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Distributed Optimization Problem

“How do a set of agents optimize over a set of alternatives that have 
varying degrees of global quality?”

Examples
l allocating resources
l constructing schedules 
l planning activities

Difficulties
l No global control/knowledge
l Localized communication
l Quality guarantees required
l Limited time



2

3

Approach

l Constraint Based Reasoning 
– Distributed Constraint Optimization Problem (DCOP) 

l Adopt algorithm
– First-ever distributed, asynchronous , optimal algorithm for DCOP
– Efficient, polynomial-space

l Bounded error approximation
– Principled solution-quality/time-to-solution tradeoffs
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Constraint Representation

Why constraints for multiagent systems?
l Constraints are natural, general, simple

– Many successful applications
l Leverage existing work in AI

– Constraints Journal, Conferences
l Able to model coordination, conflicts, interactions, etc…

Key advances
l Distributed constraints
l Constraints have degrees of violation



3

5

Distributed Constraint Optimization (DCOP)

Given
l Variables {x1, x2, …, xn}, each assigned to an agent
l Finite, discrete domains D1, D2, … , Dn, 
l For each xi, xj, valued constraint fij: Di x Dj → N.
Goal
l Find complete assignment A that minimizes F(A) where,

F(A) = Σ fij(di,dj), xi←di,xj ←dj in A
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Existing Methods

Execution Model

Optimization

Satisfaction

No guarantee

Synchronous Asynchronous

Iterative Improvement
(Yokoo96)

Asynchronous Backtracking
(Yokoo92)

Branch and Bound
(Hirayama97) ?

T
he

or
et

ic
al

 g
ua

ra
nt

ee



4

7

Desiderata for DCOP

Why is distributed important?
l Autonomy
l Communication cost
l Robustness (central point of failure)
l Privacy

Why is asynchrony important? 
l Parallelism
l Robust to communication delays
l No global clock

Why are theoretical guarantees important?
l Optimal solutions feasible for special classes
l Bound on worst-case performance

loosely connected
communities
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State of the Art in DCOP

Why have previous distributed methods failed to provide 
asynchrony + optimality?

l Branch and Bound
– Backtrack condition - when cost exceeds upper bound
– Problem – sequential, synchronous

l Asynchronous Backtracking
– Backtrack condition - when constraint is unsatisfiable
– Problem - only hard constraints allowed

l Observation Previous approaches backtrack only when sub-
optimality is proven 
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Adopt: Asynchronous Distributed Optimization

First key idea -- Weak backtracking 
l Adopt’s backtrack condition – when lower bound gets too high

Why lower bounds?
l allows asynchrony
l allows soft constraints
l allows quality guarantees

Any downside?
l backtrack before sub-optimality is proven
l solutions need revisiting

– Second key idea -- Efficient reconstruction of abandoned solutions
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l Agents are ordered in a tree
– constraints between 

ancestors/descendents
– no constraints between siblings

l Basic Algorithm:
– choose value with min cost
– Loop until termination-condition true:

l When receive message: 
– choose value with min cost 
– send VALUE message to 

descendents
– send COST message to parent
– send THRESHOLD message to child

Adopt Algorithm

Constraint Graph
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Tree Ordering

x1

x2

x3 x4



6

11

Weak Backtracking
l Suppose parent has two values, “white” and “black”

parent

Explore “white” first

LB(w) = 0
LB(b) = 0

parent

Receive cost msg

LB(w) = 2
LB(b) = 0

parent

Now explore “black”

LB(w) = 2
LB(b) = 0

parent

Receive cost msg

LB(w) = 2
LB(b) = 3

parent

Go back to “white”

LB(w) = 2
LB(b) = 3

parent

Termination Condition True

LB(w)=10 =UB(w)
LB(b)=12

. . . .
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Example 

concurrently choose, 
send to descendents
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report lower bounds
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LB =1LB=2

LB =1

x4

x1 switches value
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x3

x2, x3 switch value, 
report new lower bounds
Note: x3’s cost message to x2
is obsolete since x1 has changed 
value, msg will be disregarded
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Revisiting Abandoned Solutions

Problem
– reconstructing from scratch is inefficient
– remembering solutions is expensive

Solution
– backtrack thresholds – polynomial space
– control backtracking to efficiently re-search

parent
backtrack
threshold 
= 10

parent

. . . .

parent

. . . .

Explore “white” first

LB(w) = 10
LB(b) = 0

Now explore “black”

LB(w) = 10
LB(b) = 11

Return to “white”

Parent informs child of lower bound:
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Backtrack Thresholds
l Suppose agent i received threshold = 10 from its parent

Explore “white” first

LB(w) = 0
LB(b) = 0
threshold = 10

Receive cost msg

LB(w) = 2
LB(b) = 0
threshold = 10

Stick with “white”

LB(w) = 2
LB(b) = 0
threshold = 10

Receive more cost msgs

LB(w) = 11
LB(b) = 0
threshold = 10

Now try black

LB(w) = 11
LB(b) = 0
threshold = 10

agent i agent i

Key Point: Don’t 
change value until 
LB(current value) > 
threshold.
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parent parent parent
thresh=5 thresh=5 LB=6

thresh=4 thresh=6

Time T1 Time T2 Time T3

LB(w) = 10
parent

multiple
children

thresh = ?thresh = ?

Third key idea: Dynamically rebalance threshold

LB(w) = 10 LB(w) = 10 LB(w) = 10

Backtrack thresholds with multiple 
children

How to correctly 
subdivide threshold?
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Evaluation of Speedups

Conclusions

• Adopt’s lower bound search method and parallelism yields 
significant efficiency gains

• Sparse graphs (density 2) solved optimally, efficiently by Adopt.
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Number of Messages

Conclusion
• Communication grows linearly

• only local communication (no broadcast)
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Bounded error approximation

l Motivation Quality control for approximate solutions

l Problem User provides error bound b
l Goal Find any solution S where 

cost(S) ≤ cost(optimal soln) + b

• Fourth key idea: Adopt’s lower-
bound based search method 
naturally leads to bounded error 
approximation!

lower bound = 10root

threshold = 10 + b
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Evaluation of Bounded Error

Conclusion

• Time-to-solution decreases as b is increased.

• Plus: Guaranteed worst-case performance! 
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Adopt summary – Key Ideas

l First-ever optimal, asynchronous algorithm for DCOP

– polynomial space at each agent

l Weak Backtracking
– lower bound based search method
– Parallel search in independent subtrees

l Efficient reconstruction of abandoned solutions
– backtrack thresholds to control backtracking

l Bounded error approximation
– sub-optimal solutions faster
– bound on worst-case performance


