS model generates a two-dimensional | initialize the stack;

trace using four parameters, namely, p,q,r, s, push the whole trace onto the stack;
while (stack is not empty) do

pop a grid from the stack;

if grid is small enough then
entropy plot calculation (Figure 5 (a)). At the output the requests of the grid;
else

divide the grid into 2 x 2 grids;

distribute the requests to the grids;
1, the time-space plot is divided into 2 x 2 grids push the four grids onto the stack;

where p+q+7r+ s = 1. The recursive construc-

tion is the reverse process of the aggregation in

starting point, the probability that a request

falls into the whole time-space plot is 1. In step

and the probability that a request falls in each
grid is p, g, r, s respectively. In step 2, each grid Fig. 4: PQRS trace generation

is further divided into 4 smaller grids and the requests are distributed to the 4 smaller grids
with the same probabilities, p, ¢, r, s. The process goes on recursively until the required reso-
lution on time and space is achieved (e.g., the size of the grids is smaller than a microsecond
or a disk block).

The above algorithm assumes the same order of p, g, r, s in all the levels. We can generate
a random PQRS trace by imposing a different order at each step. Figure 5 (b) gives a sample
trace generated by the PQRS model with p,q,r, s of 0.2,0.3,0.4,0.1. More requests cluster
at bottom right corner since r has the greatest value among the four parameters.

5.2  Parameter Fitting

The recursive construction algorithm guarantees that PQRS traces have stable burstiness
and spatio-temporal correlation because all the steps use the same parameters to distribute

10



the requests.

Lemma 5 Traces generated by the PQRS model have stable burstiness and correlation as
they have linear entropy plots.

;n) = nH%l) = nRyr;

¢ HYY = nHY = nRg; (7)

Hj(wtg = anB@ = nRT,S;

Lemma 6 For a PQRS trace generated with parameter p,q,r, s, p+q+r—+s =1, the entropy

rates are
Ry = —(p+q)logy(p+q) — (r+s)logy(r + 5);
Y Bs = —(p+7)logy(p+7) — (q+5)logy(g + 5); (8)
| Br,s = —plogyp — glog, g — rlog, r — slog, s.

Equation 8 suggests that the difference between (p+ ¢) and (r + s) determines the temporal
burstiness of the synthetic traces and the difference between (p + ) and (¢ + s) determines
the spatial burstiness. Varying the value of p changes the degree of the spatio-temporal
correlation when temporal and spatial burstiness is fixed.

The parameter fitting algorithm for the PQRS model is simple. For a given trace, we
estimate the value for p, g, r, s by plugging the slopes of the entropy plot in Equation 8.

The following two lemmas give some additional features of the PQRS model.

Lemma 7 The Poisson model is a special case of the PQRS model where p=q=1r =s =
0.25.

Lemma 8 The i-model is a special case the PQRS model where % ==

5.3 Complexity

The computational complexity of the algorithm is an important property of the model.
One would rather choose to collect traces if the trace generation is too slow. Our analysis
shows that both the trace generation and parameter fitting algorithms for the PQRS model
offer linear scalability to the number of requests in traces.

11



Lemma 9 The computational complezity in generating a PQRS trace is O(M x N), where
M s the total number of requests and N is the number of steps in the generation algorithm.

We outline the proof here. We upper-bound the trace generation through a naive implemen-
tation of the algorithm. The recursive generation conceptually forms a quad tree of height
N. (See Figure 5 (a).) The 4™ grids in step n form the 4™ nodes at level n in the quad tree.
We decide the arrival time ¢ and address s of each request by walking down the quad tree
from the root. At each level of the tree, we choose one of the four subnodes with probability
P, q, 7, s until we reach a leaf node. Enumerating all the requests gives the final trace. There-
fore, the complexity of the trace generation is O(M x N). In reality, N is usually logarithm

to the length of the trace in time (or space).

Lemma 10 The computation complexity for the parameter fitting algorithm of the PQRS
model is O(M x N).

We sketch the proof here. The number of non-zero grids in each aggregation level is at most
M; therefore, it takes O(M) computations to generate a point in the entropy plot. Given
that there are N points in the entropy plot, the total computational complexity is O(M x N).

In summary, the strength of the PQRS model lies in its power as well as in its simplicity.
The model generates traces with stable burstiness and correlation as the real traffic data

exhibits. In addition, the model offers linear scalability.

6 Experiments

We evaluate the PQRS model using two types of traffic data: disk and memory refer-
ence traces. The experiments examine the validity of the PQRS model and compare the

performance behavior of the PQRS model traces to the real ones.

We make two main observations. First, the real traffic data have reasonably linear entropy
plots which verifies the assumption we made in developing the PQRS model. Second, strong
spatio-temporal correlation plays an important role in performance behavior and invalidates
the i-model. The PQRS model, on the other hand, leads to performance measures that match

the reality.

6.1 FEzxperiment Setup

Two types of traffic data are in use. Table 2 summarizes the data sets.

12



Trace Total disk requests I?tT 1%5 IA%T,S It s (,4,7,3)

Disk-a 4,575,798 | 0.641 | 0.819 | 1.058 | 0.402 | (0.092,0.745,0.162,0.001)
Disk-r 1,822,781 | 0.847 | 0.833 | 0.984 | 0.696 | (0.016,0.258,0.720,0.006)
Disk-w 3,300,628 | 0.641 | 0.728 | 0.992 | 0.377 | (0.150.0.013,0.053,0.784)
Disk-0 1,101,416 | 0.814 | 0.690 | 0.941 | 0.563 | (0.043,0.184,0.772,0.001)
Disk-2 1,396,649 | 0.790 | 0.723 | 0.904 | 0.609 | (0.200,0.027,0.001,0.772)
Disk-7 371,320 | 0.722 | 0.573 | 0.881 | 0.414 | (0.056,0.135,0.808,0.001)

(a) Cello disk trace summary

Trace Length | Total requests Ry Rs RT,S It s ($,4,7,8)
New Order 14,990,636 4,000,000 | 0.962 | 0.200 | 0.996 | 0.166 | (0.030,0.255,0.001,0.714)
Payment 17,242,172 4,573,044 | 0.963 | 0.281 | 1.042 | 0.202 | (0.239,0.047,0.713,0.001)
Order Status 1,355,168 268,943 | 0.950 | 0.456 | 0.989 | 0.417 | (0.095,0.185,0.001,0.722)
Delivery 525,100 129,388 | 0.957 | 0.439 | 0.987 | 0.409 | (0.090,0.192,0.001,0.717)
Stock Level 14,453,440 3,613,360 | 0.974 | 0.349 | 1.052 | 0.271 | (0.231,0.064,0.704,0.001)
Mix 12,268,876 4,000,000 | 0.983 | 0.309 | 0.990 | 0.302 | (0.248,0.054,0.697,0.001)

(b) TPC-C memory reference trace summary (Trace length in CPU cycles)

Table 2
Trace Summary

Cello disk traces. The disk traces were collected on a UNIX file server in HP on June
12, 1992 [17]. The server has 8 disks attached to it. Total of six traces are in use: Disk-a for
the aggregation of all the disk requests, Disk-r for all the read requests, Disk-w for all the
write requests, and Disk-0, Disk-2, Disk-7 for individual disk 0, 2, 7. All the traces are one
day long. The other five disks are not studied because of the small volume of disk requests.
The arrival time is accurate to microseconds. The disk block number ranges from 0 to more
than 5,000,000.

TPC-C memory reference traces. The TPC-C memory traces were collected on a
realistic processor simulator running TPC-C workloads on Shore [6]. There are total of
six traces: five for five types of transactions and one for a mixture of different types of

transactions. Only references to the heap area are studied here.

Evaluation tools. The ultimate goal of traffic modeling is to facilitate system designs.
Therefore, we focus on the performance behavior of the traces. We use the response time
and queue length distributions for disk traces and the cache miss ratio for memory reference

traces as our performance metrics.

Methodology. We want to answer the following questions. First, does real traffic have
stable burstiness and correlation over aggregation? Second, how does the PQRS model per-
form? The synthetic traces should have the same performance behavior as the real ones if
the synthetic traces accurately capture the characteristics of the real traffic data.

13
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Fig. 6. Entropy plots for the two data sets.
6.2 Model Checking

The PQRS model is designed for the traffic data with stable burstiness and spatio-
temporal correlation. Therefore, the traffic data should have linear entropy plots for the

PQRS model to work. In addition, we rely on linear entropy plots for estimation of parameter

pb,q,7,S.

Figure 6 shows the entropy plots for the disk and memory traces. We have made the

following observations.

e The entropy plots are reasonably linear, suggesting stable burstiness and correlation in
the traces. This ensures that the traces are well within the capability of the PQRS model.

e Strong spatio-temporal correlation exists: Ry ranges from 0.313 to 0.696 for disk traces
and from 0.166 to 0.417 for memory traces.

e The PQRS model is able to model uniform traces as well. Ry for the memory traces is close
to 1, suggesting a uniform distribution of the memory accesses on time. This is because

the program is consistently accessing data during its course of execution.

In summary, real traffic data has stable burstiness and correlation over aggregation and
is within the capability of the PQRS model. Strong correlation exists, invalidating the inde-

14
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Fig. 7. Disk Trace Performance Evaluation. (I-model results for disk-2 are missing due to queue
saturation.)

pendence assumption of the i-model.

Table 2 lists the estimated p, g, r, s value for the data sets. The following sections compare

the performance behavior of the real traces and the PQRS traces generated using these values.

6.3 Disk Trace Evaluation

Figure 7 compares the response time and queue length distributions of the real disk
traces and the PQRS traces on a realistic disk simulator [10]. Both distributions are in
negative cumulative form (NCDF) and in log-scale. That is, point (10,0.01) in the response
time distribution plot tells that 1% of the disk requests have response time greater than 10
milliseconds. Traces with strong spatio-temporal correlation should have short tails in these

distributions as requests close in address can be served quickly.

The comparison shows that the PQRS traces simulates the performance behavior of the

real traces very well by accurately capturing the burstiness and the correlation.

e Strong spatio-temporal correlation plays an important role in performance behavior. The
i-model traces produce extremely large response time because of the independence as-
sumption although they have exactly the same burstiness along time and space as the real
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Fig. 8. Comparison of the performance behavior of the memory reference traces: “R” stands for the
real traces; “I” for the i-model, and “P” for the PQRS model.

traces. The i-model results for Disk-2 are missing because the queue becomes long enough
to saturate the system.

e The PQRS model works amazingly well in simulating the real traffic by accurately cap-
turing both the burstiness as well as the strong correlation at all aggregation levels.

The above comparison has shown that the PQRS model mimic the real disk I/O traffic

very well in performance behavior.

6.4 Memory Trace Evaluation

Memory trace evaluation involves comparing the cache miss rates of the real traces to
the PQRS traces. The miss rate is an important performance metric in computer architec-
ture research and it reflects the temporal and spatial locality. Memory references on nearby
locations have a better chance to be cache hits if they are close to each other in arrival time.

Therefore, strong spatio-temporal correlation leads to low cache miss rates.

Figure 8 compares the cache miss rates for three sets of traces: R for the real traces, I for
the i-model traces of the same marginals as the real ones, and P for the PQRS traces with
parameters listed in Table 2. Six groups of bars show the cache miss rates on six different
cache sizes in each graph.

16



We observe that the traces with high degree of spatio-temporal correlation, such as the R
and P traces, suffer low cache miss rates as we have expected. The relative error of the PQRS
traces is within 30%. On the other hand, the I traces, assuming independence between time
and space, experience extremely high miss rates and have relative error as high as 1800%.

6.5 Summary

Both disk traces and memory references traces have shown reasonably stable burstiness
and spatio-temporal correlation over aggregation as suggested by the linear entropy plots.
Strong spatio-temporal correlation exists in both types of traffic data and the correlation has
a significant impact on the performance behavior of the traces. Therefore, traffic modeling

should take the correlation into consideration.

The PQRS model, carefully designed for such traffic data, is able to replicate the behavior
of real traces very well. The i-model, on the other hand, fails to do so by ignoring the

correlation.

7 Conclusions

Modeling disk traffic is a hard problem [10], especially when we need to capture both
the temporal as well as spatial correlations. In this paper, we propose the entropy plot to
measure the spatio-temporal correlation and we discover that the burstiness and correlation
remain stable for many scales for real traffic data, which is another evidence of self-similarity.
We develop a simple statistical model, the PQRS model, to capture the characteristics of
such traffic: it can be bursty or uniform in time, bursty or uniform in space, and it can give
zero to 100% correlation between space and time.

Additional contributions include

e We are the first to quantify the popular, but vague intuition that memory and disk accesses
exhibit locality, not only in space or time, but in space-time as well.

o We give fast, scalable algorithms to run our model: both the parameter fitting and trace
generation algorithms require linear time on the number of requests.

e Experiments on multiple real data sets show that the simple PQRS model can mimic
them very well, leading to good performance predictions (cache-hit-ratios, queue length

distributions). In contrast, the independence model (i-model), fails miserably.

Several promising research directions stem from this work. For example, we plan to
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apply the PQRS model to other spatio-temporal settings (e.g., earthquakes over space and

time). Alternatively, given the p, ¢, 7, s values of a trace, we plan to analytically derive the

performance measures of interest (like the cache-hit ratio, or disk queue length distributions).
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