
Advice Generation from Observed Execution:
Abstract Markov Decision Process Learning

Patrick Riley and Manuela Veloso∗
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891

pfr@cs.cmu.edu and mmv@cs.cmu.edu

Abstract
An advising agent, a coach, provides advice to other
agents about how to act. In this paper we contribute an
advice generation method using observations of agents
acting in an environment. Given an abstract state def-
inition and partially specified abstract actions, the al-
gorithm extracts a Markov Chain, infers a Markov De-
cision Process, and then solves the MDP (given an ar-
bitrary reward signal) to generate advice. We evaluate
our work in a simulated robot soccer environment and
experimental results show improved agent performance
when using the advice generated from the MDP for both
a sub-task and the full soccer game.

Introduction
A coach agent provides advice to other agent(s) to improve
their performance. We focus on a coach that analyzes past
performance to generate advice. The synthesis of observed
executions in a manner that facilitates advice generation is a
challenging problem.

Observations that do not explicitly include the actions
taken by the agents are an additional challenge. The in-
tended actions must be inferred from observed behavior. In
this paper we present algorithms to learn a model, including
actions, based on such observations. The model is then used
to generate executable advice for agents.

The areas of advice reception (e.g. Maclin & Shav-
lik 1996) and advice generation, in both Intelligent Tutor-
ing Systems (e.g. Paolucci, Suthers, & Weiner 1996) and
item recommendation (e.g. Shani, Brafman, & Hecker-
man 2002), have received attention in AI over many years.
Our work in this paper further explores advice generation in
the context of agent to agent advice.

In most coaching environments, it is impractical for the
coach to provide advice only at the most detailed level of
states and actions because of communication bandwidth or
observability constraints. Further, in domains with large or

∗This research was sponsored by Grants No. F30602-00-2-
0549 and the Department of the Interior (DOI) - National Busi-
ness Center (NBC) and the Defense Advanced Research Projects
Agency (DARPA) under contract no. NBCHC030029. The con-
tent of this publication reflects only the position of the authors.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

continuous state spaces, abstraction can produce the nec-
essary generalization. Constructing an abstract model of
the environment is one way that a coach may generate
advice. Markov Decision Processes (MDPs) are a well-
studied formalism for modeling an environment and finding
a good action policy. The use of state and action abstraction
has gotten significant attention (Dearden & Boutilier 1997;
Barto & Mahadevan 2003; Uther & Veloso 2002). Here we
introduce an approach to construct an MDP that uses both
state abstraction and temporally extended abstract actions.

The MDP is learned by observation of past performance
of agents in the domain, considered as a series of states
that do not include information about what (abstract) ac-
tions were performed. This type of data can be obtained
by an external observer with no access to the internal pro-
cesses of the agents. Domain knowledge is used to transform
states to abstract states and then to attach actions to transi-
tions, whose probabilities are estimated from observed data.
This process of adding actions has much in common with
past work in plan recognition from observation (Kautz 1991;
Charniak & Goldman 1993).

We used a simulated robot soccer environment as the
testbed. The presence of a coach agent makes the environ-
ment well suited to this research. Past work on coaching for
this environment has mostly been on analysis of a particular
team, with automated (Kuhlmann, Stone, & Lallinger 2004;
Riley, Veloso, & Kaminka 2002; Visser & Weland 2004)
or non-automated (Raines, Tambe, & Marsella 2000) ad-
vice generation. We present experimental results for a coach
agent learning an MDP and improving performance for both
a restricted part of the game and in full games.

Learning an Abstract MDP from Observation
In this section we introduce our approach for creating a
Markov Decision Process from observations. Our goal is
to learn anabstractMDP. The main steps of the process are:

• Transform observations into sequences of abstract states.
• Create a Markov Chain based on the observed transition

frequencies among the abstract states.
• Transform the Markov Chain to a Markov Decision Pro-

cess (MDP) by associating transitions to actions based on
a specification of the abstract actions to add.

• Add rewards to the MDP.

State
Abstract

Observation
Data

Markov
Chain

�� �
Combine

(Abstract) MDP
with reward

(Abstract) MDP�
�

�
�Add rewards

�
�

�
�

�
�

�
�

6

?

?

-

- -
-

��
?

-

〈S̄, B : S → S̄ ∪ ∅〉

s′i ∈ S
s′9 → s′3 → s′2 → s′7...
s′3 → s′9 → s′3 → s′2...

Abstract
State
Traces

Observe
Extract

s1 → s2 → s1...
s2 → s1 → s2...
si ∈ S̄ Associate

Actions

Reward
〈S̄, Ā, TMDP , R〉

〈S̄, TMC〉
〈Ā, Cp, Cs〉

〈S̄, Ā, TMDP , R〉

R

Abstract Actions

Figure 1: The process of a coach learning a Markov Decision Process from observation. The symbols are examples or types
based on the formalism presented. The boxes with italics indicate information that must be provided for the system.

Figure 1 depicts the processes and data involved and we now
describe the algorithms in detail.

Observations to Markov Chain

There are two initial inputs to the process:

Observation dataconsisting of sequences of observed
states. These sequences can come from recordings of past
performance or from online observation. LetS be the ob-
served state space. The observation data is then a list of
sequences ofS, or in other words, a list ofS∗.1

State abstractionconsisting of an abstract state spaceS̄,
and an abstraction functionB : S → S̄ ∪ ∅. Note thatB
can map elements ofS to the empty set, indicating there
is no corresponding abstract state. Naturally, this specifi-
cation can have a large impact on the overall performance
on the system. While we currently use our domain exper-
tise to specify the abstraction, learning techniques do exist
which may provide useful abstractions (e.g. Schweitzer,
Puterman, & Kindle 1985).

Observe and extractas shown in Figure 1 can then be
implemented in terms of the above.B is applied to every
element of every sequence in the observation data. Any ele-
ments that map to∅ are removed.Observe and extractout-
putsabstract state tracesas a list ofS̄∗.

Given the state traces, thecombinealgorithm produces a
Markov Chain, a tuple〈S̄,TMC〉 whereS̄ is the set of ab-
stract states andTMC : S̄ × S̄ → R is the transition func-
tion. TMC(s1, s2) gives the probability of transitioning from
s1 to s2. Since the state spacēS for the Markov Chain has
already been given, justTMC must be calculated.

Thecombinealgorithm estimates the transition probabil-
ities based on the observed transitions. The algorithm cal-
culates, for every pair of statess1, s2 ∈ S̄, a valuecs1,s2

which is the number of times a transition froms1 to s2 was
observed. The transition function is then,∀s1, s2 ∈ S̄:

TMC(s1, s2) =
cs1,s2∑
s∈S̄ cs1,s

(1)

1The following notation will be used in the remainder of the
paper. Sets will be set in script, e.g.S,N . The notationSi is used
to denote a sequence ofi elements ofS. S∗ will denote∪i∈NSi.
The powerset of a setS will be denoted byP(S). Functions will
be capital letters and in italics, e.g.F , C.

This estimation ofTMC could possibly benefit from
smoothing or clustering techniques to deal with problems
of data sparsity. Our use of state abstraction already helps
to deal with this somewhat and our experimental results
demonstrate usefulness of the resulting model. More sophis-
ticated estimation is an avenue for future work.

Markov Chain to Markov Decision Process
Our algorithm now converts the Markov Chain into a
Markov Decision Process. A Markov Decision Process is
a tuple〈S̄, Ā, TMDP , R〉. S̄ is the set of abstract states,̄A
is the set of (abstract) actions,TMDP : S̄ × Ā × S̄ → R
is the transition function, andR : S̄ → R is the reward
function. Similar to a Markov Chain, the transition func-
tion TMDP (s1, a, s2) gives the probability of transitioning
from s1 to s2 given that actiona was taken.

Shani, Brafman, & Heckerman (2002) also explain a
mechanism for Markov Chain to Markov Decision Process
conversion. However, for them the Markov Chain describes
how the system acts with no agent actions. They use a sim-
ple proportional probability transform to add the actions.
Here, the Markov Chain represents the environment with
agent actions and we need to infer what those actions are.

In our approach, a set of abstract actions must be given
as a set of transitions between abstract states, divided into
primary and secondary transitions. The primary transi-
tions represent the intended or normal effects of actions
and the secondary transitions are other possible results of
the action. This distinction is similar to Jensen, Veloso, &
Bryant (2004).

We initially assign a zero reward function. Describing the
algorithms for associating actions and transitions takes up
the bulk of this section. We first illustrate the process using
the example shown in Figure 2, then provide the full details.

Our algorithm processes each abstract state in turn. Fig-
ure 2(a) shows the states0 in the Markov Chain. It must be
determined which actions can be applied in each state and
how to assign the transitions and their probabilities to ac-
tions.

The transitions for the actionsa0, a1, anda2 are shown
in Figure 2(b), with the primary transitions in bold. An ac-
tion is added for a state if any of the action’s primary tran-
sitions exist for this state. In Figure 2(c), actionsa0 anda1

have been added, buta2 has not (since its primary transition
s0 → s4 was not in the Markov Chain). Once an action has

i
i

i
i����*

-
Q

Q
QQs

s1

s2

s3

s0 .3
.1

.6

LL
��

LL
��

LL
��

ia0
s0

ii
ii
i
ii
i
ii

��:
PPPq

XXXz

HHHj

�
��>

�
�3

��:

���:
s4

a2
s0

s5

s1

s3

s1

s6

s2

s1

s0

a1 i
ii

ii
��

TT

��>
6

XXz
?

JJ

��

TT

s0

.75
.25

.5
.5

a0

a1

s2

s1

s1

s3

(a) Markov Chain (b) Actions (c) MDP

Figure 2: Associating actions with the transitions from one
state in a Markov Chain to create a Markov Decision Process
state

been added, all transitions in the Markov Chain which are
primary or secondary transitions for the action are assigned
to the action. It is fine for primary or secondary transitions
that are part of the action definition to not be in the Markov
Chain (e.g. thes0 → s6 transition fora0 and thes0 → s5

for a1). Once all actions have been processed, the proba-
bility mass for each transition is divided equally among all
repetitions of the transition and the resulting distributions
are normalized. For example, in Figure 2, the probability
mass of 0.6 assigned to thes0 → s1 transition is divided by
2 for the 2 repetitions. The transitionss0 → s1 ands0 → s3

have, respectively, probabilities 0.3 and 0.1 before normal-
ization and 0.75 and 0.25 after normalization.

Formally, an abstract action set̄A and functions giving the
primary (Cp : Ā → P(S̄ × S̄)) and secondary (Cs : Ā →
P(S̄ × S̄)) transitions must be given. We will calculate an
unnormalized transition functionT ′

MDP which will be nor-
malized toTMDP . The complete algorithm for adding ac-
tions to the Markov Chain is shown in Table 1.

For alls ∈ S̄
Let T ⊆ P(S̄ × S̄) be the transitions froms
T =

{
〈s, si〉 | si ∈ S̄, TMC(s, si) > 0

}
LetN ⊆ Ā be actions with primary transitions fors
N =

{
a ∈ Ā | Cp(a) ∩ T 6= ∅

}
For allsi ∈ S̄

Let csi be the number of actions fors → si

csi = |{a ∈ N | 〈s, si〉 ∈ Cp(a) ∪ Cs(a)}|
For alla ∈ N

For all 〈s, si〉 ∈ Cp(a) ∪ Cs(a)

T ′
MDP (s, a, si) =

TMC(s, si)
csi

Add null action if needed (see text)
NormalizeT ′

MDP to TMDP

Table 1: Associating actions to convert a Markov Chain to
an MDP.

As noted, a null action can be added. This occurs if a tran-
sition from the Markov chain is not part of any of the actions
created for this state (i.e. ifcsi

= 0 andTMC(s, si) 6= 0).
The definition of primary and secondary transitions and

the algorithm above support situations in which the possible

effects of an abstract action are known, but the probabilities
of occurrence of the various results are not.

Once we have a Markov Decision Process, we can add
additional rewards to whatever states desired. By changing
the reward function, the learned Markov process can be used
to produce different behaviors. This is explored further the
in empirical section below.

Learning In Simulated Robot Soccer
We used the Soccer Server System (Nodaet al. 1998) as
used in RoboCup (Kitanoet al. 1997) as our implemen-
tation and testing environment. The Soccer Server System
is a server-client system that simulates soccer between dis-
tributed agents. Clients communicate using a standard net-
work protocol with well-defined actions. The server keeps
track of the current state of the world, executes the actions
the clients request, and periodically sends perceptions to the
agents. Agents receive noisy information about the direction
and distance of objects on the field (the ball, players, goals,
etc.); information is provided only for objects in the field of
vision of the agent. The agents communicate with the server
at the level of actions like turn, dash, and kick. Higher level
actions like passing or positioning on the field are imple-
mented as combinations of these lower level actions.

There are eleven independent players on each side, as well
as a coach agent who has a global view of the world, but
whose only action is to send advice to the players.

This environment has a standard advice language called
CLang, which is primarily rule based. Conditions are logical
connections of domain specific atoms like ball and player lo-
cation. Actions include the abstract soccer actions like pass-
ing and dribbling.

For the simulated soccer environment, only those states
where an agent can kick the ball are represented in the ab-
stract state space. We define the abstract state space in terms
of a set of factors and values:

GoalScore 0,1,null, if we, they, or no one scored.
DeadBall 0,1,null, if it is our, their, or no one’s free kick.
BallGrid Location of the ball on a discretized grid for the

field (see Figure 3).
BallOwner 0,1,2, if no one, our, or their team owns the ball.
PlayerOccupancy Presence of teammate and opponent

players in defined regions.

The regions for PlayerOccupancy for the opponents are
shown in Figure 4. The regions are centered around the ball
and oriented so that the right is always towards the attack-
ing goal. The regions for our team are the same except that
players which can currently kick the ball are ignored.

The abstract action spacēA was constrained by the ad-
vice actions in CLang. CLang supports abstract actions like
passing, dribbling, and clearing (kicking the ball away). All
these actions can take a parameter of an arbitrary region of
the field. Actions should correspond to changes in the ab-
stract state space. Since many CLang actions involve ball
movement, we chose to consider the ball movement actions
with regions from the discrete grid of ball locations (see Fig-
ure 3) as the parameters.

10m

5m
Ball

Figure 3: The regions for the
BallGrid state factor

Figure 4: Player occu-
pancy regions

To construct theCp andCs functions describing the pri-
mary and secondary transitions for the actions, we first clas-
sify the transitions (using the structured state representation
discussed above). Then, these functions can be described
in terms of the transition classes they represent, rather than
writing out individual transitions. For example, we had
transition classes including successful shots, kicks out of
bounds, short passes, and failed passes.

Markov Decision Process to Advice
The final set of algorithms go from a Markov Decision Pro-
cess to advice. The first step is to solve the MDP. Since we
have all transition probabilities, we use a dynamic program-
ming approach (Puterman 1994). This algorithm gives us a
Q table, where fors ∈ S̄ anda ∈ Ā, Q(s, a) gives the ex-
pected future discounted reward of taking actiona in states
and performing optimally afterwords. An optimal policy (a
mapping fromS̄ to Ā) can be extracted from theQ table by
taking the action with the highestQ value for a given state.

States and actions for advice must then be chosen. Ad-
vising about all states can overload the communication be-
tween the coach and agents (which is limited) and stress the
computational resources of the agent applying the advice.
Therefore, the scope of advice is restricted as follows:

• Remove states which don’t have a minimum number of
actions. For states with many possible actions, the agents
will in general be in more need of advice from the coach.
We experimented with different values here, but most of
the time we only removed states without any actions.

• Remove states whose optimal actions can’t be translated
into the advice language.

• Only advise actions which are close to optimal. We only
want to advise “good” actions, but we must be specific
about what good means. We only advise actions which are
within a given percentage of optimal for the given state.

Once the states and actions which to advise have been deter-
mined, they must be translated into the advice language.

Advising In Simulated Robot Soccer
For simulated robot soccer, we pruned any action dealing
with actions that the opponent takes. Clearly, we can not
advise the agents to perform these actions.

After pruning, we are left with a set of pairs of abstract
states and abstract actions. The advice is translated in to the

CLang advice language. The goal is to structure the advice
such that it can be matched and applied quickly at run time
by the agents. We use the structured abstract state represen-
tation discussed above to construct a tree of CLang rules. At
each internal node, one factor from the state representation
is matched. At each leaf, a set of actions (for the abstract
state matched along the path to the leaf) is advised.

Empirical Validation
The learning and advice generation system is fully imple-
mented for the SoccerServer (Nodaet al. 1998). A version
of the system described here made up the bulk of the Owl
entry to the RoboCup 2003 coach competition. This section
describes our empirical work in validating the system.

Throughout, we have used two different teams of agents
which understand the advice language CLang: UTAustin
Villa from the University of Texas at Austin (UTA) and the
Wyverns from Carnegie Mellon University (CM).2

The data files, binaries, and configuration for all
of these experiments can be found at the paper’s on-
line appendix: http://www.cs.cmu.edu/˜pfr/
appendices/2004aaai.html .

Circle Passing
We constructed a sub-game of soccer in order to clearly eval-
uate the MDP learning from observed execution and the ef-
fect of automatically generated advice. While we are in-
terested in modeling the entire soccer game, the number of
factors affecting performance make it difficult to separately
test effects.

We set up agents in a circle around the middle of the field
and wrote a set of advice rules which cause the agents to
pass in a circle, as shown in Figure 5. Stamina and offsides
were turned off and dead balls were put back into play after
1 second. The goal was to use this data to learn a model
which then be used to generate advice for a different team.
This team would not know of the performance of the original
team or even what the reward states in the model are. The
goal was not to replicate this passing pattern, but to achieve
the reward specified.

We ran 90 games of the UTA players executing this pass-
ing pattern. Note that because of noise in the environment,
not every pass happens as intended. Agents sometimes fail
to receive a pass and have to chase it outside of their normal
positions. Kicks can be missed such that the ball goes in
a direction other than intended or such that it looks like the
agent is dribbling before it passes. These “errors” are impor-
tant for the coach; it allows the coach observe other possible
actions and results of the original advice.

We ran the process described above on the 90 games of
data. Since there were no opponents on the field, the to-
tal possible size of the abstract state space was 5882 states.
The effective state space size (states actually observed) was
346 states. Our algorithm produced a Markov Chain and a
Markov Decision Process from this data.

2While both these institutions contributed agents for the official
RoboCup2003 coachable team, the versions of the agents used here
are updated from those official releases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

P
er

ce
nt

 T
ria

ls
 C

om
pl

et
ed

Time since beginning of trial

With Advice
During Training

Figure 5: Loca-
tions and direc-
tions of passing
for circle passing
(cf Figure 3).

Figure 6: Time taken for trials in the
reward cell 34 scenario. The inter-
vals are 95% confidence intervals.

We experimented with adding different reward functions.
In each case, reward was associated with all states in which
the ball was in a particular grid cell (see Figure 5), namely:

Cell 13 The cell where the upper left player usually stands.
Cell 3 The cell immediately above the previous one. No

agent would normally be here, but some passes and mis-
kicks will result in agents being in this square.

Cell 34 Near the middle of the field. Agents tend to move
towards the ball (especially to try and receive a pass) so
agents often end up in this cell during training.

Cell 14 To the right of the upper left player. Since this is in
the normal path between two players passing, the ball will
frequently pass through this square. On a miskick, either
one of the two closest agents could end up in that square
with the ball.

There are other reasonable reward functions. We chose these
to vary the degree to which the reward states were observed
during training. Similar states around any one of the players
would likely give similar results.

We ran with the CM agents receiving advice in each of
these scenarios. Actions were sent if they were within 99.9%
of optimal. We randomly chose 100 spots in the area around
the players and for each of the eight cases (4 different re-
wards and training or with MDP advice) put the ball in each
of those spots. The agents then ran for 200 cycles (20 sec-
onds). A trial was considered a success if the agents got to
any reward state in that time. The time bound is somewhat
arbitrary as varying the time bound somewhat does not sig-
nificantly affect the relative results. Further, the completion
results at a particular time are easier to present and discuss
that the full series of rewards received. Table 2 shows the re-
sults for the agents executing the learned advice for the four
different reward cells. The “Training Success” line shows
the percent of trials which completed during the initial UTA
training games as a basis for comparison.

In all scenarios, the success percentage is higher with the
MDP based advice. Figure 6 shows a different view of the
reward cell 34 scenario. Thex-axis is the time since the
beginning of a trial and they-axis is the percentage of the

Reward Grid Cell 13 3 34 14
rew. states observed5095 211 1912 2078
Training Success % 53% 4% 40% 44%
Advice Success % 77% 21% 88% 69%

Table 2: Performance for circle passing. The first row shows
the number of times a reward state was seen during training.

trials which received reward by that time. Graphs for the
other scenarios are similar.

In all cases we see that agent execution is not perfect.
This occurs for several reasons. Noise in the perception and
execution can cause actions to fail and have undesired ef-
fects. Execution of some abstract actions (such as passing)
requires more about the underlying states than what is ex-
pressed by the abstraction. In passing, another agent needs
to be in or near the target location in order to receive the
pass. Therefore, it can happen that the advised abstract ac-
tion can not be done at this time.

The reward cell 3 scenario was the most difficult for the
agents to achieve. It was also the set of reward states which
was least often seen in training. More examples of transi-
tions to reward states allow a better model to be created.

These experiments demonstrate that the coach can learn
a model from observation which can then be used to im-
prove agent performance. Changing the reward can allow
the same transition model to be used to generate different
advice. However, the more similar the training data is to the
desired execution, the more effective the advice is in helping
the agents achieve reward.

Full Game
While the above experiments show that the MDP learning
process described can extract a useful model and gener-
ate advice from it, providing advice for an entire soccer
game is a larger and more challenging task. This section
demonstrates that our coach can produce positive effects on
a team’s overall performance. While further experiments ex-
ploring the limits and general effectiveness would be useful,
these results are still a compelling example of improvement.

Another advantage of the simulated robot soccer environ-
ment can also be leveraged here. Annual worldwide compe-
titions have been held since 1997 with a number of smaller
regional competitions over the last few years. Most of the
logfiles from these competitions have been preserved and are
publicly available. This is a wealth of data of many different
teams playing. We used all the logfiles from RoboCup2001
and 2002, German Open 2002 and 2003, Japan Open 2002
and 2003, American Open 2003, and Australian Open 2003.
This is a total of 601 logfiles. We also analyzed 1724 log-
files from our previous experiments with a number of past
teams (Riley, Veloso, & Kaminka 2002).

While it may be better to only analyze games played be-
tween these particular teams or at least just involving this
particular opponent, we wanted to take advantage of the
wealth of past games available for analysis. Observing a
range of performance should hopefully allow an understand-
ing of the average case. While some of the knowledge

learned could be internally inconsistent, we hope that most
such cases will average out over time. Use of additional ob-
servations of the particular teams in order to refine the model
is another avenue for further exploration.

Given the definition of the abstract state space above,
there are 184442 possible states. After analysis, the MDP
contained 89223 states. We associated a reward of 100 with
our team scoring a goal and -100 for being scored upon. We
also removed all transitions from these states. This allows
for faster convergence of the dynamic programming because
rewards do not have to be backed up through these states.

We tested two conditions: the CM team playing against
Sirim (one of the fixed opponents in the RoboCup2003
coach competition) with and without the MDP based advice.
With the MDP advice, actions were included if they were at
least 96% of optimal. Each condition was run for 30 games.
The results in Table 3 show that using the MDP improves the
score difference by an average of 1.6 goals. This difference
is significant at a< 1% level for a one-tailedt-test.

No MDP With MDP
Score Difference -4.6 [-5.3, -3.8] -3 [-3.5, -2.5]

Table 3: Mean score difference of CM playing Sirim. Score
difference is CM’s score minus Sirim’s score. The interval
shown is the 95% confidence interval.

While these results do not demonstrate the coached team
moving from losing to winning, the results still show a sig-
nificant improvement in performance. The overall perfor-
mance of a simulated soccer team is a combination of many
factors, including low level system timing and synchroniza-
tion, implementation of basic skills like kicking and drib-
bling, and higher level strategy decisions. Coaching advice
can only affect the last of these. As far as we are aware, our
coach is the first for the simulated robot soccer environment
that advises about such a large portion of the behaviors of
the agents and does so in an entirely learned fashion.

Conclusion
This paper has examined the problem of learning a model
of an environment in order to generate advice. An MDP is
learned based on observations of past agent performance in
the environment and domain knowledge about the structure
of abstract states and actions in the domain. The MDP learn-
ing process first creates a Markov Chain. Domain knowl-
edge about actions is then used to successfully transform the
Markov Chain into an MDP. Implementation was done in a
simulated robot soccer environment. In two different scenar-
ios, the advice generated from the learned MDP was shown
to improve the performance of the agents.

This research provides a crucial step in agent to agent ad-
vice giving, namely the automatic generation of effective,
executable advice from raw observations.

References
Barto, A., and Mahadevan, S. 2003. Recent advances in hi-
erarchical reinforcement learning.Discrete-Event Systems
Journal13:41–77.

Charniak, E., and Goldman, R. 1993. A Bayesian model
of plan recognition.Artificial Intelligence64(1):53–79.
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision theoretic planning.Artificial Intel-
ligence89(1):219–283.
Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2004.
Fault Tolerant Planning: Toward Probabilistic Uncertainty
Models in Symbolic Non-Deterministic Planning. In
ICAPS04.
Kautz, H. A. 1991. A Formal theory of plan recogni-
tion and its implementation. In Allen, J. F.; Kautz, H. A.;
Pelavin, R. N.; and Tenenberg, J. D., eds.,Reasoning About
Plans. Los Altos, CA: Morgan Kaufmann. chapter 2.
Kitano, H.; Tambe, M.; Stone, P.; Veloso, M.; Coradeschi,
S.; Osawa, E.; Matsubara, H.; Noda, I.; and Asada, M.
1997. The RoboCup synthetic agent challenge. InIJCAI-
97, 24–49.
Kuhlmann, G.; Stone, P.; and Lallinger, J. 2004. The cham-
pion UT Austin Villa 2003 simulator online coach team. In
Polani, D.; Browning, B.; Bonarini, A.; and Yoshida, K.,
eds.,RoboCup-2003: Robot Soccer World Cup VII. Berlin:
Springer Verlag. (to appear).
Maclin, R., and Shavlik, J. W. 1996. Creating advice-
taking reinforcement learners.Machine Learning22:251–
282.
Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998.
Soccer server: A tool for research on multiagent systems.
Applied Artificial Intelligence12(2–3):233–250.
Paolucci, M.; Suthers, D. D.; and Weiner, A. 1996. Au-
tomated advice-giving strategies for scientific inquiry. In
ITS-96, 372–381.
Puterman, M. L. 1994.Markov Decision Processes. New
York: John Wiley & Sons.
Raines, T.; Tambe, M.; and Marsella, S. 2000. Automated
assistant to aid humans in understanding team behaviors.
In Agents-2000.
Riley, P.; Veloso, M.; and Kaminka, G. 2002. An empirical
study of coaching. In Asama, H.; Arai, T.; Fukuda, T.;
and Hasegawa, T., eds.,Distributed Autonomous Robotic
Systems 5. Springer-Verlag. 215–224.
Schweitzer, P. L.; Puterman, M. L.; and Kindle, K. W.
1985. Iterative aggregation-deaggregation procedures for
discounted semi-Markov reward processes.Operations Re-
search33:589–605.
Shani, G.; Brafman, R. I.; and Heckerman, D. 2002. An
MDP-based recommender system. InUAI-2002, 453–460.
Uther, W., and Veloso, M. 2002. TTree: Tree-based state
generalization with temporally abstract actions. InPro-
ceedings of SARA-2002.
Visser, U., and Weland, H.-G. 2004. Using online learning
to analyze the opponent behavior. In Polani, D.; Bonarini,
A.; Browning, B.; and Yoshida, K., eds.,RoboCup-2003:
The Sixth RoboCup Competitions and Conferences. Berlin:
Springer Verlag. (to appear).

