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ABSTRACT

Simulations are used extensively for studying artificial intel-
ligence. However, the simulation technology in use by and
designed for the artificial intelligence community often fails
to take advantage of much of the work by the larger simula-
tion community to produce distributed, repeatable, and effi-
cient simulations. We present the new system known asSys-
tem for Parallel Agent Discrete Event Simulator, (SPADES),
which is a simulation environment for the artificial intelli-
gence community.SPADESfocuses on theagentas a fun-
damental simulation component. Thethinking timeof an
agent is tracked and reflected in the results of the agents’ ac-
tions by using aSoftware–in–the–Loopmechanism.SPADES
supports distributed execution of the agents across multiple
systems, while at the same time producing repeatable results
regardless of network or system load. We discuss the design
of SPADESin detail and give experimental results.SPADES
is flexible enough for a variety of application domains in the
artificial intelligence research community.

1 INTRODUCTION

Simulations are an accepted and widely used method for
studying artificial intelligence techniques for multi–agent in-
teraction. By simulating the environment and agent actions,
a researcher can systematically tune the parameters of the
environment and execute the large number of trials often re-
quired for machine learning. However, commonly used sim-
ulation techniques often do not address the special concerns
of the artificial intelligence community. In particular, previ-
ously used simulation environments do not track and model
the computation time of an agent in response to sensed en-
vironmental events. Existing simulation methods used in
artificial intelligence research are often non–repeatable, be-
ing sensitive to network and system loads at the time of the
simulation execution. Finally, many simulators created in
the artificial intelligence community fail to take advantage
of existing work in the parallel and distributed simulation
community for designing distributed, efficient, and repeat-
able simulations.

This paper demonstrates the application of well–known
parallel and distributed simulation methods for time man-
agement to agent–based distributed simulation for artificial
intelligence research. In addition, we introduce the concept
of Software–in–the–Loopsimulation, which we have found
to be particularly useful for multi–agent artificial intelligence

research. OurSoftware–in–the–Looptechnique provides for
the tracking of the computation time used by those agents,
and including that so–calledthink timein the simulation. By
taking advantage of prior work in parallel discrete event sim-
ulation, theSPADESsystem eases the design of a simulation
by hiding many of the system details required to handle dis-
tributed simulation in an efficient and reproducible way.

2 RELATED WORK

The problem of creating efficient simulations has attracted
substantial attention for decades from a wide range of
sources, including the AI community, scientific computing,
computer networking, industry, and government. While the
notion of softwareagentshas been known for some time, the
agent-based or agent-oriented simulation methods are rela-
tively new in the simulation community. Much of the ground-
work for agent–based simulations is by Uhrmacher (Uhrma-
cher 1996, Uhrmacher 1997, Uhrmacher and Schattenberg
1998, Uhrmacher and Gugler 2000, Uhrmacher, Tyschler,
and Tyschler 1997, Uhrmacher and Krahmer 2001). For ex-
ample, theJamessystem discussed in (Uhrmacher and Gu-
gler 2000) is a Java–based simulation environment for agent
modeling, similar in concept to ourSPADESsimulator.

Agent–based simulation methods have existed for much
longer in the artificial intelligence community. Many AI
simulation environments are quite specific to the domain for
which they were created. TheGENSIM system(Anderson
and Evans 1995) is one exception. It attempts to provide
support for general agent based simulation, including a vision
like model of sensation and computation time tracking of the
agents. The agents are given sensations at fixed intervals
and have a fixed amount of computation to respond to each
sensation. The simulation is written in LISP and requires
all agents to be also. A distributed version calledDGENSIM
(Anderson 2000) was created which has an architecture much
like SPADES. However,DGENSIMhas no methods to handle
network and machine delays and requires all agents advance
in time synchronously.

The MESS system by Anderson(1995, 1997) is similar is
spirit to GENSIM. It also requires all agents to be written
in LISP, but provides much more flexible tracking of agent
computation.

Some work in the AI community has been done on dis-
tributing agent based simulation but typically leaves many of
the issues in distribution management to the world designer.
For example, Lees, Logan, and Theodoropoulos (2002) pro-
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vide an HLA based distributed simulation, but fail to provide
the simulation creator with a world view that is unaffected
by how objects are distributed or any support for handling
synchronous, conflicting actions of the agents.

On the larger scale of agent simulation, theMACE3Jsys-
tem(Gasser and Kakugawa 2002) is a highly flexible, java-
based agent simulation system. Scaling up is a main design
criteria of the system; it has been run with up to 50 processors
and 5000 agents. It relies on a Shared System Image system
to provide distributed machines with a consistent image of
the model.

Much of the work in creating efficient distributed simula-
tions deals with how to break down a simulation into compo-
nents such that the communication requirements between the
components is low. For example, in agent based simulation,
Logan and Theodoropolous (2001) discuss how “spheres of
influence” can be used to adaptively and flexible organize
simulation objects and agents for efficient distributed simu-
lation. SPADEStakes a different approach. The breakdown
of components is fixed (agents and a world model). What
SPADESreasons about is how to allow as many agents as
possible to compute without violating causality. Notice that
SPADESdoes allow executions out of time order as long as
they do not violate causality.

3 THE SPADESSIMULATION ENVIRONMENT

This section discusses the major features of theSPADESsim-
ulation system. When discussing these features, we will use
the termssimulation timeor just time to refer to the simula-
tion time within the simulation environment. The termwall
clock timewill be used to refer to the real–time as measured
by a watch outside the simulated environment.CPU Time
will refer to the amount of time a process has used in the
central processing unit on the computer system performing
the simulation.

SPADESsupports agent-basedexecution, as opposed to
agent-based modeling or implementation (Uhrmacher 1997).
In this context, agent-based execution means that the system
explicitly models the sensing, thinking, and acting compo-
nents (and their latencies) which are the core of any agent.
Figure 1 represents a typical timeline for executions within a
cycle. Time point A represents the point at which a sensation
occurs in the environment. Time period AB represents the
elapsed time for an agent to identify and classify the event
(such as the video frame capture time). Period BC is the CPU
time required for the agent to decide what to do in response
to the event, and CD is the time it takes before the action
begins to have an effect on the world.SPADESallows arbi-
trary latencies for each of the above time periods, and allows
overlapped actions as shown. However, twothinkcycles are
not allowed to overlap, since a typical deployed agent only
has a single CPU to use for the thinking step. We model this
thinkingaction by ourSoftware–in–the–Loopmethodology
described next.

A basic premise used bySPADESis that the amount of time
an agent takes tothinkis non-negligible, and must be included
in the simulation model. Further, the thinking time for actions
is not constant, varying based on the type of sensed event,
current world state, and other variables. Finally, we assume
that the actual software used in the deployed agents to think
about sensation events is included as part of theSPADESsim-
ulation. Given these assumptions, we developed our novel
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Figure 1: Example Timeline for the Sense-Think-Act Loop
of an Agent

Software–in–the–Loopmethodology which allows accurate
modeling of the thinking time. Since the deployed software
is included in the simulation, the amount of CPU time used
by the simulated thinking process is identical to that used
by the deployed agent in the same environment (subject to
a linear scale factor to account for differing CPU speeds).
We simply measure the CPU time used by the thinking pro-
cess in the simulation (by using the Linuxperfctr (<http:
//sourceforge.net/projects/perfctr/> ) fea-
ture. This feature includes a patch for the standard Linux
kernel which provides per-process counts of CPU cycles and
instructions executed by the process. After measuring the
CPU time used by the simulatedthink process and applying
a linear scale factor,SPADESschedules theact event at the
appropriate delayed simulation time. We point out that the
termSoftware–in–the–Loophas been used previously in the
simulation literature (Choi and Kwon 1999), referring to a
method whereby some hardware portions ofhardware–in–
the–loopsimulations are replaced by software–based simu-
lations. While this is similar in spirit to our approach, it is
substantially different.

In order to provide maximum inter-operability,SPADES
makes no requirements on the agent architecture (except that
it supports the sense-think-act cycle) or the language in which
agents are written (except that they can write to and from
Unix pipes). In the same spirit as the SoccerServer (Noda,
Matsubara, Hiraki, and Frank 1998),SPADESprovides an
environment where agents built with different architectures
or languages can inter-operate and interact in the simulated
world.

SPADESis a conservative parallel discrete event simulator
as described in Misra (1986). In conservative simulations,
events are not processed until it can be guaranteed that casual
event ordering will not be violated. In contrast, optimistic
simulations (Jefferson 1985) process events without regard
to causality, but instead support a rollback mechanism that is
invoked in case events are found to have been executed out
of order. Debates over the merits of conservative and opti-
mistic simulation are common and several surveys discuss
the issues (Ferscha and Tripathi 1996, Fujimoto 1990). Our
choice of the conservative methodology was simply a prac-
tical choice due to ease of implementation. However, our
design does allow some degree of out–of–order event execu-
tion, if those events are known to be not causally related.

An effect of the discrete event nature of our distributed
simulation environment is that agents’ interactions are not
necessarily synchronized. Any subset of the agents can have
actions take effect at a given time step. This is in contrast
to many simulations in the AI community, that require that
all agents choose an action simultaneously, with the state
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of the world model updated once based on all these actions.
SPADES-based simulations do not require the agents’ actions
to be synchronized in this manner. In particular, smaller time
quanta for simulation of the world model do not increase
the simulation’s network load. In other words, the affect of
agents’ actions are realized precisely at the correct time in the
simulation, as opposed to the artificially imposed time–step
actions of other simulators.

Finally, theSPADESsystem provides reproducible simu-
lation results. Given the same set of initial conditions and the
same random seeds,SPADESwill produce identical results
for every simulation execution, as demonstrated in section 4.

3.1 System Architecture

Figure 2 gives an overview of the entireSPADESsystem,
along with the components users of the system must sup-
ply (shaded in the diagram). The dotted lines denote pos-
sible machine boundaries. The simulation engine and the
communication server are supplied as part ofSPADES. The
world model and the agents are created by a user to simulate
a particular environment.

The simulation engine is the heart of the discrete event
simulator. All pending events are queued here, and the engine
coordinates all network communication. A communication
server must be run on each machine on which agents run. The
communication server manages all communication with the
agents (through a Unix pipe interface) as well as tracking the
CPU usage of the agents to calculate the thinking latency. The
communication server and simulation engine communicate
over a TCP/IP connection.

The world model is created by a user ofSPADESto create
a simulation model of a particular environment. The simula-
tion engine is a library to which the world model must link,
so the simulation engine and world model exist in the same
process. The world model must provide such functionality
as advancing the state of the world to a particular time and
realizing an event (changing the state of the world in response
to an event occurring).SPADESprovides a collection of C++
classes from which objects in the world model can inherit in
order to interact with the simulation engine.

The agents communicate with the communication server
via pipes, so the agents are free to use any programming
language and any architecture as long as they can read and
write to pipes. From the agent’s perspective, the interaction
with the simulation is fairly simple:

1. Wait for a sensation to be received
2. Decide on a set of actions and send them to the commu-

nication server
3. Send adone thinkingmessage to indicate that all actions

were sent

One of the communication server’s primary jobs is to track
the thinking time of the agent to support theSoftware–in–the–
Loopmethodology. When sending a sensation to an agent,
the communication server begins tracking the CPU time used
by the agent. When thedone thinkingmessage is received,
the communication server calculates the total amount of CPU
time used to produce these actions. All actions are given the
same time stamp of the end of the think phase.

The agents have one special action whichSPADESunder-
stands: arequest time notify. The agent’s only opportunity
to act is upon the receipt of a sensation. Therefore if an agent

World
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Figure 2: Overview of the Architecture ofSPADES

wants to send an action at a particular time (such as a stop
turning command for a robot), it can request a time notify. On
the receipt of the time notify, the agent can returns actions as
for any other sensation. In order to give maximum flexibility
to the agents,SPADESdoes not enforce a minimum time in
the future that time notifies can be requested. However, all
actions, whether resulting from a regular sensation or a time
notify, are still constrained by the action latency.

3.2 Discrete Event Simulator

This section describes the simulation algorithm used by
SPADES. This algorithm is a modification of a basic discrete
event simulator.

In order to insure that all events will be executed in
causal order, the simulation environment must determine
whether or not it is possible to receive a future event with
a timestamp less than the next pending event. This so–
called time–managementfunction of parallel simulators is
well studied, and there are a number of approaches that
can be used (Chandy and Misra 1981, Bryant 1977, Mat-
tern 1993, Chandy and Misra 1979, Chandy and Sherman
1989, Lubachevsky 1989, Steinmann 1991, Nicol 1993, Ri-
ley, Fujimoto, and Ammar 2000). Much of the complexity of
these approaches is due to the fact that typically a distributed
simulation will manage private event lists for each process
in the distributed environment. In other words, each process
manages its own event list, and schedules events to and from
this list independently from other processes (within the con-
straints imposed by the time management algorithms). For
ease of implementation, we chose another well–known ap-
proach known as acentralized event list. In this approach, a
single composite event list is managed by amasterprocess,
which is responsible for scheduling events and managing the
event list for all other processors. Any process that needs to
schedule a future event must notify the master process (the
manager of the central event list) to get the event scheduled.
This master process has complete knowledge at all times
of pending events, and can independently determine which
pending events can be safely processed. A drawback of the
central event list approach is that each process must notify
the central scheduler that it has finished processing a prior
event and is ready to process more events. The design of
the agents using the sense–think–act paradigm mitigates this
drawback, since all agents produce an action in response to
sensed events, which serves as notification to the scheduler
that the processing has completed. An obvious major draw-
back of this approach is efficiency and scalability, since a sin-
gle process coordinates activities for all agents. This single
coordination point could become a bottleneck and slow down
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the entire simulation. For our purposes, the total number of
agents is reasonably small, and we haven’t observed signifi-
cant overhead in the centralized event list management. The
performance graphs given later show clearly the overall ex-
ecution time is dominated by the agents’ CPU requirements
for processing sensation events.

It is well understood that any conservative parallel discrete
event simulator requires a non–zerolookaheadproperty in
order to achieve good parallel performance (Ferscha and Tri-
pathi 1996). Simply stated, thelookaheadvalue is a lower
bound on the simulation time difference between the genera-
tion of an event on any processorA and the realization of that
event on some other processorB. Larger lookahead values
are known to give rise to better parallel performance. We
now discuss the the lookahead algorithm ofSPADES. We
will first cover a simple version which covers some of the
fundamental ideas and then describe theSPADESalgorithm
in full.

An explanation of the events that occur in the normal think-
sense-act cycle of the agents must first be given. The nature
of this cycle illustrated in Figure 3. First, an event is put into
the queue to create a sensation. Typically, the realization of
this event reads the state of the world and converts this to
some set of information to be sent to the agent. This set is
encapsulated in a sense event and put into the event queue.
SPADESrequires that the time between the create sense event
and the sense event is at least some minimum sense latency,
which is specified by the world model. When the sense event
is realized, this set of information will be sent to the agent to
begin the thinking process. Notice that the realization of a
sense event does not require the reading of any of the current
world state since the set of information is fixed at the time
of the realization of the create sense event. Upon the receipt
of the sensation, the communication server begins timing the
agent’s computation. When all of the agent’s actions have
been received by the communication server, the computation
time taken by the agent to produce those actions is converted
to simulation time. All the actions and the think latency are
sent to the simulation engine (shown as “Act Sent” in Fig-
ure 3). Upon receipt, the simulation engine adds the action
latency (determined by querying the world model) and puts
an act event in the pending events queue. Similar to the mini-
mum sense latency, there is a minimum action latency which
SPADESrequires between the sending time of an action and
the act event time. The realization of that act event is what
actually causes that agent’s actions to affect the world. Note
that the “Act Sent” time is circled because unlike the others
that represent events in the queue, “Act Sent” is just a mes-
sage from the communication server to the engine and not an
event in the event queue.

Note that a single agent can have multiple sense-think-act
cycles in progress at once, as illustrated in Figure 1. For
example, once an agent has sent its actions (the “Act Sent”
point in Figure 3), it can receive its next sensation even though
the time which the actions actually affect the world (the “Act
Event” point in Figure 3) has not yet occurred. The only over-
lapSPADESforbids is the overlapping of two think phases.

Note also that all actions have an effect at a discrete time.
Therefore there is no explicit support bySPADESfor sup-
porting the modeling of the interaction of parallel actions.
For example, the actions of two simulated robots may be
to start driving forward. It is the world model’s job to rec-
ognize when these actions interact (such as in a collision)
and respond appropriately. Similarly, communication among

Create Sense

sense latency think latency act latency

Event
Sense Event Act Sent Act Event

Figure 3: The Events in the Sense-Think-Act Cycle of an
Agent

agents is handled as any other action. The world model is
responsible for providing whatever restrictions on commu-
nication desired.

The sensation and action latencies provide a lookahead
value for that agents and allows the agents to think in parallel.
When a sense event is realized for agent 1, it cannot cause
any event to be enqueued before the current time plus the
minimum action latency. Therefore it is safe (at least when
only considering agent 1) to realize all events up till that time
without violating event ordering.

The quantity we call the “minimum agent time” determines
the maximum safe time over all agents. The minimum agent
time is the earliest time which an agent can cause an event
which affects other agents or the world to be put into the
queue. This is similar to the Lower Bound on Timestamp
(LBTS) concept used in the simulation literature. The calcu-
lation of the minimum agent time is shown in Table 1. The
agent status is either “thinking,” which means that a sensa-
tion has been sent to the agent and a reply has not yet been
received, or “waiting,” which means that the agent is waiting
to hear from the simulation engine. Besides initialization, the
agent status will always be thinking or waiting. The current
time of an agent is the time of the last communication with
the agent (sensation sent or action received). The receipt of a
message from a communication server cannot cause the min-
imum agent time to decrease. However, the realization of an
event can cause an increase or a decrease. Therefore, the
minimum agent time must be recalculated after each event
realization. However, this algorithm could be modified to be
incremental so that the entire agent set does not have to be
scanned each time.

Based on the calculation of the minimum agent time, we
can now describe a simple version of the parallel agent dis-
crete event simulator, which is shown in Table 2. The value
min_agent_time is used to determine whether any fur-
ther events can appear before the time of the next event in the
queue.

While this algorithm produces correct results (all events

Table 1: Code to Determine the Minimum Time that an Agent
Can Affect the Simulation

calculateMinAgentTime()
∀i ∈ set_of_all_agents

if (agent i.status = Waiting)agent_time i = ∞
elseagent_time i = agent i.currenttime

+ min_action_latency
returnmini agent_time i
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Table 2: Code for Parallel Agent Discrete Event Simulator
for Strict Timestamp Order

repeat forever
wait for messages
next = pending_events .head
min_agent_time = calculateMinAgentTime()
while (next.time < min_agent_time )

advanceWorldTime (next.time )
pending_events .remove(next )
realizeEvent (next )
next = pending_events .head
min_agent_time = calculateMinAgentTime()

are realized in time stamp order) and achieves some paral-
lelism, it does not achieve the maximum amount of possible
parallelism. Figure 4 illustrates an example with two agents.
When the sense event for agent 1 is realized, the minimum
agent time becomes A. This allows the create sense event
for agent 2 to be realized and the sense event for agent 2
to be enqueued. However, the sense event for agent 2 will
not be realized until the response from agent 1 is received.
However, as discussed above, the effect of the realization
of a sense event does not depend on the current state of the
world. If agent 2 is currently waiting, there is no reason not
to realize the sense event and allow both agents to be thinking
simultaneously.

However, this allows the realization of events out of order;
agent 1 can send an event which has a time less the time of
the sense event for agent 2. Certain kinds of out of order
realizations are acceptable (as the example illustrates). In
particular, we need to verify that out of order events are not
causally related. The key insight is that sensations received
by agents are casually independent of sensations received by
other agents. In order to state our correctness guarantees,
we will define a new sub-class of events “fixed agent events”
which have the following properties:

1. They do not depend on the current state of the world.

2. They affect only a single agent, possibly by sending a
message to the agent.

3. Sense events and time notify events are both fixed agent
events.

4. Fixed agent events are the only events which can cause
the agent to start a thinking cycle, but they donot nec-
essarily start a thinking cycle.

Create Sense
Agent 1

Sense
Agent 1

Create Sense
Agent 2

Sense
Agent 2

A

min_action_latency

Figure 4: An Example Illustrating Possible Parallelism that
the Simple Parallel Agent Algorithm Fails to Exploit

The correctness guarantees thatSPADESprovides are:

1. All events which are not fixed agent events are realized
in time order.

2. The set of fixed agent events for a particular agent are
realized in time order.

In order to achieve this, several new concepts are intro-
duced. The first is the notion of the “minimum sensation
time.” This is the earliest time that anewsensation (i.e. fixed
agent event)other than a time notifycan be generated and
enqueued. The current implementation ofSPADESrequires
that the world model provide a minimum time between the
create sense event and the sense event (see Figure 3), so the
minimum sensation time is the current simulation time plus
that time.

The time notifies are privileged events. They are handled
specially because they affect no agent other than the one
requesting the time notification.SPADESalso allows time
notifies to be requested an arbitrarily small time in the future,
before even the minimum sensation time. This means that
while an agent is thinking, the simulation engine cannot send
any more fixed agent events to that agent without possibly
causing a violation of correctness condition 2. However, if
an agent is waiting (i.e. not thinking), then the first fixed
agent event in the pending event queue can be sent as long
as its time is before the minimum sensation time.

To insure proper event ordering, one queue of fixed agent
events per agent is maintained. All fixed agent events enter
this queue before being sent to the agent, and an event is put
into the agent’s queue only when the event’s time is less than
the minimum sensation time.

There are several primary functions dealing with the agent
queue. First, enqueueAgentEvent puts a fixed agent event
into the queue. The doneThinking function is called when an
agent finishes its think cycle. Both functions call a third func-
tion checkForReadyEvents. Pseudo-code for these functions
is shown in Table 3. Note that in checkForReadyEvents, the
realization of an event can cause the agent status to change
from waiting to thinking.

Table 3: Code for Maintaining the Per-Agent Fixed Agent
Event Queues

checkForReadyEvents(a: Agent)
while (true)

if (agenta.status = thinking)
return

if (agenta.pending_agent_events.empty())
return

next = agenta.pending_agent_events.pop()
realizeEvent(next )

enqueueAgentEvent(e:Event)
a =e.agent
agenta.pending_agent_events.insert(e)
checkForReadyEvents(a)

doneThinking(a: Agent,t:time)
agenta.currenttime = t
checkForReadyEvents(a)
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Using these functions, we describe in Table 4 the main loop
that SPADESuses. This is a modification of the algorithm
given in Table 2. The two key changes are that in the first
while loop, fixed agent events are not realized, but are put
in the agent queue instead. The second loop (the “foreach”
loop) scans ahead in the event queue and moves all fixed
agent events less that the minimum sensation time into the
agent queues. Note that in both cases, moving events to the
agent queue can cause the events to be realized (see Table 3).

Table 4: Code for Efficient Parallel Agent Discrete Event
Simulator as Used bySPADES

repeat forever
wait for messages
next = pending_events .head
min_agent_time = calculateMinAgentTime()
while (next.time < min_agent_time )

advanceWorldTime (next.time )
pending_events .remove(next )
if (next is a fixed agent event)

enqueueAgentEvent(next )
else

realizeEvent (next )
next = pending_events .head
min_agent_time = calculateMinAgentTime()

min_sense_time = current_time
+ min_sense_latency

foreache (pending_events ) /* in time order */
if (e.time> min_sense_time )

break
if (e is a fixed agent event)

pending_events .remove(e)
enqueueAgentEvent(e)

4 EMPIRICAL VALIDATION

In order to test the efficiency of the simulation and to un-
derstand the effects of the various parameters on the perfor-
mance of the system, we implemented a simple world model
and agents and ran a series of experiments. We tracked the
wall clock time required to finish a simulation as a measure
of the efficiency.

4.1 Sample World and Agents

The simulated world is a two dimensional rectangle where
opposite sides are connected (i.e. “wrap-around”). Each
agent is a “ball” in this world. Each sensation the agent re-
ceives contains the positions of all agents in the simulation,
and the only action of each agent is to request a particular
velocity vector. The dynamics and movement properties are
reasonable if not exactly correct for small omni-directional
robots moving on carpet, except that collisions are not mod-
eled. The world model advanced in 1ms increments.

We created two kinds of agents. The “wanderer” moves
randomly around the world. The “chaser” chases one of

the randomly moving agents by setting its requested velocity
directly towards the current observed location of that agent.

4.2 Experimental Setup

All experiments were run on theFerrari Linux cluster at
Georgia Tech. The cluster consists of sixteen identical Linux
boxes, each with 2 Pentium III CPU’s running at 850Mhz.
The operating system is RedHat Linux version 7.3. Each
system has 2GB of main memory, and all systems are con-
nected via a private Gigabit Ethernet network and a Foundry
BigIron router.

For these experiments, we varied three parameters of the
simulation environment:

• The number of machines, varying from 1 to 13 (hard-
ware problems prevented using all 16 machines).

• The number of agents, varying from 2 to 26.
• Computation requirements of the agents. To simulate

agents that do more or less processing, we put in sim-
ple delay loops. We used 3 simple conditions of fast,
medium, and slow agents. Fast agents simply parse the
sensations and compute their new desired velocity with
a some simple vector calculations. The medium and
slow agents add a simple loop that counts to 500,000
and 5,000,000 respectively. On an 850MHz Pentium
III, this translates to approximately 1.0ms and 9.0ms
average response time. Only the fast and slow perfor-
mance graphs are shown, due to space considerations.

Every experimental condition was run five times and the
median of those five times is reported. Each simulation was
run for 90 seconds of simulation time. In all experiments, the
agents received sensations every 95–105 milliseconds (actual
value chosen uniformly randomly after each sensation). The
sensation latency was chosen uniformly randomly between
30 and 40 milliseconds for each sensation and action.

The processes were distributed to the machines as follows:
The same machine always runs the simulation engine and
world model process. Then, all machines (including the ma-
chine running the simulation engine) run a communication
server, with the agents as equally distributed as possible to
all communication servers.

4.3 Results

Figure 5 shows speedup compared to running the simulation
on a single machine. The performance charts show some
interesting of interesting results.

Moving from a single processor to two processors never
slows down the simulation, and in most cases achieves
speedups between 1.3 and 1.75.

As expected, there is significant diminishing return as the
number of machines increases, due to the additional inter–
processor overhead required as more processors are added to
the simulation.

The detrimental affect of the communication overhead is
quite pronounced in thefastagents case (Figure 5(a)). While
we always get non–zero speedup in the 2–processor case
(in the range of 1.3 to 1.75), the communication overhead
for additional processors begins to dominate the simulation’s
performance, with little further speedup beyond 5 processors.
For larger processing time (Figure 5(b)), the communication
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Figure 5: Speedup Results with the Sample World Model and
Agents (note that the y-axes have different scales)

overhead becomes less significant, with continued speedup
improvement up to 13 processors in some cases.

The affect of proper load balancing is obvious. Observe
the speedup chart in Figure 5(b). Notice the large jump in
speedup in the 14 agents case (marked with the hollow boxes)
when the number of processors increases from 6 to 7. With
14 agents distributed on 6 processors, 4 of the processors
are assigned 2 agents, and 2 of the processors have 3 agents.
Since the overall progression of time in the simulation is
bounded by the slowest running processor, the performance
is bounded by the processors with 3 agents each. When 7
processors are assigned to this scenario, each processor gets
exactly 2 agents and a noticeable speedup jump occurs at this
point. The speedup line for the 14 agent case then remains
nearly flat up to 13 processors, since one or more processors
must have 2 agents up to that point. Similar results can be
seen for the 18 agents case. A large speedup jump occurs
when increasing the processors from 8 to 9, which is the
point where all processors have exactly two agents. Again,
the speedup remains reasonably flat beyond 9 processors, for
the same reasons.

4.4 Repeatability

In order to verify the reproducibility of theSPADESsystem,
we ran a further set of of experiments. For every combination
of 4, 12, and 24 agents running at the fast, medium, and slow
speeds (as described above), we repeatedly ran simulations
with the same random seeds given to both the world model

and the agents. For each combination, we ran trials using
from 1 to 8 machines. Two trials were run while no other
significant processes were run on the machine, and two were
run with no control over extra processes and artificial load
added to half of the machines. The artificial load consisted
of five processes running in infinite loops.

In all cases, the results of the simulation in terms of the
positions, the sensations, and the actions of all the agents are
exactly identical. It should be noted that the order of event
realization is not identical, asSPADESallows certain out of
order executions which do not violate causality.

Further note that perfect reproducibility can also be
achieved without theperfctr based timer.SPADESalso sup-
ports the the recording of thinking times from one run to be
replayed during a subsequent run.

5 CONCLUSION

We have presented the design of and experimental results for
theSPADESsystem to support efficient simulation. The sys-
tem supports the tracking of computation time of the agents
in order to model the thinking time as part of the simula-
tion. Unlike other AI simulators, this is accomplished in a
distributed environment while being tolerant of network and
machine load variations, and without requiring the agents to
be implemented in a particular programming architecture or
language. This provides an open agent environment where
agents designed by different groups can interact.

Further,SPADESsupports simulation where the smallest
time step of the simulation is much smaller than the typical
sensation and action latencies of the world being modeled.
Agent actions do not have to be synchronized. These features
allow a much closer approximation to the continuous time
frame underlying most simulations.

With the implementation of a sample world model, we
empirically tested the system. The results show that good
parallel speedups can be achieved and that the system does
not suffer from a slow down even when moving from one
machine to two. Further, when the agents are more compu-
tationally intensive, better speedups can be achieved. How-
ever, we have not yet fully explored the issue of how the
sensation and action latencies affect the parallel speedups.
Also, SPADESresults can be reproduced exactly regardless
of the number of machines used for the simulation and the
load of the machines.

The system does suffer from several drawbacks. The sim-
ulation engine is a centralized component and the system
provides no direct support for the distribution of the simula-
tion of the world model, only the distribution of the agents
themselves.

SPADEShas no restrictions on the design of the agents
other than interface requirements. While this is a benefit in
allowing a greater degree of inter-operability, it does place
more of a burden on the agent designers.

SPADESprovides a solid foundation for high-quality agent
based simulations. It handles many system and distribution
details so that they can be largely ignored by the world model
and agent designers, while still maintaining efficient and re-
producible results.SPADESis a powerful new tool for cre-
ating simulations for the study of artificial intelligence.

SPADESis released publicly available under the LGPL.
Source code and documentation can be downloaded from
<http://spades-sim.sourceforge.net> .
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