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Resumo

Tendo em vista que em aplicações de Inteligência Artificial não existe um formalismo universal capaz de solucionar qualquer problema com desempenho ótimo, sistemas híbridos tornam-se necessários para melhor tratar tarefas específicas pela integração de diferentes abordagens em um único arcabouço. Uma das possíveis alternativas consiste na integração de redes neurais artificiais com outros métodos existentes de aprendizado de máquina na construção de modelos mais compreensíveis e robustos. Em especial, redes de funções de base local são alternativas conhecidas a modelos globais como o perceptron multicamada, mas são mais sensíveis a diferentes medidas de distância e à maldição da dimensionalidade, entre outras limitações. Neste trabalho, descrevem-se as peculiaridades destes modelos e como métodos de partição simbólica do espaço de entrada, amplamente divulgados pela pesquisa em aprendizado de máquina e estatística, relacionam-se com as redes neurais citadas.

Dentro deste contexto, modificações em uma arquitetura clássica de redes neurais são efetuadas com o intuito de pós-processar conjuntos de regras proposicionais de classificação geradas automaticamente por algoritmos de indução. O objetivo é produzir, através de mecanismos de otimização comuns em redes neurais, regras probabilísticas com poder classificatório semelhante ao conjunto original, mas com consideráveis simplificações no número de regras e premissas utilizadas. Este processo é composto por uma etapa inicial de transformação de regras booleanas em funções de base local suavizadas, seguida de ciclos de eliminação de parâmetros e reajuste por aprendizado supervisionado.

Entre as aplicações para o modelo proposto, destaca-se o auxílio à descoberta de conhecimento e tomada de decisão. É comum que conjuntos massivos de regras sejam gerados em processos de mineração de dados, resultando em modelos incompreensíveis não pela representação de conhecimento utilizada, mas devido a sua complexidade. Métodos de eliminação de regras são necessários, mas talvez não suficientes. Para melhor tratar questões de poda de parâmetros, foram introduzidos os passos adicionais de mapeamento em regras probabilísticas e reajuste.

Resultados em um benchmark de treze bases de dados de problemas reais e três bases de dados geradas artificialmente são utilizados para fornecer evidências de que a abordagem proposta é capaz de efetuar consistentemente grandes reduções na quantidade de parâmetros produzidos através de um algoritmo de geração de regras por cobertura recursiva. É importante ressaltar que estas simplificações são alcançadas sem prejuízo da precisão classificatória dos modelos originais. Além disso, testes para avaliar a qualidade das regras obtidas indicam que a metodologia descrita é capaz de realizar estas simplificações sem necessariamente resultar em um aumento na sobreposição das regras, o que prejudicaria sua interpretabilidade.

palavras-chave: aprendizado de máquina, mineração de dados, redes neurais, classificação.

Abstract

Since there is no individual approach that can be universally applied to effectively solve all Artificial Intelligence problems, hybrid systems are necessary to better tackle specific tasks by exploiting the advantages of different methodologies in a single framework. One possible approach is the integration of artificial neural networks and other machine learning algorithms for the construction of more comprehensible and robust models. In special, networks of local basis functions are well-known alternatives to global models such as the multilayer perceptron, but have their own weaknesses, like more sensibility to the curse of dimensionality and choice of distance measures. In this work, specific characteristics of these local models are described and related to methods of recursive covering and partitioning widely used in machine learning and statistical applications.

Under this context, modifications in a classical neural network model are performed with the purpose of post-processing sets of classification rules automatically generated by rule induction algorithms. The motivation is to produce, by optimization techniques common in neural network learning, probabilistic rules with classification accuracy at least as good as the original set, but with considerable simplification of the number of rules and premises. This process is composed of an initial stage of mapping from boolean rules into smooth kernels, followed by cycles of parameter pruning and parameter fitting by supervised learning.

Among the possible applications of the proposed approach, the most noticeable one is the aid to knowledge discovery and decision making. It is common that data mining processes generate large rule sets, resulting in incomprehensible models. The unintelligibility does not come from the knowledge representation language (weighted propositional rules, in this case), but from their complexity. Pruning techniques are necessary, but maybe not sufficient. For a more effective model simplification, steps of rule smoothing and fitting were added.

Results in a benchmark of thirteen real world and three artificial data sets are used to provide evidence of the effectiveness of the proposed framework in consistently reducing the amount of information generated from recursive covering rule induction algorithms. It is interesting to notice that these simplifications are performed without significant losses in classification accuracy when compared with the original rule sets. Furthermore, some evaluations of the quality of the rules obtained indicate that the described methodology is able to perform the pruning without necessarily resulting in an increase of rule overlapping, which would harm their interpretability.

keywords: machine learning, data mining, neural networks, classification.
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Chapter 1


Introduction

The research methodology in Artificial Intelligence (AI) shows evidence of modification during the last years: today is more common to invest in the development of mature ideas rather than in the proposal of totally new (or apparently new) approaches (Russell and Norvig, 1995).

A straight result of this process is a better understanding of the similarities and differences among the available techniques in usage. In fact, in the field of machine learning and data mining, one can say that the majority (or even all) of the applied methods can be interpreted as extensions or hybrids of a few basic principles (Fayyad et al., 1996).

Under this perspective, this work discusses approaches that integrate well known concepts in machine learning for the tasks of knowledge discovery and generation of understandable models. Hybrid systems are introduced as a framework for categorization of the many different kinds of integration.

 LISTNUM Section1  Intelligent hybrid systems

Intelligent hybrid systems combine different approaches and methods for the solution of a given problem considered to be part of the AI domain. It is difficult to determine accurately the degree in which parts of a problem solver could be considered "different approaches". As a result, the concept of hybrid systems is itself ill-defined. Those systems must integrate many "intelligent", "sophisticated" techniques, but even those concepts change in time (Giles et al., 1998): well-succeeded intelligent techniques gradually become standard computational procedures. For example, hill climbing methods of search and optimization, once hard to found in Computer Science text books, out of the Artificial Intelligence literature (e.g., Rich and Knight, 1991), are now widely spread.

It is easy to imagine systems in which the boundaries of categorization between hybrid and non-hybrid solutions are very imprecise: one can consider a case-based reasoning system (Kolodner, 1993; Aadmot and Plaza, 1994) that uses a loose heuristic to find a initial set of suitable cases and a more precise, and at a higher computational cost, procedure to refine this set and return the best of the selected solutions. Would this explicit task division qualify our proposed system as a hybrid one? As it will be discussed later, there is a whole continuum of categorization, but as a general rule it is desirable that hybrid systems have a considerable level of complexity and integration.

Analogies between several adaptive computational models, developed under different perspectives, can be traced at least from the rise of control theory and cybernetics in the first half of the century (Crevier, 1994). Even within such a reasonable time, the unifying view of machine learning and its mathematical foundations is relatively recent. For example, some researchers and practitioners of artificial neural network solutions still do not understand the several assumptions that underlie those models, generally similar to other statistical models, which a more careful examination reveals (Sarle, 1999). Nowadays, there is a considerable amount of publications (Ripley, 1996; Kosko, 1997; Cherkassky and Mulier, 1998) that approaches machine learning and pattern recognition under a more theoretical and multi-disciplinary point of view. Following this trend, the development and exchange of new ideas built on well-known principles is favored, in opposition to the common practice of continued reinvention of the same concepts under different nomenclatures in different research communities.

 LISTNUM Section1.1  Motivation

Each modeling technique has its own intrinsic properties that are suitable under a limited set of situations, but none of them can be accepted as a universal solution. The main motivation under the development of hybrid systems is the combination of two or more architectures in a way that the final model is able to profitably explore the strengths of each technique while avoiding their weaknesses (Gray, 1997). Usually, this is an idealized objective and, in practice, it is necessary to deal with some kind of compromise under the set of available features of each technique. For example, more robust classifiers can demand more computational time, or be less interpretable.

Among the several characteristics of intelligent systems, the effect resulting from the combination of complementary methods can be reflected in (adapted from Goonatilake and Khebbal, 1995):

· better representation of knowledge: the choice of a suitable language of modeling is a vital point in mathematics, in general. In Artificial Intelligence, many languages are complementary, like rules and frames (Aikins, 1984), graphs and probability (Pearl, 1988), among others. Important evolutions in AI are a result of a process of language unification;
· machine learning and automatic knowledge acquisition: many methods of machine learning (Mitchell, 1997) are used for prediction (automatic classification, regression, etc.) and data description (summaries and rule sets from processes of data mining for further decision making, etc.). A related problem and one of the initial motivations for machine learning is automatic knowledge acquisition for expert systems (Carbonell et al., 1983), a task that comprehends necessities of good prediction, for autonomous application of the system, and data description, for validation of the model by human experts, as well as the introduction of prior knowledge. The available approaches in machine learning have different degrees of robustness and interpretability, favoring the exploration of the continuum space of alternatives in these characteristics that better fit a problem through the development of hybrid systems;
· cognitive and mathematical modeling: the study of hybrid systems is one of the several ways of modeling the different levels of abstraction of the activities performed as part of the human reasoning processes. Artificial neural networks and rule-based systems are examples of approaches that are situated in separated levels. Research that emphasizes the relationship among different formalisms can shed light over the process of information manipulation performed by the human mind (Norman, 1986; Del Nero, 1997). Examples of expected results can be found under the label of "high-level connectionist models" (Barden and Pollack, 1991), which comprehend tasks as natural language processing by neural network means. In an analogous way, hybrid systems are part of a sequence of efforts for the unification of mathematical models performed by the most different scientific communities. Many of the theoretical progresses in Mathematics and related sciences basically fall in this category.
Equivalencies of mathematical models are essential as theoretical support for the viability of building hybrid systems. In a more abstract level of comparison, several existing computation architectures can be evaluated under the representation of Turing machines. The original work by McCulloch and Pitts (1943) about the computation of logical functions by networks of artificial neurons is the precursor of the connectionist architectures of AI as well as of the symbolic representations (and even closer to the latter than to the former). The work of Von Neumann received a considerable influence of McCulloch and Pitts (Boden, 1994). As a result, computations involving connectionist models can frequently be compared with equivalent procedures in symbolic models. For example, the property of graceful degradation is not exclusive of neural networks and can be easily found in alternative symbolic solutions for many tasks
.

Table 1.1 illustrates a simplified comparison between standard neural networks and rule-based systems under the criteria of knowledge representation and its structural components (McGarry et al., 1999).

Feature
Neural networks
Rule-based systems

Knowledge representation
Connections, network architecture (multilayer perceptrons, radial basis functions, etc.)
Rule (propositional logic, first-order logic, etc.)

Computational elements
Units
Weights
Thresholds/biases
Premises, conclusions
Predicates
Rule precedence

Processing
Continuous activations
Discrete symbols 
Numerical intervals

Table 1.1: correspondences between neural networks and rule-based systems.

 LISTNUM Section1.1  Categorization

As a result of the imprecise definition of hybrid systems, there are many different ways of categorizing those systems, varying from aspects of implementation to more abstract criteria. However, methodologies of classification are still useful because they provide to researchers a framework to better understand and formalize the computational necessities of information processing that must be fulfilled.

McGarry et al. (1999) define a taxonomy motivated by those principles and specially oriented for hybrid systems of neural networks and rules. However, it can be applied with no modifications to a greater variety of systems. The three categories defined by the authors are:

· unified hybrid systems: all tasks of processing are performed by a single formalism that is constructed based on central modifications in one basic technique, for instance, treating first-order predicates with a neural network. In general, these modifications cannot be isolated in specific sub-tasks of the model;
· transformational hybrid systems: these systems modify basic representations to build parts of a model using different formalisms. For example, a neural network initialized by using rule-base knowledge and with genetic algorithms as the optimization algorithm for learning. However, in this example, the prediction itself is accomplished by the trained neural network alone, with no participation of the original rule-base and with no more influence of the optimization algorithm;
· modular hybrid systems: they solve parts of a task with completely detached techniques. For example, an expert system that computes the instantiations of a group of variables by the application of production rules, while another group is instantiated by the predictions of a neural network. The previous categories in this taxonomy of hybrid systems are more domain-independent, but this class is usually designed to solve specific problems. Redundant computations (i.e., performing a same task using more than one technique) is also a common strategy to increase the reliability of results. Many of the hybrid systems applied on practice fall under this category.
 LISTNUM Section1.1  Development concerns

Hybrid systems are getting an increasing amount of attention from researchers in Artificial Intelligence and related fields, but there are reasons to generate skepticism (Gray, 1997). Many of the published works seems to combine methodologies in an ad-hoc fashion, with no concerns in verifying the real advantages of those hybridizations. A hybrid system can achieve a good performance, but it does not mean that the basic techniques, when applied in isolation, are not better. As a further concern, they require expertise from a multitude of sources that demand more skills of a researcher. For instance, there is enough misconception among users that deal with neural network and fuzzy logic technologies, indicating that one can only expect an increase in this misconception when the same professionals engage in the development of neurofuzzy models.

It seems clear that few theoretical foundations and engineering methodologies have been applied to the effective development of hybrid systems (Giles et al., 1998). However, some proposals have been introduced during the last years. Goonatilake and Khebbal (1995) delineate a development cycle for hybrid systems divided into the following sequence of steps:

· problem analysis: identification of the intended sub-tasks, study of the viability of decomposition into smaller tasks and other properties of the problem, like the necessity of prior knowledge and transparency;

· property matching: survey of the properties of the available techniques when compared to the identified requirements of the previous step;

· category selection: choice of the degree of integration of the system. A taxonomy like the one described on Section 1.1.2 must be used as a guide;

· implementation, validation and maintenance: the authors suggest the application of object-oriented methodologies as a general framework of implementation. In the context of learning systems, tasks concerning the validation and maintenance usually include tests with independent data sets and a sporadic need of retraining, respectively. 

Khebbal and Shamhong (1995) complement this proposal with a survey about development tools for hybrid systems. The authors give more explicit justifications for the application of object-oriented methodologies for implementation of practical applications, like the necessity of encapsulation, message passing, and the adequacy to distributed environments. However, the discussed tools were not specially designed for the implementation of intelligent hybrid systems, but for general distributed applications.

Besides those problems, researchers in this field must be aware not to be victims of an ironic trap. Minsky (1990) alerts to the practical impossibility of elaboration of a general theory of Artificial Intelligence, a complete framework able to formalize in a general model all principles of this field. The concept of hybrid systems itself was born by the understanding of this limitation: in a foreseeable future, there is no unique and final solution for general problems. On the other side, many professionals that develop those systems are motivated by the study of the basic foundations that explain the common points of different approaches, leading them to the desire (and frustrated expectations) of creating a universal system! They just forget that specialized solutions usually work better and give greater insights to the appropriated domains.

 LISTNUM Section1.1  Related approaches

An intermediate standpoint for the problem described by Minsky is introduced by Michalksi (1994) for problems of machine learning: a framework denominated multistrategy task-adaptive learning (MTL). The main idea is to allow a hybrid system to choose in an autonomous way a learning strategy better suited for a given task. By definition, the MTL architecture must integrate systems in many degrees of interoperability and knowledge representation. A suggested approach for implementation is dynamic task analysis, where the learning systems analyze the relationship between the input, the available prior knowledge and the current target. The learning process is guided by the results of those analyses. For example, a new input can be correctly classified by a rule base, or transformed in another object according to a given ontological framework, being identified as analogous to a previous learned example
, or raising sufficient evidence about the necessity of learning a new sub-concept for better generalization. In general, MTL aims at the combination of empirical and analytical learning.

The metalanguage KGL, Knowledge Generation Language (Kaufman and Michalski, 1998), is a tool inspired by MTL principles. In an iterative process of data analysis, usually the professional committed to the task must inspect each step for defining a good strategy to be followed in the consecutive operations. This strategy may include the application of another induction method, choice and derivation of new attributes, division of a data set, filtering of results, among others. Planning experiments with KGL is performed by a priori programming of situations where critical choices must be make. The control strategy applies a set of parameterized operators when a given condition is satisfied by a data base or by the hypotheses in supervision, guiding the system among many contingencies. KGL focuses on a semi-automated alternative to the usual fully interactive process of data analysis, specially cumbersome when the available tools have dozens of options (which is expected when one considers the introduction of hybrid systems). A consistent usage of KGL results in a library of reusable procedures that can be slightly modified for new situations or even applied repeated times in data bases regularly updated.

Other indirectly related approaches to learning hybrid systems are the aggregation of models (Breiman, 1994; Schapire, 1999) and multitask learning (Caruana, 1997). Those methodologies were not specially defined for hybrid systems, but are motivated by the same idea that multiple model representations of a data set, even when those models are of a same functional form, can be useful as a way of improving prediction accuracy.

Aggregation uses models of a same category (for instance, decision trees), but induced from different subsets of the whole body of available data. Prediction is performed by a weighted combination of those models. Besides combining algorithms with the same inductive bias, this blend usually produces smaller predictive errors at a smaller variance when the base inducers are particularly sensitive to slight changes in the training set, which is often the case for flexible methods like neural networks and rule induction algorithms. It is important to note that intelligent techniques for increasing the robustness of a model is a basic target in developing hybrid systems, and this approach can be interpreted as a modular hybrid systems (section 1.1.2) with configuration in parallel. If aggregation is able to achieve the desired levels of performance within the required requisites of a given application, there is no need to devote time and limited resources for developing a more complex system.

In multitask learning, models built for a specific set of tasks are induced simultaneously, presuming there is a relatively strong correlation among these tasks. The primary motivation is the fact that much of the information necessary to perform different problems are extracted from a common sub-domain. The sharing of information obtained from parallel learning cycles could be a source of knowledge not straightly derivable from data. There are many examples where multitask learning raises naturally. Essentially, neural network learning with multiple output units is performing multitask learning, where the units in the hidden layer are a common basis for all the computed outputs. Those kinds of dictionary representation have a major role in data analysis (Cherkassky and Mulier, 1998). However, it is not common to apply dictionary models for tasks not strictly related. Many other less obvious sharing strategies can be performed. In special, Thrun and O’Sullivan (1996) discuss a task sharing mechanism using k-nearest neighbors that selects the most relevant tasks for a given problem.

 LISTNUM Section1  Dissertation context and motivation

Principles and motivations for hybrid system development were presented as a starting point for the discussion of an important class of intelligent techniques for machine learning and data analysis: local basis functions for classification. Those functions are studied in a variety of representations, often neglecting their mathematical roots, advantages and limitations. This dissertation covers advances from different perspectives, intending to explicit their common principles in a hybrid system framework. As a contribution, a new variation for automatic classification is developed based on current works on rule induction and kernel classifiers with a slant towards neural network terminology. 

Classification here must be understood as assigning to an input a label drawn from a pre-defined finite and discrete set of categories. Other issues from decision theory, such as outlier detection, when an input is rejected because it does not come from the assumed population of examples, or doubt decisions, when an input is not assigned to any class because there is no clear choice under a given threshold of separability (Ripley, 1996) are only briefly commented. Classifiers can be categorized into parametric and non-parametric models. Parametric models are given a fixed structure by the data analyst with some free parameters that must be determined by a learning procedure (e.g., fitting the coefficients of a pre-defined polynomial). Non-parametric procedures has little or no prior form: the structure of non-parametric models is defined using the data itself and various learning criteria
. 

Opposing to the popular criteria of achieving as much accuracy as possible, this proposal is analyzed under the compromise of building simpler models without undesirable harms to predictive abilities. It must be stressed that the concept of simplicity is quantified, under the context of this dissertation, as the number of parameters of the classifier
. Throughout the following chapters, simple models must be understood as models with few parameters. We assume that models with less parameters are models that are easier to understand and to extract meaningful information. This quantification will be used when performing empirical studies to compare the proposed approach to well known alternatives for classifier induction.

Another important concept that will be used frequently during this dissertation is the one of a good classifier with respect to a given domain. It will be necessary when demonstrating that a classifier can have different degrees of complexity while still being a good one. Here, a good classifier is defined in terms of its predictive accuracy, i.e., its misclassification rate in the problem at hand. In principle, a classifier is good if it reaches the optimal Bayesian error, i.e., it minimizes the probability of misclassification within the given attributes (Ripley, 1996). Since its is difficult to determine the optimal Bayesian error in practice with finite data sets, a “good” misclassification rate is defined by comparing it with the best results among the current available classifiers. The quality of a classifier is a function of these available results and it is always evaluated with respect to a given domain.

The main idea of the proposed approach is to post-process classification rules generated from a given rule induction algorithm to achieve fewer rules with fewer premises. This is important for knowledge discovery and analytical validation of models, since the amount of rules coming from automated processes can be overwhelming and useful information may be lost into a unnecessarily complex set of relations that do not explain the data better (in terms of prediction accuracy) than simpler models.

The survey in Chapter 2 and the proposed algorithm in Chapter 3 deal with instances represented by vectors
 of attribute-value pairs, which means that data in form of first-order predicates, graphs and other structured information are not in the context of this dissertation. Although some of the models introduced in the survey deal with tasks of probability density estimation and associative memory, the main motivation behind this discussion is the problem of inducing good classifiers from data. 

The high level interpretation of the proposed model is associated with probability and propositional logic, where only attribute-value premises are considered. This choice was made because the propositional representation has widespread geometrical and probabilistic interpretations, facilitating the integration of these rule-based approaches with other available techniques. Furthermore, since propositional rule inducers are likely to be more used in larger data sets than first-order rule inducers due to its relative computational simplicity (Mitchell, 1997), the problem of getting an excessive number of rules is more common with propositional representations.

 LISTNUM Section1  Dissertation outline

This dissertation comprehends the following chapters:

· Chapter 2: Local Basis Functions and Hybrid Systems
concepts of local learning are introduced as a powerful framework for the development of automatic learning systems. Under this context, this chapter provides a background on the most common models of local basis functions from a variety of motivations. It is followed by a discussion of important points that could be exploited by hybrid systems. Those points are illustrated by a brief survey of state-of-the-art hybrid approaches, their motivations and how they compare to the most used methodologies.

· Chapter 3: A Hybrid System for Rule Refinement

an alternative approach to induction of rules is build upon the principles introduced in the previous chapter. The starting point are the intrinsic similarities between smooth kernel classifiers and rule bases, both on function representation as well as learning algorithms. This model consists in a network of smooth kernels initialized by the output of a rule inducer based on recursive covering techniques. Different justifications are given to the choice of the structural steps performed to map rules into smooth kernels and fitting procedures. The focus is not in improving accuracy of the rule set, but rather trying to achieve considerable simplification while maintaining equal to or better classification performance;

· Chapter 4: Experimental Results

traditionally, empirical evaluation is necessary to validate the merits of a learning algorithm. This study is performed to compare the proposed approach with common methodologies of tree and rule induction. The criteria is mainly the total number of rules and premises in a variety of domains of a public available benchmark, along with accuracy results to indicate that no significant accuracy is being lost by the simplification procedure. Extra topics are also tackled, like evaluation of complexity against data set size and evaluation of quality of the model by criteria of locality;

· Chapter 5: Conclusion

a summary of the contributions and design decisions as well as a restatement of the positive points followed by a discussion of the limitations and possible enhancements that can take place in future works.

Chapter 2


Local Basis Functions and 
Hybrid Systems

This chapter describes how local basis functions and local learning algorithms can be explored as foundations for the development of hybrid systems. The main concerns that guide and motivate these approaches are easy of interpretability, computational efficiency, avoidance of catastrophic interference, among others. These issues are better described by various examples of different approaches, with a special focus on classification problems.

In this chapter, we first introduce the concept of local models under different perspectives. The most typical algorithms for induction of local representations are the subject of Section 2.2, while more unconventional or hybrid approaches are given motivations in Section 2.3 with selected examples described on Section 2.4. Those sections are followed by a chapter summary.

 LISTNUM Section2  Local learning and local representation

Bottou and Vapnik (1992) define local learning algorithms as methods that locally adjust the properties of a training system to the properties of a training set in each area of the input space. Bottou and Vapnik also discuss the advantages of a local learning algorithm that dynamically fits simple models (for example, linear regression) to the neighborhood of the point that one wants to estimate:

for each testing pattern, select the few training examples located in the vicinity of the testing pattern, train a neural network (or another predictive model) with only these few examples and apply the resulting network to the testing pattern.

The selection of the neighbors is done by localized basis functions f(x), with the property that f(x) ( 0 as |x| ( ( (Bishop, 1995, page 165). Another name that is usually applied to these functions is kernel functions, and both denominations will be used along this dissertation. The influence of each point is computed by this function, which in the simplest case can be the boolean 

f(x) = 1, if x ( ( 
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f(x) = 0, if x > ( 




 

where ( is a given threshold and x is usually associated with a measure of distance from the desired point to another arbitrary point. We will discuss measures of distance as an important component for predictive learning in Section 2.2.2. 

A smooth function, motivated by a Gaussian probability density function is also very common:

f(x) = 
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  LISTNUM Equations2 
where ( is a dispersion parameter that defines the zone of influence for this point, as illustrated by Figure 2.1. It weights contributions from different points in a smooth fashion.
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Figure 2.1: graphical representation of local basis functions (a) and (b) corresponding to equations (2.1) and (2.2), respectively, where xo is the point of estimation. The general parameter b defines the zone of influence of the function and is related to ( and (. 
In a second approach, as pointed by Bottou and Vapnik, local learning is defined in a such way that

the structure of the learning device ensures that each parameter affects the capacity of the system in a small neighborhood only.

This definition includes many other models under the concept of local learning algorithms. At a first evaluation, some models that do not really perform true local learning (e.g., the initial split of the input space performed by decision trees algorithms and discussed in Section 2.2.1) could be classified as local ones, since the components obtained after the induction step are in fact local basis functions (e.g., the subregions defined by the paths from the root to the leaves of a tree). In this dissertation, we consider that a system is a local model if its functional form is composed of local basis functions. In practice, it means that only a small subset of its parameters are relevant for computing the estimated function for a given input (but in principle this characteristic is present, for example, in a sparse multilayer perceptron where most of its weights would be nearly zero-valued).

Local models have various motivations:

· building comprehensible models. Substructures of the model can be analyzed with relative independence from the whole system;

· speeding up learning by the decomposition of the task. Using modular components that fit different regions of the input space may lead to a much lower number of learning steps when compared to big, monolithic models;

· facilitating on-line learning and retrofitting of models. Due to the local characteristics of these approaches, it is easier to add, eliminate or modify individual components without interfering too much in other regions of the mapping. Global approaches, such as multilayer perceptrons, are especially prone to suffer from the so-called catastrophic interference (French, 1999), where retraining models with other data sets will affect the whole mapping previously learned, even (or specially) if the new data sets are sampled only from limited subregions of the input space.

However, it must be stressed that local representations are not ideal for all situations. Andrews and Geva (1996) discuss some situations where local functions are not desirable. Before any data analysis process, it must be decided which specialized models are adequate to the given domain: for instance, if one has a good parametric model to describe a physical process, with only a few “knobs” to be adjusted, it can give much more insight than a set of rules. Different domain experts may feel more comfortable interpreting other representations, such as linear models, analysis of variance and so on. Also, depending on the kind of kernel function, local representations may hide the true underlying data generation process. Figure 2.2 illustrates a problem where axis-oriented kernels provided a unnecessarily fragmented description of the function.
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Figure 2.2: (a) shows the original distribution of data. In (b), we have a set of boolean, axis-oriented kernels, fitted to separate ‘x’ instances from ‘o’ instances. It seems clear that this bias is not as descriptive as two linear splits in this situation. However, if it was necessary to produce many linear splits, an axis-oriented bias could be more adequate.

Some confusion may arise when one compares the definition of local learning under different contexts. For example, connectionist models are usually set apart from other data-processing structures by their ability to handle distributed representations, i.e., representations of concepts by a set of activities levels reflected by a network of computing nodes (artificial neurons). This is contrasted with so-called “local representations” where there is an one-to-one correspondence between a concept and a computational unit, i.e., a same chunk of knowledge (like a rule in propositional logic or even a set of rules) is used to define one and only concept. Coarse coding (Hinton et al., 1986), for instance, represent concepts by feature detectors that have different levels of sensitivity for an input: a given stimulus will evoke responses from a large number of detectors to various degrees. The response, then, is a pattern of activations spread along a subset of the available detectors, instead of just one (or none). In fact, overlapping kernels provide a straight way to implement coarse coding, yet we have just associate them with our definition of local representation.

As pointed out by Oden (1994), coarse coding may be seen as distributed from the perspective of the stimulus, but local from the perspective of the detector. Oden extends this reasoning by concluding that

few connectionist models are purely distributed, in that the collection of things for which a given node will be most active is seldom completely arbitrary and disjoint.

In general, coarse coding and other distributed representations are considered more difficult to be interpreted than purely local representations because under the latter there is a one-to-one correspondence between a given input and a determined component of the model. However, it is assumed in this dissertation that allowing overlapping of kernels is not necessarily a disadvantage. For example, allowing overlapping can indeed benefices understandability, by expressing the same concepts with fewer components. Also, due to noisy and non-deterministic conditions that are very common in the data generation processes that underlie most real-world data sets, one cannot expect that perfect disjointness is a desirable property to realistically describe those processes. As a final word, however, the validity of this assumption is domain dependent
.

Local learning has also a different meaning in connectionist models, defined by the property of some learning algorithms, such as backpropagation in multilayer perceptrons, where the adjustment of a given weight is a function of only the neighboring ones. This property is considered desirable for biological plausibility, but many of those learning approaches can be implemented without this concern (Bishop, 1995). Local learning has also a relation with induction of Bayesian networks, where a full joint probability density function is decomposed in local dependencies of lower dimension (Pearl, 1988)
. These interpretations and issues are not treated further in this work.

Under those definitions, Section 2.2 describes widespread models of local basis functions in machine learning and statistics. This introduction is important for Section 2.3, which discusses improvements that can be performed to these basic approaches, and for Section 2.4, which presents a survey on a selected group of hybrid systems. Some of the motivations of Section 2.3 underlie the design principles of the new approach introduced in Chapter 3, using as building blocks the main ideas of the hybrid systems of Section 2.4. The relationship among those systems and the proposed approach will be detailed in the next chapter.

 LISTNUM Section2  Canonical local models

This section reviews the most well-known (“canonical”) learning algorithms that produce local models, according to our definition given in the previous section. However, it must be stressed that defining what could be called canonical and what could be called “hybrid” involves always a bit of subjective choice, since people with different backgrounds may have different points of view. Furthermore, these definitions are not resistant to time, because successful state-of-the-art procedures become part of the general knowledge sooner or later.

Since motivations behind the design of such models comes from a variety of sources, including probability density estimation, fast-learning neural networks, automatic knowledge acquisition for expert systems, just to name a few, it is expected that some of the same concepts are given different names for different lines of research. When appropriate, specific parlance will be explained in more general, mathematical terms.

As a last but important observation, the survey comprehended by the following sections is not exhaustive by any means. Far from that, it is biased to models that bear the strongest similarities with the approach introduced in Chapter 3 and empirically evaluated in Chapter 4. Practically all concepts involved in the design of the models discussed to the end of  this chapter will have an influence in the later chapters of this work.

 LISTNUM Section2.2  Induction of rules and trees

Rules can be expressed in a variety of languages, but this section will focus on propositional rules and classification problems only. Under this language, we define a rule r by the following syntax:

IF  premiser1
AND premiser2
....

AND premiserk
THEN

   class = classr
where premiseri, 1 ( i ( k(r), is a boolean function that maps a pair (variableri,  intervalri) to true if and only if variableri ( intervalri. If variableri is a symbolic variable, intervalri is defined by a discrete set {valueri1, valueri2, ..., valuerim}. If variableri is a numerical variable, intervalri is an union of continuous intervals, [valueri1, valueri2] ( [valueri3, valueri4] (... [valueri(j-1), valuerij]. Note that if one interprets the whole premisei as a propositional variable, a set formed by rules of this kind would be in disjunctive normal form
. However, many rule induction algorithms relies on even simpler premises, allowing only symbolic comparisons of equality of the kind variablei = valueri, and/or just a single continuous interval for numerical variables. The postcondition class = classr represents one of the classes of the domain, and not necessarily corresponds to the majority of the examples that satisfy the preconditions.

A geometrical interpretation of a rule is a hyper-rectangle in a multidimensional space. By adopting premises that deal with a single variable each, those rules have a bias
 that restrict their boundaries to be axis-oriented. Even though relying in this restriction, they still have powerful approximation capabilities and, most importantly, are highly human-interpretable. It is also important to notice that usually these rules put restrictions only in a small subset of the available features, i.e., in a graphic depicting the decision surface of a rule, most of the axis would not be bounded. Figure 2.3 depicts examples of graphical representations of rules.
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Figure 2.3: graphical representation of rules in a two-dimensional space. For instance, the shading in (a) represents the area defined by the premises 1 ( x1 ( 6 AND 4 ( x2 ( 6, while (b) represents 4 ( x2 ( 6.
Among the different approaches to rule and tree induction, the two most common techniques are known by the labels of recursive covering and recursive partitioning. Separate-and-conquer is also a common name (Fürnkranz, 1999). Those denominations refer to basic general approaches which spawned dozens of variations. Recursive covering is associated with induction of rules, while recursive partitioning is usually a synonym for tree induction.

 LISTNUM Section2.2.1  Generating rules

This framework can be described as a sequence of steps that recursively covers portions of the input space till all examples (or most) on the training set are matched by at least one rule. Informally, it consists of finding, one at a time, rules that perform well according to a given evaluation function and then discarding the covered data from the training set to avoid repeated generation of the same rule. Table 2.1 shows an general algorithm for this task.

RecursiveCovering(Data, RuleSet)

new_rule ( GenerateBestRule(Data)

if Performance(new_rule) > Threshold then

   RuleSet ( RuleSet ( new_rule

   Data ( Data – {examples matched by new_rule}

   RecursiveCovering(Data, RuleSet)

End

return RuleSet

Table 2.1: a general approach for rule generation. This function is called with an initially empty RuleSet and the whole training set as Data. The function Performance measure the quality of the rule by a chosen measure and verifies if it surpasses a given threshold. 

Before describing in more details the underlying procedures, it is important to call attention to some subtle design decisions. Some definitions of GenerateBestRule construct rules for a specific class only. In this case, it is necessary to call RecursiveCovering multiple times, indicating the current class at each call. In this case, the data excluded at each RecursiveCovering call must be only the covered examples that are of the class in investigation. Other rule inducers maximizes a measure of “purity” of a covering, without worrying which class will be the majority in the end of each step. Exclusion of data must be performed for all data covered by the current rule, independently of class.

The best way to introduce the inner details of the many variations of GenerateBestRule is by examples of some of the most representative algorithms. In the next paragraphs, a brief description of two approaches is given.

CN2
Top-down search is a typical strategy for generating a rule with respect to a data set and a performance measure. This process starts with the most general rule, the one with no premises, and add conditions in a greedy fashion. At each step, all specializations of the current best rule are generated, where a specialization is just the current rule with an additional premise (it is a specialization because it covers less data than the original rule, since the addition of an extra premise transforms the rule in a more restricted subspace). If one of this new premises improves the evaluation of the rule, it is accepted. This is a hill-climbing approach for rule generation.

CN2 (Clark and Nibblet, 1989) is a sequential covering algorithm that substitutes the hill-climbing optimization by a beam search, which can be seen as several hill-climbing searches in parallel: instead of focusing on the best specialization of a single rule at a time, it keeps the best k variations. At each step of premise addition, various new rules are generated from the original k (or, in the initial step, from the general rule), and this set is trimmed to the original size of k. GenerateBestRule returns the best one obtained by this process.

A premise in CN2 is restricted to a pair (attribute, value). It is satisfied if attribute = value. Numerical variables are discretized prior to the induction process. The postcondition, i.e., the class of the rule, is defined only after convergence by the majority of examples that satisfy the premises.

The performance function that is used to guide the search is the entropy, which is a measure of “disorganization”, or impurity, of the class distribution: 
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  LISTNUM Equations2 
where c is the total number of classes, D is the data set bounded by the rule premises and pi is the percentual proportion of examples of class i that satisfies the rule.

The entropy function has several motivations, like the negative expected value of the logarithm of the probabilities and others coming from different domains like information theory and statistical physics
. The basic motivation is the need for a function that varies smoothly from its maximum value 1 to the minimum value 0, when the probability distribution of the classes varies from the uniform distribution (all classes have equal chances of being chosen), to a distribution of complete purity, where only one class is present. Figure 2.4 show a graphical representation of this function in a binary domain.
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Figure 2.4: the entropy function for a binary classification problem (classes + and -). The entropy is maximum when P(C = +) = P(C = -) = 0.5 and minimum when P(C = +) = 1 or P(C = - ) = 1.

Since the basic CN2 does not focus on a single class at each rule generation, it separates out all data covered by the recent induced rule, not only those that are from a specific class. Entropy function also favors very specific rules, generating larger models and being more sensitive to noise. However, Clark and Boswell (1991) introduce modifications, changing the entropy function by another that permits a better control of the trade-off between coverage and precision. Also, they suggest running the procedure multiple times for each class in turn, excluding at each rule only examples that are of the class of the turn. The disadvantage is a higher computational cost. 

PRIM
The Patient Rule Induction Method, PRIM, introduced by Friedman and Fisher (1999), is another variation of the top-down approach with a special emphasis on taking less greedy steps at each rule specialization, in a sense that they exclude less data for each premise addition or modification. The search is performed for each class in separate.

For symbolic variables, instead of adding premises in a CN2 fashion (attribute = value), the algorithm considers conditions of the type attribute ( value, which is specially interesting for variables with many different values. Generally, this approach is expected to produce less rules. For numerical variables, it also consists in “peeling out” a fixed percentile of the extremes of the current intervals. For example, if the current premise for a given variable is vi ( [i1, i2], the specializations obtained are vi ( [i1 + i1(, i2], vi ( [i1, i2 – i2(], and vi ( [i1 + i1(/2, i2 – i2(/2], where i1 + i1( is the (-percentile
 of the data bounded by the interval [i1, i2]. By the same way, i2 – i2( is the (1 - () percentile, i1 + i1(/2 is the (/2 percentile and i2 – i2(/2 is the (1 - (/2) percentile. If ( is high, more data will be peeled from a rule, but it is likely to find less optimal solutions. If ( is too low, the procedure becomes too much sensitive to noise, since any variation of the evaluation function may seem interesting.  It is highly recommended to maintain an independent pruning set to judge if a premise is really improving the performance criteria.
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Figure 2.5: boxing the bumps. In (a), we have a two-dimensional input space with three symbols (‘+’, ‘o’, ‘v’) representing samples from three different populations. Note that the sample ‘+’ is bimodal. In picture (b), a box defined by 2.2 ( Y ( 5.1 covers all points from one of the modes of ‘+’. This box defines a rule IF 2.2 ( Y ( 5.1, THEN Class = ‘+’. In (c), the covered data is discarded for subsequent steps. In (d), a new rule, bounded by one-sided intervals, generates the next rule.
The evaluation function of PRIM for classification problems is just the mean of an indicator function with respect to a current class: let x be an input example, C(x) its respective class, r the current rule being generated and C(r) its class. Then, I(x ( r) = 1 if x is covered by rule r, and 0 otherwise. Analogously, I(C(x) = C(r)) = 1 if C(x) = C(r), and 0 otherwise. The evaluation function is

Performance(r) = 
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  LISTNUM Equations2 
This peeling procedure searches for regions in the input space with a high concentration of data for a given class. It can be compared with the process of finding the “bumps”, the modes of a multivariate distribution in high dimensional spaces. The interesting bumps are those whose mean are higher than the mean in the complete input space. Hence, the majority class between the examples bounded by the rule does not need to be the rule class. One stopping criteria commonly applied to this procedure is to halt the bump hunting when it is not possible to box a subregion with a greater mean than the overall space. Figure 2.5 illustrates a process of boxing the bumps in a two-dimensional space.

Note that the first rule generated in Figure 2.5 could have a higher performance (i.e., a higher concentration of examples from class ‘+’) if one chooses to change the interval 2.2 ( Y ( 5.1 to a more restrict one. For example, 2.2 ( Y ( 4.5 would cover only one example of another class (‘o’). However, it also cover less examples from ‘+’. A stringent criteria may lead to an excess of rules and greater sensitivity of noise. 

This is an illustration of the coverage versus performance trade-off. The authors of PRIM emphasize that the best trade-off is domain dependent. Kaufman and Michaslki (1999) evaluates different automatic measures of compromise, but the advice concerning domain analysis is still clearly valid. It is a common practice to define the compromise parameters a priori, or by a model selection procedure (cross-validation, for instance – Cohen, 1995a), and let the chosen algorithm generates the rules without human intervention. On the other side, a complete implementation of the PRIM framework should include an option to let a human expert evaluate each rule as they are processed.

RecursivePartitioning(Data, Node)

if Performance(Node) < Threshold then
   Node.Decision ( ChooseBestDecision(Data)

   for each outcome d of Node.Decision do

       create new_node with no children

       add new_node to the list of children of Node and attach d

           to the label of the link between Node and new_node

       DataPartition ( (
       for each example i of Data

           if example i is covered by d then
              DataPartition ( DataPartition ( i
       end

       RecursivePartitioning(DataPartition, new_node)

   end
end
else
   Node.Class = majority class among the examples in Data

return

Table 2.2: a general approach for tree generation. This function is called with an arbitrary initial node Node and the training set as Data. The function Performance verifies the quality of the node according to a chosen measure.
 LISTNUM Section2.2.1  Tree induction

A decision tree consists of a hierarchy of nodes, where a given node may have a determined number of children. Nodes with no children are called terminal nodes, or leaves, while the remaining are the inner nodes. Each inner node is associated with a test concerning an attribute, or a subset of attributes, from the domain in analysis. For each result of this test, there is a correspondent child node. A child node may be another inner node, where this definition is applied recursively, or a leaf. For classification problems, each leaf is associated with one of the classes of the domain. Figure 2.6 is a graphical representation of a decision tree.
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Figure 2.6:a graphical representation of a decision tree for a domain of classification of flowers (Loh and Shih, 1997). The triplet of numbers associated with each leaf corresponds to the distribution of examples from the classes (Setosa, Versicolour, Virginica) that reach the corresponding leaf.

The popularity of automatic induction of decision trees for machine learning and statistics is reflected by its two most well-known approaches: CART (Breiman et al., 1983) and C4.5 (Quinlan, 1993). Most decision tree algorithms are based on the same principle of recursive partitioning as explained on Table 2.2.

The evaluation function Performance measures, as one could expect from the previous discussion about rule induction, the degree of purity of the partition defined by the node. One of the most common, the information gain calculated from differences in the entropy function according to each attribute, was popularized by Quinlan in a previous version of C4.5. Additional considerations evaluated by the performance function could be the determination of a  minimum amount of examples in Data, or a statistical significance test, as a policy to avoid overfitting. In practice, most decision trees algorithms grow the model till overfitting and then perform a step of simplification, as explained in the next section.

The canonical approach to decision trees creates disjoint regions of classification. Usually, the decision chosen in each ChooseBestDecision involves only one attribute, and so it defines axis-oriented surfaces
. A pictorial comparison of a possible partition obtained by a decision tree and a rule induction algorithm is depicted in Figure 2.7. Extra comparisons of rules and trees will be discussed in Section 2.2.1.4.
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Figure 2.7: two possible divisions of a two-dimensional input space. Picture (a) is a disjoint partition, as a decision tree could create. Picture (b) allows overlapping of hyper-rectangles.
 LISTNUM Section2.2.1  Inference and pruning in rule sets and trees

Now that we introduced techniques for induction of rules and trees, it is interesting to discuss how to apply those models for classification of new instances, i.e., for inference. Decision trees are very straightforward in this aspect: starting by the root, choose the path to a child node whose attribute test satisfies the input, as indicated by the link between a node and its child. When reaching a leaf, return its class label.

Rules models require trickier approaches. Since overlapping is permitted, one must define a decision rule to deal with conflicts, when a given input is covered by rules of more than one class. The simplest approach is to arrange the rule set in a decreasing order of performance criteria and classify an input accordingly to the first rule that matches it. The rule set acts as a decision list (Rivest, 1987). Another approach is to associate a weight to each rule (which can be the performance criteria) and performs a linear combination of those rules that cover the input instance. Although there is no clear winner among these choices, experiments by Ali and Pazzani (1995) indicates some advantages in using the second approach when the domain generates fragmented rule sets (i.e., many rules of low coverage). Experiments performed on Section 4.1 favor the weighted approach for some, but few, of the domains.

An important aspect whose discussion was delayed till now concerns the pruning, or simplification, of rules and trees. Breslow and Aha (1997) is a popular review of pruning techniques for tree-based models, while Fürnkranz (1997) is oriented to rule-based ones. Post-pruning techniques, those that are applied after the induction of the model, are very similar for both types of representation. The basic framework consists of eliminating rules and premises by some order criteria and verifying if it does not raise the classification error. The training set can be utilized to evaluated the pruning step, but an independent pruning set is commonly used. Pre-pruning, consisted of stopping the generation of a model before a complete fit of the data set, is not as popular as post-pruning in decision trees, but it has a range of applicability in rule induction. For rule induction, it is also a common procedure and widely used, due to is relative computational efficiency, to prune premises after the induction of each rule. A well-known approach following this methodology is RIPPER (Cohen, 1995b), which alternates steps of pruning with refinement of rules.

Pruning aspects will be reintroduced in Chapter 3, where we discuss a particular pruning algorithm for a new approach designed to simplification of rule sets.

 LISTNUM Section2.2.1  Differences in rule and tree models

When one should use sequential covering approaches of rule induction and simultaneous partitioning commonly associated with decision trees? Mitchell (1997) briefly discusses some differences: rule induction algorithms demand more computational effort, since the selection of attributes affects only one rule at a time, while for decision trees the selection of a split result in a separation of two (or more) subregions. In a similar reasoning, if the data seems insufficient for the task, decision trees may have an advantage, since they perform less decisions.

However, decisions trees tend to be greedier than rule induction methods, since at each step they discard more data. Also, in general decision trees are less understandable than rule sets (Breslow and Aha, 1997) due to their hierarchical, decomposed structure that makes more difficult the identification of the individual decision spaces. This may be crucial if one is concerned with model interpretation.
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Figure 2.8: a diagram depicting decision regions for a 1-nearest neighbor rule for a bounded two-dimensional space and five training instances. A new input falling in one of these convex regions is classified by the same class of the correspondent training point. This is also called a Voronoi diagram.

 LISTNUM Section2.2  Instance-based learning

Instance-based learning variations are known by a plethora of names such as lazy learning, extensional, memory-based and exemplar-based. It is also the foundation for case-based reasoning (Kolodner, 1993). Aha (1997) favors the lazy learning denomination to contrast it with what could be called eager learning
. According to his definition, pure lazy learning has three main characteristics: they do not perform any kind of data processing (with a training set, for example) till the moment of inference; computation of predictions for new inputs is done by combining the complete stored data; finally, after prediction, they discard any constructed answer and intermediate results. Instance-based learning is local by nature, since the function approximation is done with respect to the position of the desired point.

In contrast, eager learning builds models such as rule sets or trained multilayer perceptrons and applies these abstract representations, already decoupled from the original training set, to predict any given input point. Instance-based learning often achieves a much lower training time (which in fact is instantaneous for the basic approaches, where there is no processing at all) than classifiers that summarizes the training sets in intermediate representations, but takes much longer to perform inference because computing the contribution of all individual training points tends to be a more expensive process than relying on summarized structures.

 LISTNUM Section2.2.2  Nearest neighbors

One of the simplest approaches for instance-based  learning is the nearest neighbor (NN) algorithm. For classification problems, it works by first finding the training point xt that is nearest to the input x and then returning the class of xt. Computing the nearest neighbor is a matter of assigning the proper distance measures. Euclidean distance is a common choice due to its simplicity. A standard variation of NN is the k-nearest neighbor algorithm (k-NN): instead of searching only the nearest neighbor, it finds the k nearest ones {xt}k and returns the class of the majority among the instances in {xt}k. Using k-NN usually gives better results for noisier domains, since it diminishes the impact of single points. The parameter k can be chosen by model selection procedures as cross-validation.

The biggest advantage of NN approaches are the complex decision surfaces that can be created with no training time. Under the 1-NN algorithm, the regions of influence of the training points can be visualized as disjoint convex regions. With Euclidean distance, the surface separating two given points is just a hyper-plane perpendicular to the line that would join the points, and positioned in the middle of it, as depicted in Figure 2.8.

[image: image16.emf]

Figure 2.9: Gaussian Parzen windows applied to approximation of a univariate density function by nine points.

 LISTNUM Section2.2.2  Parzen windows

 Parzen (1962) introduced an estimator for probability density functions (PDFs) consisted of the addition of smooth kernels centered on each training example, and then proved, under very general assumptions, its quadratic asymptotic consistency: E|fn(x) – f(x)|2 ( ( as n ( (, where f(x) is the true PDF and fn(x) is the estimated one when given a training set of size n. The estimated function has the form:

fn(x) = 
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  LISTNUM Equations2 
where K(x) is a kernel function and xj is the jth example of the training set. Desirable properties of these kernel functions, also called Parzen windows, are described by Parzen, but for our discussion, it suffices to show the behavior of the Gaussian kernel, which is by far the most popular one:

K((x) = 
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  LISTNUM Equations2 
where the training instances takes the role of ( and ( is the smoothing, or dispersion, parameter. Figure 2.9 illustrates a density function approximate by a sum of Gaussian kernels. 

The smoothing parameter ( is essential as a regularization parameter. Small values of ( put too much influence on each point, while larger values blurs the estimated distribution (Figure 2.10). This is a typical bias/variance trade-off (Geman et al., 92): one has to decide if the model has a high or low sensitivity to the training set by its capability of modeling complex functions or by “smoothing out” the details. If it is decided to use a model that can fit a great number of functions, this approach is said to have a small bias (since it accepts a large number of hypothesis), but it also has a great variance, because small differences in the training samples can lead to sensibly different results. Decreasing the variance, for a fixed amount of data, tends to increase the bias, since the model becomes less sensible to the training examples. It is possible to decrease bias and variance at the same time by collecting more data and successively increasing the complexity of the learning model. Analytical and resampling techniques (such as cross-validation) are used to tune this trade-off.

[image: image19.emf]
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Figure 2.10: in (a), we define a more suitable distribution function, according to a given criteria, obtained by the same data points that generated the function depicted in Figure 2.9, but now with a greater parameter (. In (b), an oversmoothed PDF from the same data points.

For classification purposes, one can use Parzen windows to estimate PDFs f(x | Ck) to each population k and plug them in a Bayesian decision rule by using the posterior estimate:

P(Ck | x) = f(x | Ck) P(Ck) / f(x)


  LISTNUM Equations2 
Ripley (1996) discusses approaches to classification based on statistical decision theory that largely depends on probability estimations. However, this methodology has been misused for those that intend only to perform classification but without any estimates of error bars and outlier detection, which raised some criticisms (Cherkassky and Mulier, 1998; Friedman, 1997). The argument is that is easier to create classification rules directly, if this is the sole purpose of modeling, without passing by the intermediate (and much harder) step of probability estimation. Section 2.3.2 explains one of the reasons that makes joint probability estimation harder than straight classification.

 LISTNUM Section2.2  Mixture models

There is another way of looking at kernel density estimation. The summation in (2.5) can be recast as a weighted composition of simpler density functions f(x | i) (Ripley, 1996):

fn(x) = 
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  LISTNUM Equations2 
where i represents the ith data point and the weights wi are proportional to 1/n.

In this case, each f(x | i) corresponds to a kernel centered on data point i and evaluated with respect to x, but it can be generalized to a mixture of distributions that do not have a correspondence to individuals training examples, but instead represent larger subspaces of the mapping and are weighted by their respective prior probabilities:

f(x) = 
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  LISTNUM Equations2 
where M is the number of mixture components and is usually much less than the number N of training examples. Bishop (1995) makes a parallel with the instance-based estimators: while instance-based learning is purely non-parametric, in a sense that their complexity grows directly with the number of data points, mixture distributions or mixture models are semi-parametric approaches, where the model grows only with the complexity of the function to be learned, not simply with the size of the data set
. Mixture models are a perfect example of how modeling arbitrary probability functions as a combination of restricted, parametric ones. Of course, this basis functions may not have a local characteristic. However, this is often the case, as in a mixture of Gaussian functions where each covers only a small subset of the input space.

Mixture models not necessarily are applied only to perform unsupervised learning by the fitting of joint distribution functions, but also supervised learning of conditional distributions for each class Ck, which can be used directly to classification. One possible decomposition is:

P(Ck | x) = 
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  LISTNUM Equations2 
Procedures for fitting joint density functions (as the EM algorithm, discussed in the next subsection) can still be applied to the supervised learning problem (e.g., Jordan and Jacobs, 1994).

 LISTNUM Section2.2.3  The EM algorithm

Following Mitchell (1997), we introduce an example of a mixture model at the same time we discuss one of the most usual ways to fit these representations to data. 

Suppose we know that the underlying probability function is a composition of two univariate Gaussians (i.e., M = 2 in (2.9)) with a common known standard deviation parameter (. This lets two free parameters to be determined: the means, (1 and (2, of the two Gaussians. Each data point x is generated by first randomly selecting one of the mixture components and then sampling x according to the respective density function fj(x) = (2((2)-1/2exp(-(x - (j)2 / (2), j ( {1, 2}.

If it was possible to know which basis distribution generated which data point of the training set, it would be straightforward to compute the desired means. However, we do not have this information, and so this problem can be interpreted as a problem of missing data. Instead of having a determined scalar x representing an input, one considers a vector y = (x, z1, z2), where zj = 1 if and only if x was generated by the jth Gaussian, and 0 otherwise. Because zj is a random variable, y is also a random variable, and so is the "complete" data set Y consisted of y vectors.

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977), a procedure to find maximum likelihood parameters in data sets with missing values, has became one of the standard ways to train mixture models. The idea is to iteratively alternate two steps: in the first, compute the expected values of the unknown variables and use these expectations in place of the missing information; next, maximize the likelihood of the data now with the “complete” set. Dempster et al.  prove the convergence of this algorithm in a variety of conditions.

In a nutshell, let ( denote the set of free parameters (in the given example, ( = {(1, (2}), and let Q((new | (old) the expected log-likelihood of the complete data under a new set of parameters given the observed training set X and the current parameters. 

Q((new | (old) = E[ln P(Y | (new) | X, (old]

  LISTNUM Equations2 
The EM algorithm updates the current parameters according to the values that maximize this likelihood.

(old ( argmax (new Q((new | (old)


  LISTNUM Equations2 
In our example, the expected value of zj for the ith training point is the probability that the instance i was generated by the distribution j. It can be computed by:

E[zij] = 
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  LISTNUM Equations2 
The next step is to find the values of (1 and (2 that maximize the likelihood f(Y | (1, (2). The intermediate results will not be derived here (see Mitchell, 1997, for a complete derivation). The maximization procedure is performed by the update of the free parameters:

(j ( 
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  LISTNUM Equations2 
where d is the total number of training instances. This update can be interpreted as the mean of the training points weighted by the probability of P(j | xi) that component j generated point xi.

As a final remark, the problem given in the example was very easy to solve because we already knew much information concerning the basis functions. However, in practice, choosing the number of mixture components can be notoriously difficult (Ripley, 1996). 

 LISTNUM Section2.2  Neural networks

Artificial neural networks are computational information-processing models inspired by the architecture of the human brain and other cognitive aspects. In special, developing neural networks of local functions have biological motivation originated from different sources, such as cells of the visual cortex (Moody and Darken, 1989). Even with different motivations, most neural network representations are similar to their counterparts in data analysis models and in practice are used for the same applications. We treat in this subsection two approaches that became widely known by the work of researchers in neural networks and relate them to the models previously discussed.

 LISTNUM Section2.2.4  Radial basis functions

The mixture model representation P(Ck | x) = 
[image: image26.wmf]å

=

M

j

k

j

j

C

1

)

|

P(

)

|

P(

x

 for class conditional probability estimation, under the assumption that P(Ck | j, x) = P(Ck | j), can be cast as a feed-forward neural network as depicted in Figure 2.11.
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Figure 2.11: a neural network representation of a mixture decomposition.

One could use a separate mixture model for each class and apply a decision rule to perform the classification. It turns out that a more computationally efficient way is to use a common set of basis functions P(j | x), since we assumed that Ck is independent of x given j, and use these same functions to compose all posterior probabilities (Bishop, 1995). This is also called a dictionary representation (Cherkassky and Mulier, 1998), in contrast to kernel representations
, where disjoint sets of basis functions are used to represent each class.

A radial basis function network is a special kind of mixture model that shares the same basis functions for all classes but not necessarily deals directly with probabilities: in general, the representation of a radial basis function network needs not to be restricted to normalized, non-negative components
. The posteriors are treated as arbitrary continuous weights that connect layers of hidden units to output units. In a more general interpretation, each hidden unit represents a feature computed by a non-linear projection of the input space in an intermediate feature space that is expected to be approximately linearly separable. The output layer consists of units that, in classification problems, represent the classes of the domain. Each output yk(x) is computed by:

yk(x) = wk0 + 
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  LISTNUM Equations2 
where a(x) is called an activation function, and can be related to a probability distribution, but not necessarily. The extra term wk0 is an adaptive “bias” that acts as an additional degree of freedom, permitting that the hyper-plane formed by the output weights not necessarily passes by the origin of the feature space. 

At first sight, it may seem awkward to graphically represent the input weights similarly to the output weighs, as depicted in Figure 2.11, because their roles are very different. The output weights represent linear factors, while the meaning of the input weights varies accordingly to the type of basis function utilized. Once again, Gaussian functions are a common choice. In this case, the input weights represent the parameters of center and, sometimes, spread. It is important to note that  traditionally the spread parameters are the same for all hidden units to avoid a large number of free parameters. Another variations are keeping different spreads for each unit, or global spread parameters for each variable. Bishop (1995) gives additional motivations for the development of radial basis functions from a variety of different sources.

The training of radial basis functions may be fully supervised, i.e., all parameters, including centers and spreads of Gaussians, are fitted by the minimization of an error function. However, as pointed out by Moody and Darken (1989), a special type of hybrid learning gives similar results: it consists of determining the parameters of the hidden units by a clustering algorithm
 and then using linear optimization techniques to fit the output weights. The greatest advantage of this approach is that is much faster than the non-linear optimization of the fully supervised methodology. The major drawbacks are that the number of hidden units required for the clustering is usually higher than for supervised learning (since the latter performs a more refined search), and the effects of the curse of dimensionality are much more harmful, as discussed in Section 2.3 (Sarle, 1999).

 LISTNUM Section2.2.4  Learning vector quantization

The family of algorithms known as learning vector quantization (LVQ) can be interpreted as approaches based on k-nearest neighbors that generates subsets of the training data to perform classification  (Ripley, 1996). The basic LVQ framework is initialized by a given number of points from each class, and iteratively changes their positions in a way to construct good decision boundaries among the classes. The computed data points form a modified training set and are usually called codebook vectors, since by definition they act as prototypes representing a larger number of input examples. This procedure results in a nearest neighbor classifier but with a much smaller set of points used to perform prediction. 

The iterative procedure is an on-line algorithm: updates are performed for each training example, which can be recycled if convergence has not yet been reached after all data has been presented. In this context, let mi represents an arbitrary codebook vector and mc the codebook that is the closest to the input pattern x according to the distance measure.

c = argmini{|x – mi|}
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The update rule for the tth point is

mc ( mc + ((t)(x(t) – mc),
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if x(t) and mc belong to the same class;

mc ( mc – ((t)(x(t) – mc),

if x(t) and mc do not belong to the same class;

The intuitive idea behind this update rule is to bring the codebook vectors closer to the nearest examples of the same class, while moving them away from examples of the conflicting classes. In the basic LVQ, the update step ((t) is initially chosen to be smaller than 0.1 and is linearly reduced to zero during the pre-fixed number of iterations. Other variations of LVQ define different update rules for ((t), such as making ((t) a function of the number of incorrectly assigned training examples. Kohonen et al. (1996) briefly describe LVQ variations under the context of a popular computer package. Learning vector quantization can also be applied to the initialization of radial basis function networks.

 LISTNUM Section2.2.4  Probabilistic neural networks

The probabilistic neural network, PNN (Specht, 1990), is just another name for the Parzen windows estimator. Specht was aware of this equivalence and only stressed the link between local basis functions networks and other established kernel approaches, as well as reminding that old techniques could be favored by a neural network point of view, which emphasizes parallel implementations. It was also a reminder for the neural network community that iterative learning algorithms are not always necessary, since the PNN is completely non-parametric and, in its pure form, does not perform any kind of parameter optimization. Depicted as a neural network (see Chapter 3), the output weights are just constants that are used to sum up the contribution of individual points. It must be clear that the PNN is not a dictionary representation, in opposition to RBFs. 

 LISTNUM Section2.2  Fuzzy logic

The seminal paper by Zadeh (1965) is considered the start of the field of fuzzy logic. Fuzzy logic is an approach to describe vague concepts, like how tall a person is, how fast a car is, which pressure should be applied in a vehicle break, how potable some specific liquid is, and so on. Note that it fundamentally does not treat random events, and so should be considered as a complement for probability: both deal with imprecise information, but approaching different aspects.

On the other hand, the mathematics behind fuzzy logic models shares the same principles found on many other approaches previously described. The major difference between fuzzy logic and other local adaptive models lies in the interpretation given to its parameters. Making this difference is useful for knowledge acquisition and interpretation in many important domains
, but we shall not discuss fuzzy logic any further in this work. The interested reader can consult Kosko (1997) as a starting point with many examples where fuzzy taxonomy is adequate. However, some basic terminology from this field will appear in later sections: the term “fuzzy” that is found in some passages is used with the meaning of “not boolean”. For instance, fuzzy rules are rules that cover inputs with smooth degrees. These rules are not necessarily smooth as Gaussian bells are, but simpler, yet effective, triangular or trapezoidal functions.

 LISTNUM Section2  The role of hybrid systems

Chapter 1 introduced many motivations for the development of hybrid systems. The next paragraphs state some of those motivations with more details, at the light of the limitations of the approaches discussed in the previous section.

 LISTNUM Section2.4  Representational bias mismatch and interpretation

Axis-oriented local basis functions are useful models. This choice of representation comes from two main motivations:

· it is necessary to put a limit in the capacity of adaptation of a learning algorithm. By restricting the basis components to a particular orientation, a minor number of free parameters is necessary. Some bias is always necessary for any learning system (Mitchell, 1997), and axis-oriented representations work very well in practice for a variety of classification problems;

· they readily leads to interpretation as rules, which provides interesting insights about the domain and facilitates inclusion of prior knowledge;

However, creating complex decision surfaces with those components may lead to an increased number of basis functions. For example, tree-based algorithms generate rectangular disjoint regions, which could require an enormous amount of partitions for large data sets where this bias is not appropriate. On the other hand, instance-based classifiers, even relying on distance measures that do not treat correlations of attributes, are able to divide the input space with much more flexibility. A combination of those approaches provides an interesting mechanism to increase accuracy of both.

 LISTNUM Section2.4  Distance measures and curse of dimensionality

The chosen distance measure is a crucial factor in NN, RBF, LVQ and basically all distance-based approaches, bearing a relation with selection of smoothing parameters for Parzen windows. In fact, just differences in scales are enough to invalidate any application of nearest neighbors: for example, if one attribute  is measured in millimeters and another in kilometers, the latter will have a much higher influence in the Euclidean distance. Using standardized variables is a required first step.

A more problematic issue is the curse of dimensionality (Bishop, 1995). A linear increase in the number of attributes used to model the problem generates an exponential increase in the input sample space. If we fix the amount of data available, this dimensionality increase distributes the data points more sparsely in the input space. It is easy to see the impact when using distance measures: if one considers a bivariate problem, where the input examples can be represented as points in a rectangle, we have that the Euclidean difference between two points can be up to 
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, which corresponds to the diagonal. In a three-dimensional space, this distance is 
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. For a n-variate problem, the distance can be up to 
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. This sparseness can be specially harmful when the attributes have different importance factors, which is often the case: the addition of irrelevant attributes makes two similar neighbors more distant to the point that inadequate examples may get closer to the given input than to the original nearest neighbor. Instead of increasing separability among classes, there is a loss of information with these attributes when data is not enough to fill up the "holes" in the new input space. To make things even more complicated, the importance of an attribute usually varies across the input space, being crucial in some intervals but completely irrelevant in others.

Good data pre-processing is always helpful for data analysis tasks, by providing techniques to combine features and reduce dimensionality (Pyle, 1999), but it is very important to notice that supervised learning algorithms are much less sensitive to the curse of dimensionality in real-world problems than non-adaptive distance-based approaches, because data usually lies in a subspace whose intrinsic dimensionality is lower than the original input space. Adequate supervised learning methodologies should identify which attributes are meaningful and how to combine features to increase discriminant power. Figure 2.12 illustrates the approximation of a function with radial kernels. As they do not have information concerning the relevance of the features, the mapping was build by completely covering the input space.

[image: image32.png]



Figure 2.12: curse of dimensionality in action with the presence of an irrelevant variable y. To approximate the function in the complete input space, we must square the number of radial kernels that treat each attribute with the same relevance  If it is possible to feed the system with information concerning feature importance, the number of kernels can fall considerably.

For instance-based representations, the solution is to use weighted measures of distance. A  general approach that does not treat interactions between attributes
 is 

d(x, xt) = 
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  LISTNUM Equations2 
where xt is an item from the training set, F is the set of features (attributes) of the domain, xf is the fth component of the example vector x, r is the size of F and w(f, x) is a function that weights the feature f and, in this case, is also dependent on the input x.

Wettschereck et al. (1997) review and empirically evaluate various techniques that weight features. They categorize these approaches by different criteria, which three of the most important are:

· if continuous (real-valued) weights are associated with the features or some form of feature selection is performed (i.e., a feature is included in the model or discarded. All accepted features are given the same weight). The former gives minor weights to the least relevant attributes while the latter is ideal when attributes are completely relevant or completely irrelevant for a domain;

· if the weights are preseted by closed formulas computed from data (like the probability of the target class for a given set of values of this feature), or if they are adapted by a iterative optimization algorithm minimizing an error function. Wettschereck et al.  call the former design decision a preset bias, and the latter, a performance bias;

· the generality of the weighting. Some weight functions w(f) return the same value independently of the input instance (global approaches), while other takes in consideration the specific point of estimation (local approaches);

Wettschereck et al. conclude in their experiments that approaches with performance bias usually have greater predictive abilities than preseted ones. Continuous weights are also responsible for predictive gains. Feature weighting is easily adapted to determination of smoothing parameters in Parzen windows algorithms, since the local basis functions in fact perform computation of distances, which are scaled by the smoothing parameters. Using a supervised learning algorithm to improve distance measures is a common starting point for many hybrid systems.

 LISTNUM Section2.4  Scalability issues

Lazy learning does have to pay for its laziness: pure instance-based classifiers take a lot of time to process a new input, while representations that “abstract” the training examples in structures such as rule sets and feed-forward neural networks are often much faster. This can be crucial in real-time classifiers that process many inputs, as the ZIP code recognizer described by Bottou and Vapnik (1992). Even though using all instances theoretically provides more powerful separation capabilities, in practice many of them are redundant and can be eliminated with no harm to prediction accuracy. Some hybrid strategies may be employed to achieve this elimination of unnecessary information, as well as providing more insight in the structure of the data.

Considering scalability of the learning process, different optimization strategies may be combined profitably. Gradient-based optimization commonly applied in neural networks is very slow. A hybrid approach of clustering and linear optimization was described when discussing radial basis neural networks, but even that may not be appropriated when the dimensionality of the domain is very high. A variety of more “high-level” combinations are available. For instance, the very greedy (and fast) search performed by decision trees may be used as a reasonable indicator of data distribution. Applying a more expensive optimization only after an initial, greedier, search can be very advantageous.

 LISTNUM Section2.4  Model selection necessities

Adaptive models often have some “knobs” to be defined prior to data fitting, where typical examples are the number of hidden units in neural networks, or the number of basis distributions in a mixture model. Even non-parametric approaches do not escape: k-nearest neighbors require the selection of the crucial parameter k; Parzen windows, the degree of smoothness. Model selection can take many computational resources and lead to frustrated experiments or unreliable results. 

In practice, it is hard to analytically derive adequate values for these prior design decisions, and so resampling techniques are widely used. They consist of separating independent data sets to evaluate different choices, and may lead to an exponential number of tries if various “knobs” must be adjusted. Cohen (1995a) describes various techniques for better use of data in these steps of parameter selection, like cross-validation or bootstrap. If the chosen algorithm requires a considerable amount of computational time, some combinations must be skipped for practical purposes. 

However, it is often an aid using approaches that require less time or fewer design decision as indicators of adequate choices for other model requirements. For example, rule and tree induction do not have any problem with the choice of the number of basis functions. They can be used to identify interesting groups for initialization of various models as radial basis functions and mixture distributions, as well as providing information on the degree of smoothness that should be applied on different regions of the input space.

 LISTNUM Section2  Hybrid systems of local basis functions

As explained in the previous section, hybrid systems for learning classifiers emerge from different motivations, such as improving classification performance of single approaches, extracting comprehensible models from hard to understand representations or just speeding up inference steps. Under those points of view, this section primarily focuses on blends of local learning algorithms using as building blocks the approaches discussed in Section 2.2. 

Although a motivation-oriented organization for this section could be interesting, the reader should be aware that different motivations may lead to a same given hybrid system. The following subsections are divided accordingly to the type of combination performed, defined by the basic algorithms used as components.

 LISTNUM Section2.3  Instance and rule-based representations

Under the motivations introduced in Section 2.3, mixing instance-based learning (IBL) and rule-based has one fundamental principle: rule-based (or decision tree) learning can be interpreted as local feature selection algorithms that maps only subsets of the input space that are relevant for the problem at hand. Feature selection is very important for IBL models since it greatly alleviates the effects of the curse of dimensionality.
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Figure 2.13: attribute relevance usually varies across the input space. In the figure, past a determined value of x, variable y is dispensable in the computation of  the class of a given point in this binary classification problem.

The local selection of feature relevance is quite a general principle that can be applied not only to hybrid systems discussed in this subsection, but have many different motivations such as defining the spread parameters of local Gaussian functions. Feature weighting is specially useful for nearest neighbor and other distance-based classifiers, since they take less contributions from less relevant attributes. However, feature weighting algorithms are usually global, using single measures of feature relevance for the whole input space, as explained in Section 2.3.2 (Wettschereck et al., 1997). This may be counter-productive, since attribute importance can vary widely. Figure 2.13 illustrates this point. Supervised learning by induction of rules and trees is often a fast way to detected approximated relevance of features for individually localized sub-regions, and several examples will be given in the next paragraphs.

Friedman et al. (1977) introduced one of the first works concerned with the application of recursive partitioning techniques to the problem of finding the nearest neighbors of an given input. Their optimized k-d tree, an ancestor of CART, divides the input space in an unsupervised manner, performing recursive partitioning by choosing the next attribute and next split criteria by the simple heuristics of selecting the attribute with the highest spread in a given partition and the median as the split point.  The k-nearest neighbors are computed by first considering only the items that fall on the same leaf of the input instance, which is much faster than considering the whole database. If the hyper-ball centered on the input instance and with radius corresponding to its distance measured with respect to the kth neighbor overlaps other partitions, they are also considered for nearest neighbor searching, the k-nearest neighbors list is updated, and this test of “ball-within-bounds” is applied recursively to the included partitions. Note that classification is not its primary purpose, but the more general goal of information retrieval. The k-d tree algorithm is specially useful for higher dimensions.

Smyth et al. (1995) discuss the tree-retrofitting approach: adding density estimates to a classification tree induced by standard ways. The usual way to produce class density estimation with decision trees is to count the proportion of correct labeled data point with respect to the total number of data points that fall in a given leaf. Ideally, an estimated density function should vary along the hyper-cube defined by the leaf: for example, it is expected that the class probability of an input near a class boundary should be lower than another one in the middle of a cloud points of the desired class. Parzen windows are a typical approach for smooth estimation of density functions, but they suffer from scalability problems in higher dimensional spaces, as previously discussed. The retrofitting procedure simply performs kernel density estimation for each data set that is bounded by each leaf, which is advantageous since the path from the root to the leaf only involves a reduced subset of the available attributes for high-dimension problems and the density estimations are more accurate than a piecewise constant approximation. This approach is useful for decision-theoretical problems, which include options to outlier identification and rejection by doubt. A graphical representation of the tree-retrofitting idea is given in Figure 2.14.
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Figure 2.14: the tree retro-fitting procedure. A standard decision tree is used to determine the importance of the attributes across the input space. However, the internal structure of each leaf, illustrated by the left picture, will be used as a subspace for kernel density estimation.

Nearest hyper-rectangle algorithms build generalized cases from an instance set and perform classification by a nearest neighbor approach, where a nearest neighbor can be an instance or a generalized case. In these models, a generalized case is just a hyper-rectangle, and a single instance is just a trivial hyper-rectangle, where only a point is covered. They differ from methodologies like LVQ by creating more abstract representations (rules), instead of just searching for points than define good boundaries. Also, some variations of the nearest hyper-rectangle approach perform batch optimization, and do not require the determination of a set of starting points.

The Nested Generalized Exemplar, NGE (Salzberg, 1991), is an on-line hybrid system of rules and instances. Initial hyper-rectangles are trivially defined by a given number of seeds, which are (randomly) selected examples from an available data set. For each new example in the training set, the two nearest hyper-rectangles are computed. If one of the two nearest hyper-boxes is of the same class of the current instance being analyzed, the nearest one that matches it is extended to include the new point. Otherwise, the current point is stored as a new hyper-rectangle. This process is repeated until all points of the training set are analyzed. The distance metric is a weighted Euclidean measure defined with respect to the borders of each hyper-box. Considering data normalized to a [0, 1] interval, we have:

D(x, Hi) = 
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  LISTNUM Equations2 
where x is a input instance and Hi is the ith generalized exemplar (hyper-rectangle). The weight wH of the corresponding hyper-rectangle is the ratio between the number of times it was called during the learning process by the number of times it was actually of the same class of  the training instance. The feature weights wk are adjusted on a similar fashion to LVQ. The function dif(k, x, H) returns the distance evaluated for the attribute k. Considering only numerical attributes, this function is:
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0
otherwise

where Hupper,k and Hlower,k are the highest and lowest values of attribute k in the given hyper-rectangle, respectively. Note that if the point x is inside of the hyper-rectangle, its distance is zero no matter where it precisely lies. For inference, if one point is at distance zero from more than one hyper-rectangle, it is classified accordingly to the class of the smallest box.

Wettschereck and Dietterich (1995) performed a series of experiments with variations of NGE and found that it consistently produced a higher number of classification errors than the kNN algorithm, although Salzberg (1997) discusses the validity of their results with respect to their statistical significance tests. Wettschereck and Dietterich also report that the on-line algorithm is very sensitive to the order of the training examples, and the overlapping of rules is probably the main cause of the bad results: large hyper-rectangles are usually created and many single-points rectangles are created as exceptions. The variations studied by these authors include batch optimization of attribute weights and avoidance of overlapping, giving better results than the original definition of NGE.

MinimalGeneralization(Rule, Example)

For each attribute k do
   if Rulek = True then do nothing
   else if k is symbolic and Examplek ( Rulek 

        then Rulek = true

   else if k is numeric and Examplek > Ruleupper,k 

        then Ruleupper,k = Examplek
   else if k is numeric and Examplek < Rulelower,k 

        then Rulelower,k = Examplek
end
return

Table 2.3: generalizing a rule in RISE. Rulek represents the premise in Rule concerning attribute k. The objective is to grow the hyper-cube by the minimum necessary to cover the example. If an attribute k is not being used in a rule, it is indicated by making Rulek = True. Note that internal disjunction, like those that can be found on PRIM for symbolic variables, is not permitted. 

As another popular algorithm of nearest hyper-rectangles, RISE (Domingos, 1996) is the short for Rule Induction from a Set of Exemplars. The distance metrics of RISE are analogous to NGE, but the control policy that builds the hyper-rectangles is considerably different. Instead of on-line learning, or even the cover-than-separate strategy of recursive covering, the search strategy consists of letting each rule, all at the same time, find the nearest example of its class that it does not cover yet. Once this step is completed, the next stage is to minimally generalize each rule. The concept of minimum generalization is illustrated in Table 2.3. If global accuracy does not decrease when a generalization occurs, the expanded rule is kept. Otherwise, it retains its original form. This process is repeated until no new modification can be done.

Domingos performed a benchmark test on various data sets of the UCI Machine Learning Repository (Blake et al., 1998) and found that RISE consistently gave equal-to-higher accuracy results when compared to kNN, CN2, C4.5. and a variation of Salzberg’s NGE. This hybrid system is able to produce more complex decision surfaces than rule inducers and retaining less instances than instance-based learning.  Unlike LVQ and NGE, it performs batch optimization and so it has one less variance factor: the order of data presentation. There is no concern about the number of initial seeds either, which makes model selection a considerable easier task. Another theoretical advantage over recursive partitioning is its search algorithm, that performs a specific-to-general induction: since all rules are generated at the same time, it does not suffer from data fragmentation that plagues recursive partitioning algorithms. Domingos calls this “conquering without separating”, and is illustrated in Figure 2.15. 
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Figure 2.15: rule induction from a set of exemplars. Initially only a set of individual cases, more abstract representations are found by comparing pairs of instances and rules according to a distance measure. The merge into more generalized cases is accepted when classification accuracy does not decrease.

van den Bosch (1999) empirically compares some popular instance-abstraction mechanisms, introducing an approach of his own. Similar to the other algorithms discussed, his FAMily-based Learning, FAMBL, creates generalized cases from instances, but does not further merge those generalized cases. Its focus are problems that could be properly modeled only by a large number of rules, such as language-learning tasks, where the compromise between instances and rules should be biased to avoid higher abstractions.

When compared with data selection procedures for minimizing inference time of instance-based learning models, as LVQ, it is important to notice that nearest hyper-rectangle approaches generate mixed sets of rules and instances, instead of just the prototype vectors of LVQ. They provide alternative ways for knowledge discovery and identification of outliers.

 LISTNUM Section2.3  Instance-based learning and neural networks

Neural networks relying on distance measures are so similar to instance-based learning that is difficult to define what would be a hybrid system of neural networks and IBL. Most of the research in this area consist in casting an instance base as a neural network and performing selection of important cases or similarity-metric refinement by procedures such as back-propagation. We saw that LVQ is a well-known neural network-inspired architecture to generation of codebook vectors for nearest neighbor classifiers, but requiring an initial number of seeds. Without this prior requirement, Malek (1995) suggested an on-line learning neural network that separates prototype vectors, which cover the most uniform regions of the input space, from instances that may lie on class boundaries and provide less confident results. The behavior of the network is said to be constructive in neural network parlance: similarly to rule induction and tree induction algorithms, the number of processing units is automatically modified during the learning process in response to a search criteria such as patching regions where incorrect classifications are done.

Malek defines the ARN2 neural network as a variant of the nearest neighbor classifier. Starting with an empty network, a new point can be turned into a prototype unit if the nearest neighbor is of a different class or if it lies in a distance greater than a given threshold. If the new point activates an existing unit of same label by lying sufficiently near, it is not added to the network, but the prototype is moved toward the new input in a LVQ-fashion. In the cases where the nearest neighbor is of a different class, its influence region is decreased to exclude the misclassified example. Special attention is paid to boundary cases, i.e., those that are at approximately the same distance from prototype vectors of different classes, as illustrated by Figure 2.16. Those boundary cases are added to a special data set. When performing classification, a two-stage procedure may check first if a prototype unit is sufficiently activated. If the answer is negative, an instance-base learner with a data set consisting of exceptions is activated. The principle is similar to nearest hyper-rectangles models, but using radial zones of influence.
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Figure 2.16: a way to select cases for speeding up instance-based classifiers is to identify which vectors can be prototypes and which lie on boundaries and should be specially treated, as suggested by Malek (1995). In the picture, P1 and P2 are two prototypes and their zones of influence are depicted by circles. S1 falls under the zone of influence of P1, being associated with it. S2 is a specific instance that lies in a uncertainty region.

In general, many learning systems similar to ARN2 consist in selecting units for local basis function networks. Apart from the application of clustering techniques, as described in Section 2.2.4.1, which requires a priori specification of the number of hidden units, a common practice is to focus on cases near boundaries. Such instances can be simply identified by observing those ones that generate similar activation levels in the output layer. For example, Chang and Lippman (1993) use this strategy to improve the separation of a pair of classes at a time. For problems with more than two classes, a pair is selected among those that have the greatest number of mutual misclassifications. The instances producing similar activations are used to compute a new center by a clustering technique, and in the next step are added as a new hidden unit.

Myllymäk and Tirri (1993) emphasize the relationship of graphical representations typical of neural networks and instance bases with the purpose of developing the case retriever module of a case-based reasoning architecture, i.e., an associative memory that returns the most similar case in a set of instances. The cases are prototypical examples chosen by experts or computed by methods such as clustering. The retrieval task is performed by implementing a Bayesian probability estimator using a feedforward network (in fact, a Bayesian network with no cycles) whose weights store the conditional probability P(Ai = aij | C = ck) to indicate the probability that the (categorical) attribute Ai assumes value ai given that the chosen prototype C is ck. This information can be estimated from the data set by associating each available training instance to one of the groups C. The input given to Myllymäk and Tirri’s network may carry information for only a subset of the attributes, setting the others to a prior probability. A belief propagation algorithm is used to indicate the most probable case. It is also possible to compute the posterior probabilities of the missing variables, which can be interpreted as a kind of case adaptation in a case-based reasoning framework (Aadmot and Plaza, 1994). The network representation is also used to indicate that is relatively straightforward to develop a parallel implementation of this algorithm.

 LISTNUM Section2.3  Neural networks, rules and trees

Since boolean rules commonly used in knowledge-based systems can be interpreted as rectangular, constant kernels, it is easy to see the link between rules and neural networks. It does not mean that only local basis function may be considered for hybrid systems of neural networks and rules: some important works have been done by mixing multilayer perceptrons and rule-based knowledge, such as Towell and Shavlik (1994). However, we focus on local function representations, since they lead directly to integration with the other approaches discussed in this work and suffer much less from the problem of interference that is specially harmful for more distributed representations. Independence of rules, at least at some degree, is a desirable property of rule-based systems (Pearl, 1988). 

Andrews and Geva (1996) provide a brief survey of three architectures, some of which are commented in more detail in the next paragraphs. 

Huber and Berthold (1995) approach the problem of building comprehensible neural networks by constructing fuzzy rules. The Rectangular Basis Function Network, RecBF, is an on-line adaptive classifier that partitions the input space by a conflict-based search. The topology is similar to a probabilistic neural network, in a sense that a class label is assigned to each hidden unit, and  those hidden units are connected only to the output unit (one for each class) that is of the same label. A hidden unit, in this case, is equivalent to a rule. 
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Figure 2.17: conflict-based rule induction. Prior to (I), only one example was analyzed, and so the whole input space was associated to class “+”.  During steps (I) and (II), new examples from “+” were added. No new rules are defined. In step (III), an instance from a different class was presented. Step (IV) modifies the original rule that covered the whole input space to be bounded by attribute x at point c. A complementary rule is created to cover the example from class “–” without including opposite cases.

In one cycle, each training example is presented once. If a unit correctly covers it, its corresponding weight is increased by one. If this example is not covered by any rule of the same class, a new unit is created, with a weight equal to unity, and its boundaries are adjusted to cover the maximum amount of space that is possible without covering already presented examples of different classes. The evaluation of a new instance also makes the units of different classes to shrink if they cover the new example. In this step, for each rule in conflict, the shrinking is performed only for one dimension, since it is enough to make the conflict point lie outside of the hyper-box represented by the unit. The heuristic that determines the dimension that must be shrunk is the maximum volume heuristic: the dimension to be shrunk is the one that allows the hyper-rectangle to cover the maximum volume that is possible. Figure 2.17 exemplifies the generation of initial rules in a RecBF framework.

More than one cycle may be necessary for convergence, i.e., when no other modification is necessary. The rules obtained are then “fuzzified”: since they may extrapolate to regions where there is no data, the activation function of a given unit responds differently depending on where an input point lies. The corresponding hyper-rectangle is divided in a “core” and a “support” region. The core region is the minimum subset of the space comprehended by the unit that is necessary to cover all correct data points that lie in it. The support region is the complementary subspace, and a trapezoidal activation function is then defined by these regions. The activation function a(x) for a RecBF unit returns 1 if x lies in its core region. It monotonically falls to zero as x is near the external boundaries of the support region. Figure 2.18 illustrates an graphical example of a RecBF activation function.
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Figure 2.18: graphical representation of a bidimensional covering of a RecBF unit. This value returned is determined by the minimum of the marginal fuzzy functions.

This procedure is very sensitive to noise and tends to produce many useless rules. A suggested heuristic to lessen this sensitivity is to prohibit units to shrink past a determined volume threshold. The results also have considerably influence from the order of the training examples. According to the experiments performed by Huber and Berthold (1995), the classification accuracy tends to be slightly worse than other rule and tree-based inducers, but with the advantage of being a very fast algorithm.

With original work predating RecBF, Berthold and Diamond (1998) also developed a similar approach using smooth kernels. The Dynamic Decay Adjustment (DDA) shares the same concept of RecBF of on-line introduction and shrinking of kernel functions. But instead of using constant, boolean kernels, DDA uses Gaussian basis functions. The covering/conflict criteria differs by making use of the smooth characteristics of the Gaussian function. Two parameters, (+ and ( –, are defined globally as thresholds that determine the occurrence of a covering or conflict. If there is some unit j of the same class of x such that its activation function aj(x) is greater than (+, DDA considers that j covers x and so must have its weight increased. All units k of different classes that have ak(x) > (+ are shrunk by reducing its spread parameter (k in a way that ak(x) < ( –.

If this architecture is trained till convergence, then for each training input x there will be at least one unit i of the same class of x such that ai(x) > (+ and, for all units k of different classes, ak(x) < ( –. If  (+ >> ( –, the units will tend to have narrower zones of influence, and so it will result in a network with more units. If (+ ( ( –, the negligible separation between conflict classes may generalize badly. This is another facet of the bias-variance trade-off discussed in Section 2.2.2. Berthold and Diamond report that these parameters are usually not crucial.

Unlike traditional PNNs, there are different spread parameters for each unit, as well as a spread distribution for each dimension in each unit. But RecBF is also allowed to ignore variables when they are not necessary to avoid conflicts, while DDA radial activation functions evaluates the contribution of each variable in each unit. Thus, DDA is more sensitive to the curse of dimensionality, but is more suited to identify outliers if no normalization is done in the output layer. DDA units can be interpreted as probabilistic rules, as discussed in the next paragraphs.

As a final note concerning RecBF and DDA, the conflict-based search is a classical approach for rule induction that was not treated in Section 2.2.1. Their main advantage, on-line learning, is not a common concern for designers of rule induction algorithms, however, and so it is less popular than recursive covering techniques. One of the best well-known approaches that falls under this category is the AQ family of algorithms by Michaslki  (see for example, Kaufman and Michaslki, 1999) whose original version dates from the 60s.
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Figure 2.19: (a), a binary decision tree. In (b), we have the distribution of the center parameters ( according to the criteria defined by Kubat.
Kubat (1998) discusses another approach to fast reuse information from decision trees in a neural network architecture in order to improve the classification accuracy of the tree model. The Tree-Based Radial Basis Function, TB-RBF, is basically a radial basis function initialized through the regions defined by a decision tree. The mapping from leaves to a Gaussian network is made by a two-stage procedure. Initially, a hidden unit is created for each leaf in the tree. The parameters of the hidden units are defined as follow:

· set center (k of the kth leaf to be the geometric center of the corresponding hyper-rectangle if this box does not fall in any border of the input space, as illustrated by Figure 2.19b. Otherwise, if two adjacent sides of the region lie on borders of the input space, (k must be placed in the corresponding corner. For those sides that lie in a border but do not make an outer corner, just set the corresponding dimensions of (k to be at the center of these sides;

· spread parameters (jk are defined for each attribute j in each leaf k as a function of the size of the original hyper-boxes: (jk = Ijk2 / (2, where Ijk is the size of the jth dimension in the kth leaf and ( is a global parameter that controls the smoothness of the model.

Figure 2.19 depicts a two-dimensional domain represented by a decision tree and TB-RBF.

The parameter ( is usually chosen by a model selection procedure such as cross-validation and is considered to have little impact. The spreads and centers are kept fixed: the only free parameters of TB-RBF are the output weights, which are determined through fast, simple linear techniques such as pseudoinverse matrices. In the experiments performed by Kubat, TB-RBF was indeed able to improve considerably the classification performance of given C4.5 trees.

Note that the approach taken by Kubat does not deal with probability modeling. In fact, the choice of distributing unit centers according to the geometrical centers ignores any distribution information that could be obtained from the subregions defined by recursive partitioning (as it is done by the tree-retrofitting method discussed in Section 2.4.1). This approach faces the classification problem just as a construction of a non-linear mapping from an input space to an output space, which is typical of dictionary representations. Even tough the subspaces enclosed by the leaves were constructed with respect to a given population, they are mapped to all output units as global features. TB-RBF is also robust to pruning procedures and often can keep good accuracy results using smaller trees.

Tresp et al. (1997) stress the link between networks of localized units, probabilistic networks and probabilistic rules. The interpretation given by Tresp et al. to local basis functions is the class conditional distribution of the values of the domain attributes, f(x | Ck), parameterized by measures of central tendency (means) with respective standard deviations. Often, normal distribution with a diagonal covariance matrix is chosen. Table 2.4 illustrates the distribution interpreted as a rule.

IF:

class Ci is true (which is the case with prior probability P(C = i))

THEN:

the attributes follow independent normal distributions


AND
the expected value of x1 is (i1 with standard deviation (i1


...



AND
the expected value of xd is (id with standard deviation (id 

Table 2.4: a class conditional Gaussian distribution cast as a probabilistic rule in a d-dimensional input space. The relationship is given by the expected values of the features given a class along with their respective spreads. Note that the attributes are considered independent given the class, which corresponds to axis-oriented Gaussian bumps.

In neural network terms, the activation function ai(x) corresponds to the class conditional density function f(x | Ci). As with other classifiers relying on density estimations, the classification is performed by the Bayes’ rule (2.7). But this description involves only unimodal distributions for each population, i.e., only one Gaussian function is used for each class. The solution chosen by Tresp et al. is to decompose a given class distribution in a mixture model, a representation similar to one of the interpretations that are usually given to radial basis functions, as described in Section 2.2.4.1. The premise in the rule description in Table 2.4 is modified to handle a intermediate state Sj instead of class Ci. The intermediate states are then combined to form the posterior probabilities P(Ci | x). The mixing can be interpreted as a set of rules following the syntax illustrated in Table 2.5. Note that while in the first case it was possible to straightly determine the value of the mixing coefficients (the prior probability of the classes), now is necessary to use more sophisticated approaches to determine the value of these intermediate coefficients, as discussed during the introduction of the EM algorithm in Section 2.2.3.1.

IF:

class Ci is true (which is the case with prior probability P(C = i))

THEN:

Sj is true with probability P(Sj | Ci)

Table 2.5: performing a link between an intermediate state Si and a class Ci.

Unlike the most usual procedures to train radial basis functions, the authors suggest to find the fit the centers and spread parameters by supervised learning using an EM algorithm. The expectation step estimates each probability that a given state j was used to generate the point x:

Pnew(Sj | xk) = 
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  LISTNUM Equations2 
The maximization step then computes the maximum likelihood estimate of the free parameters in a very similar way to the example given in Section 2.2.3.1. Details can be found at (Tresp et al., 1997).

The authors emphasize the purpose of model interpretation given by the rule-based framework. Specifically, prior knowledge may be directly inserted in the network by asking the expert
 for rules in the format “IF class C is true (with prior probability wi) THEN x ( (”. This knowledge can compensate for lack of data in some regions of the input space. The learning procedure may be interpreted under the context of theory refinement, as pointed by Towell and Shavlik (1994). In a previous work, Tresp et al. (1993) suggested the use of regularization methods such as weight decay to bias the network toward the original knowledge base. Another way to use this approach is to use a pre-determined number of hidden units (by some model selection approach) and let the learning algorithm find appropriate rules (i.e., by finding the means and standard deviations) for posterior interpretation.

Focusing on knowledge extraction from the network, pruning techniques are also discussed by Tresp et al. (1997). Attributes are eliminated from a rule by setting them to its “normal” characteristics: for each variable, its mean and standard deviation are computed with respect to the whole training set. Then, all features xij are ordered for each possible attribute i in each unit j. The ordering criteria is a measure of distribution difference between the univariate Gaussian centered at (ij with the respective spread (ij and the “typical” distribution parameterized by the “global” mean and standard deviation of the respective variable xi. Following this ordering, the features are successfully set to their typical values. If there is no increase in the classification error, or if only an acceptable increase happens, this feature is kept with those values. The pruning procedure generates rules such as “IF class is i, THEN feature j has value ( with standard deviation (, while all other features are at their normal values.” Units can also be removed and after any cycle of pruning, the network is retrained.
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Figure 2.20: using a neural network to learn the complete vector ( of parameters of a mixture model.

 LISTNUM Section2.3  Neural networks and mixture models

Blends of neural networks and mixture models may be hard to categorize as “hybrids”, since some neural architectures may be readily interpreted as mixture distributions with anything but a few modifications, such as ensuring that classification estimations will result in posterior probabilities that are all positive and sum up to 1. Also, many hybrids of neural networks and rules, as discussed previously, can be legitimately considered mixture models when one considers probability interpretations. However, two useful approaches slightly different from the previous ones are briefly discussed. Those methods use whole neural networks to estimate parameters of parametric distributions, which are then combined in mixtures. They are also not motivated by more abstract knowledge representation structures (as rules, for instance), but for better, fast function approximation and probability estimation.

Bishop (1994) presents the framework of mixture density networks, MDNs. The motivation in the development of MDNs are the domains with continuous multi-valued targets. The goal is to model the conditional density f(y | x) of continuous functions. The biggest problem of using conventional neural networks to perform regression occurs in some domains where various outputs may result, with different probabilities, from a given input (i.e., there are multi-valued targets). The regression framework simply computes the expected value of the output at the input point, but this average may not have any correspondence at all with the many outputs that can be obtained
, since the average of desired results is not necessarily (and often it is not) a desired output. This problem is tackled using MDNs by letting a standard neural network (multilayer perceptrons, for instance) learn the parameters of a given number of distributions (the means and covariance matrices of a pool of Gaussian functions, for instance), instead of learning the target directly. The fitting may be performed by back-propagation of the error function through all layers of the network. The number of basis distributions must be given a priori. Figure 2.20 depicts the steps performed under this framework.
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Figure 2.21: mixture of experts. Each expert network i is trained to output a statistic (i. This statistic is used in a parametric model of conditional probability.

A very similar structure with a different motivation is given by the hierarchical mixture of experts, HME (Jacobs et al., 1991; Jordan and Jacobs, 1994). The decomposition (2.10) of the conditional probability can be cast as a modular network, depicted in Figure 2.21. The training procedure is expected to associate a subset of the input space to each expert network. The determination of which experts are responsible for the generation of which input points is performed by a gating network. As a local learning algorithm, modifications of the mapping in a specific region of the function should affect only a part of the parameters involved in the approximation task, and such division is represented by the gating networks.

By allowing the gating networks to make multiple choices for a single input, governed by a probability distribution, the HME performs a soft split of the input space, where data is allowed to lie simultaneously in multiple regions with different probabilities. A popular representation of the expert networks is a generalized linear model. An expert network i outputs a statistic 

(i = f(wiTx)





  LISTNUM Equations2 
where wiT is a vector and x includes an extra, independent term x0. For classification problems, a common choice for the function f(.) is the logistic function also used in multilayer perceptrons.

This statistic, along with some information concerning dispersion, if necessary, is used to compute P(y | x,  j) corresponding to the jth expert. For example, if the distribution represented by expert j is normal (for continuous function approximation), P(y | x, j) is a Gaussian centered at (j with a given covariance matrix. For binary classification, a Bernoulli density is the natural choice, and P(y | x, j) is just (jy(1 – (j)1 – y. 

The gating network activation function gj(x) corresponds to the probability P(j | x). Generalized linear models are also typically used to approximate this probability, with a particular modification
 to ensure that P(j | x) > 0, for all j, and 
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   LISTNUM Equations2 
which is equivalent to (2.10).

Note that this decomposition readily leads to a hierarchical approach: just recursively reapply this same principle to the desired distributions P(y | x, j). Once more, the EM algorithm is an adequate procedure to fit this mixture model. Jordan et al. (1994) report experiments showing domains where HMEs give comparable results when compared with multilayer perceptrons, but requiring much less epochs. 

As a final note, even though the expert networks may not be internally composed of local basis functions (since, in fact, they are usually generalized linear models), as a whole a given expert network behaves as a localized function parameterized by its output vector.

 LISTNUM Section2  Summary 

This chapter focused on some specifics approaches for local learning. The principal ideas presented in this chapter of the dissertation can be divided into the following topics:

· many concepts were introduced by first discussing characteristics of the most common learning algorithms, since they are the foundation of the modern hybrid systems and the same principles are applied for a plethora of algorithms.

· even though such canonical methods are popular and able to solve a variety of problems, there is much room for improvement by combining these techniques. Among the motivations, we have improving the prediction performance by combining differently biased representations, minimizing the effects of the curse of dimensionality, speeding up the learning and inference process, alleviating requirements of model selection;

· the hybrid systems discussed in the final part of this chapter represent only a very small subset of current research efforts worldwide. The selection was biased towards the models that bear more structural and motivational resemblance to a new approach discussed at length in Chapter 3 and empirically evaluated in Chapter 4. The reader is encouraged to complement this information by examining other surveys like Giles et al. (1998), Goonatilake and Khebbal (1995), Gray (1997) and McGarry et al. (1999). 

Chapter 3


A Hybrid System for Rule Refinement

In this chapter, an algorithm for refinement of classification rules is specified following a framework based on hybrid systems of local basis functions and propositional logic. This approach works as a wrapper over rule induction algorithms with the purpose of building simpler models by selection of a subset of the rules and premises given as input while maintaining approximately equal classification performance. 

 LISTNUM Section3  Overview

Neural networks techniques are present on many hybrid systems (McGarry et al., 1999) and can offer alternatives for better rule induction processes. Two problems often explored are:

· the boundaries of each rule can be optimized in some degree for increased accuracy. Most rule induction algorithms generate one rule a time, as explained in Table 2.1. For prediction tasks, the rules usually overlap, and some decision policy must be applied for solving conflicts. An optimization methodology that is allowed to see all the rules at the same time can decide how to better redistribute the rules in their input space;

· the number of rules produced by rule induction algorithms is often high. A large number of rules is not good at the point of view of comprehensibility. Also, many of these rules cover few instances and are very error prone. However, they cannot just be eliminated because this can increase even more the misclassification cost. This is the so called small disjuncts problem (Holte et al., 1989).

Some careful discussion must be raised about the necessity of simple models: although a common belief in machine learning literature, a simpler model that fits the training set with the same accuracy of a more complex one does not necessarily will give better generalization results. According to Domingos (1999), stating that simpler models that explain the training data as well as the most complex ones are more likely to be the “true” model is a misinterpretation of the principle of Occam’s razor. The real role of Occam's razor as a criteria for model selection is choosing the most comprehensible model from those that achieve the same generalization error. 

Comprehensibility is desirable for providing insight about the process that produced the observable data. This is specially useful for analytical validation of automatically generated representations (e.g., in knowledge acquisition for experts systems) and for knowledge discovery and decision making (Fayyad et al., 1996). Some trade-offs concerning decreases in performance by using more comprehensible models may be tackled. 

Task: find a simpler model with comparable classification accuracy

1. Parameterize a given rule base as a neural network;

2. Following a determined order criteria, tentatively eliminate each unit from the network. If the error in the pruning set increase by more than a small percentage, put the unit back in the network. Similarly, perform a pruning of premises;

3. Optimize the network with a gradient-based learning algorithm (gradient descent, conjugate gradients, etc.);

4. Perform a pruning analog to step 2;

5. If in Step 4 we pruned some component of the model, go back to step 3. Otherwise, stop the process and output the network;

Table 3.1: the proposed framework for rule refinement.

However, it is not easy to define the ideal properties of comprehensible models. This concept may vary under different domains and performance measures. As also stated by Domingos, a common measure of understandability is the structural complexity of the model. This can be determined as the number of parameters of the system, such as the number of premises of a rule base or the number of weights of a neural network. While not ideal, this criteria has the merit of being easily and generally applicable.

Following mainly Tresp et al. (1993, 1997) and other models presented in Chapter 2, we propose a framework for simplification of propositional rules obtained from rule induction algorithms in classification problems. The assumptions underlying the applicability of this model are:

· the classification task that must be performed would significantly benefit from the generation of more comprehensible models;

· simplicity can be used as measure of comprehensibility;

· the language used to reorganize the given rules is at least as comprehensible as the original propositional representation and may in fact give more insight about the model;

This approach consists in remapping a set of boolean rules into a neural network of smooth kernels and then performing consecutive cycles of pruning and fitting until no further simplification can be performed using the same data sets applied in the rule induction stage. Table 3.1 illustrates this process. The final model should have classification accuracy comparable to the original rule base. A comparable accuracy must be understood as an accuracy rate that is not different by a statistically significant margin (according to a given hypothesis test) or by a practical margin (according to domain knowledge).
 LISTNUM Section3  Model structure

The proposed model refines a set of classification rules specified in propositional logic using vector-based, unstructured, records of a training data set. Multi-valued symbolic attributes are allowed. The model can be graphically represented as a feed-forward neural network with one hidden layer of local basis functions, each hidden unit corresponding to one rule. The output layer uses one unit for each class of the domain and each hidden unit is linked to only one of the classes, in a similar way to a probabilistic neural network (Spetch, 1990). Figure 3.1 illustrates a network and how it relates to a set of rules.
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Figure 3.1: example of a network of seven units for a binary classification problem. In (a), the feed-forward architecture based on probabilistic neural networks. Picture (b) shows a geometric perspective of the covering of the seven rules plus two units representing combination of the individual hyper-rectangles.
This section describes the structural components of the proposed model. Section 3.2.1 discusses the parameterization of the local basis functions that act as hidden units of the related neural network and represent smoothed rules. Under this representation, Section 3.2.2 delineates the steps performed for initialization of the network from a set of rules. Section 3.2.3 describes the structure of the output layer, while Section 3.2.4 introduces comments about the effects of normalization. Section 3.2.5 provides brief information about a rule induction algorithm that may be used to initialize this model.

 LISTNUM Section3-2  Parameterization of individual units

Each hidden unit is built from a specific rule r as a local base function. This local function is parameterized by:

· a measure of center (r = ((r1, (r2, ..., (rd)T, where d is the dimensionality of the input space. This parameter is fixed during the learning stage;

· two measures of dispersion, (r+ = ((r1+, (r2+, ... (rd+)T and (r- = ((r1-, (r2-, ... (rd-)T. These are the free parameters adjusted during the learning stage. 

Unlike the most common variations of radial basis functions (Moody and Darken, 1989), the parameters of center and dispersion are defined for each basis function and each attribute. Often, in local basis function networks (like RBFs), global parameters of spread are considered for each attribute (being the same for all units), or a scalar dispersion parameter (i is  applied for each unit i (being the same for all attributes in this unit). In this case, the number of parameters is smaller.

However, even using local measures of variability, the number of free parameters remains reasonably limited in the proposed model, because the vectors (r+ and (r- are highly sparse: just a small subset of the whole set of domain variables is normally considered in each unit, as it is explained next, by initializing the network with a rule base. For those variables considered irrelevant in unit r, the dispersion parameter is represented as (. Note that this is one of the reasons for choosing two dispersion parameters (r+ and (r-: many of the variables are only bounded by an upper or bottom limit.

Two activation functions ar(x) for a hidden unit r given an input x are normally considered for kernel functions:

ar(x) = 
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 LISTNUM "Equacoes" 3. 
where ark(xk) is a function of attribute k at unit r. 

The definition of the univariate function ark(xk) depends on the type of the variable xk. For ordered  (numerical) variables xk:

ark(xk) = 
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This is also very similar to many traditional models of fuzzy neural networks (Kosko, 1997).

For unordered (symbolic) variables k, the measure (rk is itself a vector
, because multi-valued tests for categorical attributes are allowed in the proposed model. For example, on modeling unemployment rates for a given sector of economy, one could consider a rule with a condition about the place where that sector is surveyed:

IF      region ( {REGION1, REGION5}

AND sector = SECTOR4

AND...

THEN unemployment rate = “ > 15%” 
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Figure 3.2: geometrical perspective of two bumps. Both are centered at (0.4, 0.5) with symmetrical dispersion parameters (0.12, 0.16). Bump (a) is plotted according to equation (3.1). Bump (b) is plotted according to (3.2).
Assuming region ( {REGION1, REGION2, ..., REGION5}, we have five measures of center for this attribute in this rule. 

Let (rk,v be  the center of the kth variable at unit r for the corresponding value v. In an analogous way, we define (rk+,v. So, ark(xk), where xk = v, is defined for unordered (symbolic) variables as

ark(xk)
= 
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= 1, otherwise 

The decompositions (3.1) and (3.2) by functions of one variable is a simplification that does not consider higher order interactions of attributes. Geometrically, (3.1) and (3.2) are axis-oriented bumps, as illustrated by Figure 3.2 for a two-dimensional space. Although (3.1) and (3.2) can have an undesired bias for a variety of problems, they have some important advantages:

· they are easier to interpret. Since this is one of the objectives of this model, it is a very important feature;

· they require less parameters;

· most important, they work well in practice;

At least in theory, the product combiner (3.2) has more discriminatory power (Kosko, 1997): all partial activations ark(xk) directly influence the output for all inputs. However, the gradient of (3.1) is faster to compute. Boolean functions used in rule-based systems are a special case of (3.1). Additionally, as explained on Section 3.5, gradient optimization of (3.1) is quite similar to many methods of rule induction, and classification problems are simpler than continuous function approximation. Kosko also argues that the choice of min versus product often makes little difference in practice for systems with only a few inputs. Many rules induced by automatic algorithms have few premises.
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Figure 3.3: the behavior of a L-n distance metric when n increases.

Another interpretation for the boolean kernel functions used in the basic rule-based representations is given by the behavior of the Euclidean distance. In Figure 3.3 (Ricci and Avesani, 1995), each curve represents the set of points xi within a distance ((xi, y) = 0.08 from point y = (.4, .82)T computed by:

((xi, y) = 
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where N is the dimensionality of the input space, d(a, b) = |a – b|, a, b ( [0, 1], and wij is a weight that depends on j and on the signal
 of xj – yj. As n converges to the infinite, the L-n norm defined by (3.5) approaches maxi |xi – yi|.

 LISTNUM Section3.2.1  Notes on asymmetric distances

In principle, using asymmetric measures of distance (represented by the dispersion parameters (rk+ and (rk-) introduces additional parameters in the model when compared to symmetric alternatives, raising risks of overfitting and slowing down the learning procedure. However, they have many interesting properties that make them specially attractive for the proposed approach:

· they seamlessly fit in the reparameterization of rules in smooth kernels discussed in Section 3.2.2. Most of the premises are translated to one-sided intervals. In practice, asymmetric measures of dispersion increase the total amount of  parameters by only a small amount when compared with symmetric alternatives;

· symmetric measures of dispersion produce undesirable “propagation” effects that can slow down the process or be stuck in a worse local minimum (Ricci and Avesani, 1995). Figure 3.4 exemplifies a typical situation that happens when one classifier tries to adjust its symmetric dispersion measures. Of course, if the centers are also treated as adaptive parameters, potentially there is enough freedom to reach better local minima of the error function. But this solution introduces extra free parameters into the model, and there are situations where it is not desirable or even possible to change the centers. Lazy learning is a typical example. Also, the proposed parameterization relies on many one-sided intervals, where the centers are naturally fixed;

· since only the ( parameters are fitted, the implementation is easier since one is dealing with only one kind of variable;
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Figure 3.4: the effect of fitting boundaries of symmetric bumps. In (a), the snapshot of a set of bumps in one dimension at a given stage of a fitting procedure. The gray vertical lines show the correct boundaries. Note that the only boundary that must be corrected is the first one from left to right. In (b), let the learning procedure adjust the first boundary by shrinking the second bump. However, this effect propagates to the second boundary. The learning system changes the third bump to fix this boundary, but again introduces another error that needs further correction. If it was possible to adjust each side of the bump, only one step would be necessary.

 LISTNUM Section3-2  Initialization

In theory refinement (Ramachandran and Mooney, 1998; Towell and Shavlik, 1994), the learning model is initialized with a partially correct domain theory (prior knowledge about some specific domain) translated as parameters of an adaptive function. The proposed model follows an equivalent strategy based on propositional rules. A small conceptual difference is that theory refinement emphasizes the improvement of information given by human experts, while we focus in a two-step process of learning from data with no necessity of explicit knowledge acquisition
. The difference, however, is not important under the point of view of model fitting. In either approach, it is necessary to define a procedure to initialize the adaptive model by using information from a rule base, or other knowledge representation language.

Let Pr be the set of premises of rule r. Prk is a premise concerning attribute k in rule r. For ordered variables, Prk is represented by one of the following templates: (a < xrk < b), (xrk < b) or (xrk > a), where xrk represents the variable k. For symbolic variables, Prk assumes the template (xrk ( Valuesrk), where Valuesrk is a subset of the domain values of k. If k is not constrained in rule r (i.e., there is no premise concerning k), then Prk = (.

Let Dr be the set of examples in the training set bounded by the corresponding rule r, where it is considered only those examples that are of the same class of r. With no loss of generality, it is assumed that ordered variables are normalized into the interval  [0, 1]. Unordered (symbolic) variables are represented in a 1-of-n encoding (Pyle, 1999):  xrk,v corresponds to the function 1(xrk = v), where 1(x) is the indicator function, returning 1 if x is true and 0 otherwise; v ( {1, 2, ..., n} represents the v-th possible value of xk, and n is the dimensionality of the domain of xk.

For ordered variables, the parameters of the hidden units are initialized as follow: 

· the center parameters (rk, computed for each attribute k, are given by the median of xrk in Dr;

· in general, two spread parameters, (rk+ and (rk-, are computed for each attribute k. The initialization is (rk+ = 
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|(rk – a| / s. Reasonable values of s are usually 2 or 3, as explained later in this section. If Prk = (, we consider (rk+ = (rk- = (. If Prk = (Xrk < b) or Prk = (Xrk > a), k is used in the rule as an one-sided interval, so (rk- = ( or (rk+ = (, for upper bounded or lower bounded intervals, respectively;

For unordered variables, the parameters of the hidden units are initialized as follow:

· the center parameters (rk,v are computed for each domain value of k. For all values v in the domain of k, if v ( Valuesrk, then (rk,v = 1. Otherwise, (rk,v = 0;

· for the initialization of the spread parameters, there are two situations:

1. if (rk,v = 0, (rk+,v = 
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/s, (rk-,v = (. Typical values for s are 2 or 3;

2. if (rk,v = 1, (rk+,v = (rk-,v = (;

Finally, each hidden unit must be introduced in the network by linking it to an appropriate output unit. The class Cr of the rule defines this relationship: the unit is linked only with the output unit (Section 3.2.3) representing Cr.

The initialization of the spread parameters is motivated by the normal probability distribution: nearly all of the data falls in a distance of a few standard deviations of the center, as illustrated by Figure 3.5 (Moore and McCabe, 1993). The hard boundaries of a rule are relaxed by considering that most, not all, of the data falls in the hyper-box defined by the premises. The space between the center and a boundary is considered as a distance of two or three standard deviations, which corresponds to s in the definitions above. Slightly more overlapping is obtained by setting s = 2. The 
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 factor is a small correction
 introduced because the normal density function exp( –( x – (2 ) / 2(2 ) uses the dispersion parameter multiplied by 2. Note that the activation function is not identical to a normal density function: asymmetric dispersions are considered and the median is used as a measure of center. A more detailed probabilistic interpretation of the activation functions will be given in Section 3.6.
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Figure 3.5: the 68-95-99.7 rule. This gives the percentage of observations that fall within (, 2( and 3(, respectively, from the mean under a normal distribution.

Using the median instead of the mean makes the parameterization more robust to outliers. The dispersion parameters are indeed affected by outliers, but the fitting procedure (Section 3.5) is expected to correct any undesired influence by supervised learning.

For symbolic variables, the initialization corresponds to make ark,v(xk = v) = 1 when v ( Valuesrk and a small value when v ( Valuesrk. It must be clear that the input for the functions ark,v is always 1, i.e., ark,v(0) is not defined: when xk = v ( q, ark,q is not used, and ark(xk = v) = ark,v(1). When (rk,v = 1, the corresponding dispersion parameters are considered fixed and infinite.

 LISTNUM Section3-2  Output layer

Each unit in the hidden layer is connected to exactly one unit in the output layer: the one that corresponds to the class of the original rule from where the hidden unit was built. The parameters of this final layer are not adaptive: the weights wr, r ( {1, ..., R}, where R is the number of hidden units, are computed according to the behavior of unit r given the training data. This measure must penalize the less reliable units. There are similar concerns on developing rule induction algorithms. For induction, it is common to have some criteria to decide if a given disjunct selected by a searching methodology must be added to the current model instead of another one. For inference, this weight may be used to decide how to deal with conflicts among overlapping rules that cover a given input . 

For selecting rules and solving conflicts, one of the simplest measures is the apparent accuracy, already introduced by Equation (2.4) and repeated in a shorter notation here:

Apparent accuracy(r) = 
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where n+ is the number of training examples that are of the same class of the rule and are covered by it. Equivalently, n- is the number of training examples that are of a different class and are covered by the rule. 

For the smooth rules used in the proposed model, a suitable measure is:

Weighted accuracy(r) = 
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where 1(C(xi) = C(r)) is the indicator function for comparing the class of an example xi and a unit r. It returns zero if xi is not from the same class of r and so the numerator computes the influence only from examples x from the training set such that C(x) = C(r). The sum varies through all examples i.

The partial activation function of unit j of the output layer is computed by

yj(x) = 
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where wr is the link between r and j measured by (3.7).

Similar to (3.6), another possible measure of rule consistency with smooth activations can be suggested. The elements are counted only when the given unit has the greatest activation of all in the network. Note that, in situations where there is strong overlapping, many rules can have zero consistency since they may never “win” for any instance. This favors a stronger pruning, but in specific cases it can be harmful, specially when all rules of a given class are subsumed by rules of others classes. The motivation behind this alternative measure is similar to the one underlying alpha-cut procedures in fuzzy systems: many training examples can satisfy a rule by a small degree, and summing over all those contributions can considerably diminish the weight of this rule (Ferig et al., 1999), and so it would be useful to discard those examples that fail to achieve a determined level of activation. This second approach to weight computing was used in a previous work (Silva and Ludermir, 1999), but is seems more consistent to use higher values for the parameter s to avoid influence of distant points, since it controls the degree of smoothness of the remapping. It is also more advantageous to apply only (3.7) because it favors speed optimizations in the actual implementation (Section 3.5.4).

 LISTNUM Section3-2  Normalization

The function (3.8) is only a partial activation function, as stated previously. The final output is computed after normalization, ensuring that the output vector corresponds to a partition of unity. The main motivation is to give conditional probability estimates of each class while making more stable changes in the error function described in Section 3.5.

The normalization permits smooth extrapolation of decision to regions where no data have been seen. Outlier detection, where an input is rejected by indicating that it does not belong to any of the available classes, cannot be performed under these conditions. But even if no normalization was performed, rejection decisions could not be made by this model, because of the nature of the basis functions: for instance, the flat regions of the one-sided intervals indicate that points of conflict classes are not covered under those regions, but it does not indicate presence of points of the correct class. This design choice trades-off outlier detection by model simplicity, since much less parameters are required in this case.
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Figure 3.6: the influence of each basis function. In picture (a), we have the original functions, where the output of each one monotonically decreases as a function of the distance from the respective center. In (b), after a normalization step the influence of a function may reappear at maximum in other points distant from the center.

Normalization may lead to unintuitive distribution of boundaries. In fact, the local basis functions are not strictly local, since the activation function may go up and down across the space, as indicated by Figure 3.6. Shorten and Murray-Smith (1994) point that normalization can compensate for weak center selection in radial basis functions, but stress that loss of independence and change of shape of basis function are undesirable. However, the expected instability added by normalization is much less serious in classification problems, where it is only necessary to divide the input space in appropriate subregions.
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Figure 3.7: normalization effects on a domain of two variables. The sum of the activation functions of each unit in a given point must be always one, which makes units extend their range of influence. Picture (a) shows a set of unnormalized basis functions, while (b) is the normalized model.
  Extrapolation in two dimensions is illustrated in Figure 3.7 Note that axis-oriented components may lead to more complex decision surfaces when combined, which provides another motivation for the adoption of functions (3.1) and (3.2) despite their simplicity.

 LISTNUM Section3-2  Suggested rule induction algorithm

A rule induction algorithm that is specially attractive for the initialization process described in section 2.2 is the Patient Rule Induction Method – PRIM (Friedman and Fisher, 1999), already introduced in Chapter 2. Its suitability is based on the following characteristics:

· it is robust to noise, avoiding to create unnecessarily large sets of rules. It usually stays in a good rank of model complexity when compared with axis-oriented decision trees results presented by Lim et al. (1999);

· it explicitly searches for bumps of class distributions
. Other performance measures and stopping conditions commonly used in rule induction (such as entropy and statistical t‑tests), or other search methodologies such as genetic algorithms, have a weaker correspondence with the concept of covering local regions where the concentration of data of a given class is greater than the global mean. The criteria of search is to maximize the mean of elements of a class, which is the equation (3.6) for output weights. An empirical comparison with CART is performed by Friedman and Fisher;

· the search performed by the PRIM algorithm is a steepest ascent optimization that has a strong correspondence with the gradient based fitting described in Section 3.5, specially when (3.1) is used. And the “patient” steps make the comparison with the gradient search a fairer one, since it is not as greedy as other recursive covering algorithms;

· the function representation of PRIM allows rules with multi-valued tests for symbolic variables in the premises;

· it is a state-of-the-art algorithm that allows the use of domain knowledge for a more suitable choice of support/precision trade-off. This characteristic is not used in the experiments described in Chapter 4, but it can be useful for real world applications;

The default methodology for induction splits the training data in two sets, one for growing rules and other for pruning premises, as applied by SuperGEM, a free available implementation of PRIM
. Before plugging the rules in the network, they are pruned following the same criteria of Section 3.4 applied to the entire training set. More details are given on Chapter 4.

Following Friedman and Fisher’s description of rule induction as a bump hunting in high dimensional spaces, henceforth we will call our approach as Bump Pruning and Fitting, BPF.

 LISTNUM Section3  Example of parameterization

For a better understanding of the parameterization policy applied in the proposed model, this section fully describes the structure of a hypothetical network that is just a subset of a real world model based on the heart disease data (used in the StatLog project and described on Michie et al., 1994). The problem is how to identify the absence or presence of heart disease using thirteen predictor variables, where seven are real-valued and six are symbolic. Table 3.2 shows the domain specification. A complete network is used in the experiments described on Chapter 4. 


Variable


Domain

1
Age
[0, 1]

2
Sex
{M, F}

3
Chest pain type
{0, 1, 2, 3}(ordered)

4
Resting blood pressure
[0, 1]

5
Serum cholestoral in mg/dl
[0, 1]

6
Fasting blood sugar > 120 mg/dl
{True, False}

7
Resting electrocardiographic results
{0, 1, 2} (unordered)

8
Maximum heart rate achieved
[0, 1]

9
Exercise induced angina
{True, False}

10
Oldpeak = ST depression induced by exercise relative to rest
[0, 1]

11
The slope of the peak exercise ST Segment
[0, 1]

12
Number of major vessels (0-3) colored by flourosopy
[0, 1]

13
Thal
{normal, fixed defect, reversable defect}

Table 3.2: description of the variables for the domain of heart disease.

For the training set extracted from the complete data set, a given rule induction algorithm generates a small rule base from where only two disjuncts will be used in this example. The first rule is
:

Rule 1

IF  age < 0.6146

AND number of major vessels colored < 0.1667

AND thal ( {normal, fixed defect}

THEN

    Absence

According to Table 3.2, age, number of colored major vessels and thal are, respectively, the first, twelfth and thirteenth attributes in our domain specification. So, we have:

· P1-1 = (age < 0.6146)

· P1-12 = (number of colored major vessels < 0.1667)

· P1-13 = (thal ( {normal, fixed defect})

· P1-k = (, for k ( 1, 12, 13;

The first premise P1-1 fits in the template Prk = (Xrk < b), b ( (0, 1], which implies that (1‑1 is given by the median. In this example, (1‑1 = 0.4. By the same mechanism, (1-1+ = 
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|0.6146 – 0.4| / 2 ( 0.1517 and (1-1- = (. 

Similarly, (1‑12 = 0. Note that this premise collapses to a single value because, in fact, this variable is discrete, assuming values 0, 1, 2, or 3. But as it is ordered, we treat it as a continuous one mapped to an interval [0, 1]. The parameter (1‑12‑ is set to ( and (1-12+ = 
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|0 – 0.1667| / 2 ( 0.1179. 

Analyzing the behavior of these functions at some critical values, we have:

a1-1(0.6146) = exp{– (0.4 – 0.6146)2 / 0.15172 } ( 0.1353.

a1-1(x1 | x1 < 0.4) = 1
a1-12(0.1667) = exp{– (0.1667 – 0)2 / 0.11792 } ( 0.1353

which satisfies the intuitive appeal that the functions should be equal at the boundaries. 
For the attribute thal, two of its three possible values are allowed. When transposing this information for a component of the first unit, we have:

· a1-13,1(1) = a1-13,2(1) = 1;

· a1-13,3(1) = exp(–1 / (
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/ 2) 2) ( 0.1353

The second rule is:

Rule 2

IF  age > 0.4479

AND 0.3092 < maximum heart rate achieved  < 0.6870 

AND exercise induced angina = false 

THEN

    Absence

The premises are:

· P2-1 = (age > 0.4479)

· P2-8 = (0.3092 < maximum heart rate achieved  < 0.6870)

· P2-9 = (exercise induced angina = false)

· P2-k = (, for k ( 1, 8, 9;

The first premise P2-1 fits in the template Prk = (Xrk > b), b ( [0, 1), which implies that (2‑1 is given by the median. In this example, (2‑1 = 0.625. By the same mechanism, (2-1- = 
[image: image76.wmf]2

|0.625 – 0.4479| / 2 ( 0.1252 and (2-1+ = (. Similarly, (2‑8 = 0.5267. Then, (2-8- = 
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|0.5267 – 0.3092| / 2 ( 0.1538 and (2-8+ = 
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|0.5267 – 0.6870| / 2 ( 0.1133.

For the last attribute, (2‑9,1 = 0, (2-9-,1 = (, (2-9+,1 = 
[image: image79.wmf]2

/ 2; (2‑9,2 = 1, (2-9-,2 = (, (2-9+,2 = (;

Figure 3.8 shows the shape of the activation functions of each premise of rule 2. Figure 3.9 compares the scatter plots of the distribution of the data bounded by rule 2 given the two classes.

[image: image80.png]{d)




Figure 3.8: illustrating the behavior of the activation functions of each attribute in rule 2. Picture (a) represents the activation function concerning the premise age ( 0.4583, according to the described parameterization. For comparison, picture (b) represents a parameterization similar to the one proposed by Kubat (1998). Picture (c) is the behavior of the activation function for 0.3129 ( maximum heart rate achieved  ( 0.6794. Finally, (d) is the function parameterized by exercise induced angina = true. Gray vertical lines mark the boundaries of the original rule.
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Figure 3.9: the left picture shows the scatter plot of the data covered by rule 2 given class Absence. The right picture is the scatter plot of the remaining points covered by rule 2 given class Presence. It is clear that most of the data of the wrong class is near the boundaries of the rule, resulting in a desirable separation.
 LISTNUM Section3   Pruning methodology

In Chapter 2, we described the methodology used by Tresp et al. (1997) to prune a rule base by substitution of probability functions. Another approach to eliminate attributes of a rule is to drop them completely (instead of letting them assume “normal” distributions), as suggested previously by Tresp et al. (1993): 

· prune basis functions: evaluate the relative weight wr of each basis function which is a measure of its importance in the network. Remove the unit with the smallest wr;

· prune premises: successively, set the largest (rk equal to infinity, effectively removing input k from basis function r;

The removal of a unit or premise is accepted if and only if the error in the training set (or another data set) does not increase by a small threshold. Note that rule induction algorithms usually generate overlapping regions in the input space, which result in redundant components that can be successfully eliminated from the model with no harm to its predictive capabilities. But there are many situations when even a pruned rule base can be simplified when reparameterized as a local basis function network: examples that are uncovered when a given rule is eliminated are correctly classified by others because the smoother activation functions (3.3) and (3.4) are able to cover them. 

This justifies the cycle of pruning and fitting indicated on Table 3.1, where retraining is done after any model simplification: some units are fitted in a way to subsume the roles of other units. So, it is expected that there is always the possibility of further pruning after a session of model refinement. There is also a close relation with the RIPPER (Cohen, 1995) methodology of rule optimization. RIPPER algorithm alternates steps of rule revision
 and steps of adding new rules to cover any remaining positive examples. This process is repeated k times, and those variants are called RIPPERk induction algorithms.

Using the training set as a guide for pruning can be less effective than using an independent pruning set, but it wastes less data. Another motivation for using the training set to guide the pruning is the fact that the model itself is much more robust than, for example, a decision tree induced with a stopping condition of complete purity of classes in its leaves. Pruning even a single leaf of an overfitted tree increases training error, which is not the case in the proposed model, where many units can be pruned with no increase on predictive training error. A slight alteration on this pruning methodology can be added to the learning framework of Table 3.1: as a final step, the pruning of the weakest rules is performed till the error is not greater than the initial error, before gradient-based optimization. Table 3.3 details the pruning methodology adopted. An independent pruning set can be used, and it will generally give better results. However, we want to stress that even the training set alone can be used to achieve considerable simplification.

PruneModel(model, (, dataset)

/* 

   model is a mixture of local basis functions for classification;

   ( is the increase in percentage error that is allowed;         

   dataset is a set of data used to evaluate the model;  

*/

let minimum_error be the classification error of model with respect to dataset

repeat
   set all weights w of model to unmarked state

   repeat
      let w be the smallest weight associated with a given kernel in an  

          unmarked state

      set w to zero

      let new_error be the classification error of model 

          with respect to dataset
      if new_error > minimum_error + (, then 

         restore w to its old value

      else 

         eliminate the respective kernel from the model

         if new_error < minimum_error then minimum_error ( new_error

      end if

      set w to a marked state

   until all w ( model are in a marked state

   set all spread parameters ( of model to unmarked state

   EvaluateSigmas(()

   repeat
      let ( the spread parameter associated with a given variable 

          of a given kernel, such ( is the unmarked parameter that returned

          the greatest value of EvaluateSigma()

      set ( to infinite

      let new_error be the classification error of model 

          with respect to dataset
      if new_error > minimum_error + ( then 

         restore ( to its old value

      else
         if new_error < minimum_error then minimum_error ( new_error

      set ( to a marked state

   until all ( ( model are in a marked state

until model is not modified by any pruning

Table 3.3: a pruning methodology for simplification of a mixture of local basis functions for classification.
The ordering for unit evaluation is given by the crescent order of their respective weights, as specified by Tresp et al. On the other hand, the same criteria cannot be applied to dispersion parameters, since the size of those parameters for symbolic variables cannot be straightly compared with parameters of non-numerical variables. They are hard to compare even among themselves, since at the beginning they are all equal. The solution, represented in Table 3.3 as the evaluation function EvaluateSigmas, is to compute the “contribution” of each dispersion parameter. The contribution is defined by the change in the weight of a rule when a given spread parameter is temporarily discarded (i.e., set to infinite). Let w be the weight of a given unit and w(  the weight of the same unit when parameter ( is discarded. Then, we have

EvaluateSigma(() = (w( – w) / w
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which returns bigger values for those dispersion parameters that when discarded achieved greater improvements (or smaller losses) for the weight of its respective unit.

It must be clear that order of evaluation for units and spread parameters is just a heuristic measure for guiding the search in a model space. It does not intend to produce the smallest possible model with respect to a given data set. It is also useful when there is a huge quantity of parameters and one wants to cut the search at a given point, assuming that units with the smallest weights and most sensitive spread parameters are more likely to be eliminated.

The metaparameter ( trades-off classification performance by more simplification. The proposed procedure can be executed with different values of ( and a domain expert decides which obtained model gives the better compromise.

 LISTNUM Section3  Fitting the model

Even methods as PRIM, much less greedy than, for example, decision trees, can be improved for classification purposes. Rule induction methods build one rule at a time, without considering the whole model. Better boundaries (for accuracy and simplicity purposes) can be computed when considering the interaction of the rules. This is a situation similar to the comparison between reduced error pruning and incremental error pruning of rule sets: while the former considers premises of all rules at each step, the later evaluates only one rule at a time
 (Cohen, 1995). Along with the smoothing added by the remapping procedure, the refined search implied by the supervised learning of spread parameters explains why it is possible to eliminate portions of the model.

 LISTNUM Section3-4  Computation of the gradient

Section 3.2 described a way of redefining a rule as a local basis function differentiable at its parameters. Using a gradient-based optimization (Press et al., 1992), it is possible to adjust those parameters to reposition the boundaries given a global measure of fitting. Gradient-based methods require differentiable error functions. Masters (1995) restates the mean squared error as

Ec(x) = (1 – bc(x))2 + 
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where c is the correct class of x. The function bj is the normalized output function (3.8) as described in Section 3.2.4:
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The desired output vector t(x) = (tj(x)) indicates the class of the input:

tc(x) = 1; tj(c(x) = 0 
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which justifies the form of (3.10) and the adequateness of normalization, where
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Masters (1995) details the equations for gradient computation of the dispersion parameters of a probabilistic neural network (Spetch, 1990). A similar elaboration can be performed for the BPF model.

The computation of the derivative of the error function with respect to the dispersion parameters corresponds to:
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where (rk is the dispersion of the k-th attribute conditioned on rule r, and represents either (rk- or (rk+. Only finite dispersions are refined by this fitting procedure.

For the activation function described by Equation (3.1):

· if ark(x) = 
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· if ark(x) ( 
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For the activation function described by Equation (3.2):
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Finally,


[image: image93.wmf]å

=

=

¶

¶

j

jrk

rk

rk

v

V

)

(

)

(

)

s(

x

x

x

s






 LISTNUM "Equacoes" 3. 

[image: image94.wmf])

s(

)

(

b

)

(

)

(

)

(

b

x

x

x

x

x

j

rk

jrk

rk

j

V

v

-

=

¶

¶

s

 



 LISTNUM "Equacoes" 3. 
In fact, Vrk(x) = vjrk(x), where the class of output unit j is the same of hidden unit r, because (yi(x)/((rk = 0 for i ( j. When implementing the BPF algorithm, this is a simplification that can speeds up results.

The gradient descent optimization has a straight parallel with the steepest ascent optimization used by PRIM, specially when (3.1) is used. While the fitting procedure described minimizes an error function, PRIM maximizes the criteria (2.4). Another difference is that BPF makes credit assignment decisions to function minimization with respect to the complete set of rules, while the rule induction method considers only premises of the current rule being induced.

 LISTNUM Section3-4  Output layer update

The output weights may be adjusted after any change in the vector of spread parameters. One could ask why not treat the output weights as free parameters adapted by gradient optimization, just as the dispersion parameters are. There are various motivations underlying this choice:

· there are less free parameters if the weights are computed by a deterministic function of the dispersions;

· using a closed formula like (3.7) permits one to choose different evaluation functions for the output weights. For example, Kaufman and Michaslki (1999) survey different ways to quantify the quality of a rule, penalizing rules with low coverage, rules with high entropy and so on;
· it is a way to favoring locality. Moody and Darken (1989) experiments using full supervised learning were performed for radial basis functions, and the results were basis functions with very broad receptive fields. This network has considerable freedom to fit a non-linear mapping, and this can be done in rather unexpected ways with no correspondence to locality, if arbitrary combination of the basis components are allowed. By using a formula that gives less weight to basis functions that cover instances from different classes (which happens when they start growing larger), we are helping to maintain locality.
 LISTNUM Section3-4  Effectiveness

Due to these various restrictions for interpretability warranties, in practice BPF hardly improves the classification accuracy for rules generated by adequate rule induction algorithms. There is no adaptive recombination of kernels, unlike the TB-RBF approach of Kubat (1998). There is no addition of extra components (i.e., rules and premises) to explicitly lower the classification error, which in fact would conflict with the purpose of model simplification. Indeed, many neurofuzzy approaches for classification (highly similar to BPF) can be criticized for failing to achieve reasonable accuracy improvements (Gray, 1997). That was one of the motivations for concentrating in a different aspect of machine learning: generating simple models for automatic knowledge acquisition and discovery, the real role of Occam’s razor (Domingos, 1998).

Note that this is not necessarily the case for theory refinement tasks, as those described in (Towell and Shavlik, 1994) and (Ramachandran and Mooney, 1998). In this situation, the original model is not automatically generated from data, at least not directly. This opens the possibility of applying adaptive algorithms from machine learning and statistics to add genuine contributions. However, in theory refinement one is also interested in adding complexity to a model, since the objective is to give better accuracy results. 

The fitting procedure, then, must be understood as a way to better redistribute the components (kernels) of the network, generating redundant components to be pruned. As pointed by Sarle (1999) and already commented in Section 2.2.4.1 under the context of radial basis functions, full supervised learning performs a more refined search, and so it may require less components to induce a good mapping. Sarle was comparing it with clustering methods, while here the improvement are over stepwise supervised learning by recursive covering.

 LISTNUM Section3-4  Implementation details and suggestions

One has to pay attention when updating the ( vector of parameters. These vector must be a non-negative one. One way to guarantee this restriction is to keep a dependence with another set of parameters z, where 

(rk+ = exp(zrk+) 
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(rk- = exp(zrk-)

Equations (3.14)-(3.19) must be adapted to include the terms (Ec/(zrk. There is an extra computational cost with this approach, however. Computing more exponentials at each evaluation of an activation function adds considerable more time when optimizing the model. An alternative is to keep “vigilance” on the updating steps: whenever a parameters is set to a negative value, change it to a small positive value. In some tasks of optimization, some differences may occur if (3.20) is used for parameterization or not. For example, in line search (Press et al., 1992), adding steps logarithmically is recommended if one works directly with sigma parameters (Masters, 1995). 

A heuristic to slightly reduce computation time is to assume (yj(x)/((rk = 0 when ar(x) < (, where ( is a given threshold (for example, 10-5). However, one should keep in mind that, depending on the type of gradient-based optimization that is being used, the time to compute the gradient may be irrelevant when compared to function evaluation. For example, a simple gradient descent may get improved performance, but methodologies using line search will hardly notice any difference. 

Since the bulk of computational time is spent with forward propagation of inputs, it can be helpful to adopt simpler activation function, such as the trapezoidal and triangular functions so common in fuzzy logic, or similar alternatives (Masters, 1995). No experiments were made to compare differences in results or computational time, though. The original Gaussian functions are interesting if one wants to have a more straight interpretation as probabilities estimations.

Another strategy to increase speed is to “bookmark” function evaluations for each case in the data sets. When pruning, it is possible to evaluate the behavior of the network with a discarded unit in a much faster way, since it will not be necessary to compute the exponentials of (3.1) or (3.2). Pruning spread parameters also gains a speed boosting: one has to evaluate data points only for the unit whose spread parameter is temporarily ignored. Evaluating output weights also take much less time if it can reuse results of activation functions. However, keeping all this information may take big portions of memory.

 LISTNUM Section3  Model interpretation and relations to surveyed models

The proposed parameterization is based on a probability distribution with some modifications. As in the mixture of experts model discussed in Section 2.4.4, the BPF architecture can be interpreted as a combination of partial conditional probabilities P(C | j, x), where j is the corresponding unit initialized from a rule and P(C | j, x) is simply the activation function aj(x). However, the mixing coefficients (3.7) are not a function of x itself and not even a partition of unity, as it would be necessary to model P(j | x) according to the decomposition (2.10). This simplification may lead to less accurate predictions, but requires much less free parameters and facilitates creating an order criteria for pruning purposes, as described in Section 3.4. With the normalization, the output for each class Ck can be interpreted as P(Ck | x) under the assumption that P(j | x) = P(j).

The 68-95-99.7 rule used in the initialization of each unit is only an approximation, since it is valid only for normal distributions with the mean (not the median) as a measure of center. Also, using one-sided Gaussian functions to compute probabilities for categorical variables is not a common practice, but it was adopted for simplicity, where discrete variables are treated in a similar way to numerical ones. 

Although Tresp et al. (1997) is arguably the methodology that is most similar to BPF, among those discussed in Chapter 2, there are some important differences. By adopting causal rules (hence using class labels as premises, in opposition to the more common practice adopted in BPF) the networks of Tresp et al. model full joint distribution functions, being a special case of a Bayesian network. Each attribute i in those probabilistic rules is considered to follow a marginal prior probability f(xi), in this case a Gaussian centered in the “typical” value of this attribute associated with a standard deviation. Note that it does not use one-sided intervals, as one could define by using conditional probabilities.

The optimization algorithm, alternating updates in the output weights and the parameters of dispersion in the basis functions, can be seen as a special case of the EM algorithm introduced in Section 2.2.3.1. Assume that there is a boolean hidden variable zj for each unit j, where zj = 1 if x was originated from the basis function j and zj = 0 in the other case. If we knew zj for every x, the learning task could be completely divided into independent components. Since we do not know any zj, we must treat them as random variables. The joint function of Ck and zj given x can be expressed as:

P(Ck, zj | x) = 
[image: image95.wmf]{

}

Õ

=

j

z

k

k

j

j

C

j

j

j

C

)

,

|

P(

)

P(

)

P(

)

,

|

P(

x

x


  LISTNUM "Equacoes" 3. 
Let Y be set formed by the “complete” vectors (Ck, zj). The log-likelihood of the data
 is just

log L(Y) = 
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where t indicates an example from the training set.

The EM function that links the old free parameters (old to the new parameters that should be chosen to maximize the log-likelihood using the expected values of zj is expressed by the function

Q((new | (old) =
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where wj was defined as our expected value of zj, P(zj = 1 | X), in (3.7), where X represents the training set. Note that, as stated in the previous paragraphs, we assume that wj is independent of example t. Maximizing (3.23) is just a matter of finding an appropriate  (new such as

(new = argmax 
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since P(j) is independent of (new and the logarithmic function is monotonic. The gradient-based optimization algorithm described in Section 3.5 is an approach for this maximization step, since minimizing the mean-squared error is a way to maximize the likelihood of a model (Bishop, 1995). Convergence is assured both when one choose to update the output weights (the expectation step) only after convergence of the maximization step, or just after any increase in the likelihood, alternating steps of minimization the error function and update of weights.

Concerning parallels with the other architectures presented on Chapter 2, BPF can also be interpreted as an algorithm to find local measures of attribute importance, by computing weighted distances from prototypes spatially distributed in the input space. Most algorithms for this task are global, in a sense that a constant weight is used for a given attribute across the whole space (Wettschereck et al., 1997).

TB-RBF represents a family of approaches that used recursive partitioning or recursive covering as a starting point for prediction refinement, and BPF obviously follow this idea. Unlike TB-RBF, RecBF represents a rule base as a probabilistic neural network (i.e., it uses a kernel representation instead of a dictionary representation). If one is looking to preserve interpretability, it is not convenient to link a rule induced for a specific class to a unit representing a different class. Optimization of free parameters can be performed to achieve better accuracy results, as it is done in TB-RBF, but it hard to qualify how it could help to better explain the structure underlying the data, at least when compared to the original rule base. In BPF, it should be stressed that the activation functions were modeled after conditional probability distributions using bounded instances from a single class for each rule (Section 3.2.2), and so it will hardly contribute to better prediction of other classes, specially if the unit weights are computed by closed formulas such as (3.7) instead of being adaptive.

Algorithms of nearest hyper-rectangles modify kernels by reacting to near examples using a criteria such as classification error to guide the search. They can merge kernels (rules) if appropriate. This idea is followed by BPF since the gradient of the error function affects the boundaries only of the examples near a given basis function. Some kernels may assume the role of another ones, implying in a “merge”, where the assimilated basis function is just dropped by the pruning algorithm. Producing more general rules that may assume the role of others if also a common policy of neural networks as ARN2.

Dealing with the curse of dimensionality by using information from rule and tree induction algorithms is emphasized by the tree-retrofitting procedure of Section 2.4.1, which shows that even one of the most difficult tasks of machine learning and data analysis, non-parametric joint probability estimation, can be modified to deal with higher dimensional problems if a careful choice of features is performed.

Finally, mixture models are the foundation for probabilistic interpretation of local basis functions, being also useful by providing the motivations for optimization techniques as the EM algorithm.

Table 3.4 summarizes the influence of each hybrid system discussed in Chapter 2, as well as their respective limitations and advantages when compared with BPF.

Name
Influence
Limitations
Advantages

k-d tree
feature selection by recursive partioning
simplified criteria for splitting, requires storage of instances
useful for other tasks such as information retrieval

tree-retrofitting
feature selection by recursive partioning
requires storage of instances
allows estimation of joint probability density

NGE/RISE
local functions with  adaptive boundaries
crisp distance measures, requires partial storage of instances 
relatively fast; allows identification of exceptions

ARN2
local functions with  adaptive boundaries
on-line learning introduces unnecessary variance factors for summarization tasks of data mining
on-line learning is interesting for classifiers that receive regular streams of data

RecBF/DDA
local functions with adaptive smooth boundaries
on-line learning unsuitability for some tasks
on-line learning is useful for other tasks

TB-RBF
feature seletion by recursive partitioning; neural network model selection by a non-parametric criteria
dictionary representations are less interpretable
fast; it is able to significantly increase accuracy of the original tree in many problems

Tresp networks
cycles of pruning and fitting of propositional rules cast as neural networks
modeling joint density functions is a much harder problem that may be unnecessary in many tasks of classification; unclear initialization for rules that express numerical premises as intervals
modeling joint density function allows other kind of analysis and outlier detection

MDNs/HME
decomposition of a conditional probability in modular structures
requires extra model selection procedures 
a more rigorous modeling of conditional probability

Table 3.4: a comparison among BPF and the models surveyed on Chapter 2. The second column reports the influence of each model in BPF design. Relative limitation and advantages are expressed in the last two columns, but it must be clear that all this algorithms were developed for tackling specific tasks.
It must be stressed that each model was designed for specific tasks. BPF was created for summarization of rules, while, for example, TB-RBF focuses on increasing accuracy of decision trees. It is true that BPF can be used for predictive tasks and TB-RBF for data interpretation, where the commented limitations and advantages discussed in Table 3.4 may appear, but the choice of a suitable model must always be made with respect to the task to be performed. 

 LISTNUM Section3  Summary

This chapter introduced the BPF framework for construction of automatic classifiers. Among its motivations, we have:

· there is a straight relation between rule-based and kernel methods for classification;

· there is also connections between optimization by gradient descent and the methodology of recursive covering commonly applied in rule induction algorithms. The EM algorithm can be used as a framework for adjustment of parameters;

· a rule base can usually be optimized by a supervised learning procedure that adjusts all boundaries at the same time. An approach for doing a mapping between a set of rules and a network of kernels was described, as well as a procedure for parameter fitting;

· this optimization is specially attractive when one wants to find redundancies in the rule base that can be eliminated. Smaller sets of rules are easier to understand and analyze. A pruning methodology was described to achieve this purpose.

· some suggestions of implementation were made to improve scalability of the algorithm;

Chapter 4


Experimental Results

This chapter describes experimental results comparing BPF to rule and tree induction methodologies. The proposed procedure is able to achieve considerably high simplifications of rule sets generated by a chosen algorithm in all of fifteen data sets without losing accuracy beyond an approximately 1% margin. Some explanations for the performance of BPF are given based on the properties of smoothing and fitting of the model. Additional evaluation is performed concerning the problem of model growing in larger data sets and rule quality measures by locality characteristics and sensitivity to the small disjuncts problem. Finally, we conclude showing some examples of rule set modification performed by the BPF procedure.

 LISTNUM Section4  A benchmark on accuracy and complexity

Lim et al. (1999) performed one of the most recent benchmarks comparing classifiers. Following the StatLog project (Michie et al., 1994), it focused on decision trees, neural network- inspired algorithms and statistical methodologies. Their purpose was to extend the StatLog results by adding more recent algorithms and emphasizing other three important aspects: 

· the complexity of the induced trees, where complexity was defined by the number of leaves obtained in the experiments;

· the computational time of each algorithm, which was reasonable to compare, even when one considers that different implementations vary, since the significant differences are on orders of magnitude (varying from seconds to days). Scalability issues are also considered; 

· the effect of noise, by duplicating the number of used data sets with artificial noise;

Concerning more details of the algorithms used, we have:

· most decision trees are based on variations of CART and ID3, which seek for  maximization of a “purity” measure, as entropy or the Gini index (Mitchell, 1997). Lim et al. also introduce results obtained by the QUEST tree inducer (Loh and Shih, 1997), which uses analysis of variance and quadratic discriminant analysis as splitting criteria. Versions with univariate and linear splits were also considered.

· two neural networks were used: radial basis functions (Moody and Darken, 1989) and learning vector quantization (Kohonen et al., 1996);

· the statistical models are some of the most recent spline-based methods (Cherkassky and Mulier, 1998, review some approaches), discriminant analysis and a variation of a nearest neighbor approach;

Most of the data sets of this benchmark are from the UCI Machine Learning Repository (Blake et al., 1998)
. Sixteen data sets were used, plus a replication of all of them with addition of attribute noise. A short description of the most important features of fifteen of those data sets is presented in Table 4.1
.

Id
Name
#Attrib
#Numeric
#Classes
#Train
#Test

bcw
Wisconsin breast cancer
9
9
2
683
10-fold cv

bld
BUPA live disorders
6
6
2
345
10-fold cv

bos
Boston housing
14
13
3
506
10-fold cv

cmc
Contraceptive method choice
9
2
3
1473
10-fold cv

hea
StatLog heart disease
13
7
2
270
10-fold cv

led
LED display
7
0
10
2000
4000

pid
PIMA indian diabetes
7
7
2
532
10-fold cv

sat
StatLog satellite image
36
36
6
4435
2000

Seg
Image segmentation
19
19
7
2310
10-fold cv

smo
Attitude towards smoking
8
3
3
1855
1000

tae
Teacher assistant evaluation
5
1
3
151
10-fold cv

thy
Thyroid disease
21
6
3
3772
3428

veh
StatLog vehicle silhouette
18
4
4
846
10-fold cv

vot
Congressional voting records
16
0
2
435
10-fold cv

wav
Waveform
21
21
3
600
3000

Table 4.1: this table summarizes information concerning the data sets studied in Lim et al. The first column (“Id”) is the identifier that will be used along this chapter to refer to a given data set. The second field (“Name”) is a short description of the modeled problem. For more details, consult the reference. “#Attrib” gives the total dimensionality (i.e., the number of attributes) of the respective problem, while “#Numeric” is the number of numeric attributes only. “#Classes” is the number of classes. The last two columns show the number of instances used for training and for testing. “10-fold cv” stands for 10-fold cross-validation procedures.

Some observations concerning these data sets: all records containing missing values were eliminated. The processed pid data set has one less attribute than the original specification that usually appears in the literature (for example, Ripley, 1996). Problems that originally used non-uniform misclassification costs (hea, for instance) are treated with uniform ones. There are two artificial data sets: led and wav. The four data sets that were previously used in the StatLog project are specified by their names on Table 4.1. Most data sets were evaluated using 10-fold cross-validation (Cohen, 1995) as indicated. For more details and references about the data sets, see (Lim et al., 1999).


bcw
bld
bos
cmc
hea
led
pid
sat
seg
smo
tae
thy
veh
vot
wav

Def
0.350
0.419
0.657
0.573
0.444
0.890
0.333
0.765
0.857
0.305
0.656
0.073
0.739
0.386
0.667

Best
0.028
0.279
0.221
0.434
0.141
0.268
0.221
0.129
0.022
0.304
0.325
0.006
0.145
0.036
0.176

QU0
0.038
0.389
0.267
0.443
0.226
0.278
0.226
0.145
0.042
0.305
0.430
0.008
0.305
0.041
0.266

QU1
0.045
0.399
0.273
0.440
0.244
0.287
0.223
0.145
0.047
0.305
0.490
0.008
0.322
0.044
0.277

FTU
0.050
0.401
0.261
0.468
0.233
0.285
0.247
0.151
0.058
0.305
0.538
0.015
0.310
0.044
0.291

C4T
0.044
0.308
0.221
0.492
0.196
0.271
0.242
0.146
0.032
0.305
0.503
0.006
0.277
0.048
0.261

C4R
0.043
0.292
0.236
0.450
0.200
0.275
0.227
0.148
0.036
0.353
0.583
0.006
0.260
0.052
0.261

IB
0.042
0.328
0.251
0.505
0.222
0.276
0.252
0.146
0.034
0.424
0.373
0.006
0.260
0.053
0.285

IB0
0.034
0.322
0.249
0.509
0.196
0.274
0.258
0.153
0.025
0.393
0.325
0.008
0.274
0.039
0.261

IM
0.042
0.320
0.241
0.447
0.200
0.274
0.233
0.144
0.038
0.305
0.538
0.007
0.289
0.050
0.284

IM0
0.038
0.312
0.231
0.463
0.204
0.274
0.246
0.177
0.033
0.311
0.492
0.007
0.278
0.037
0.243

IC0
0.045
0.327
0.254
0.451
0.207
0.279
0.237
0.138
0.037
0.319
0.372
0.007
0.265
0.048
0.297

IC1
0.047
0.319
0.266
0.449
0.219
0.286
0.239
0.154
0.053
0.305
0.537
0.006
0.298
0.043
0.313

OCU
0.042
0.350
0.241
0.475
0.230
0.272
0.237
0.158
0.037
0.312
0.451
0.006
0.298
0.043
0.278

ST0
0.051
0.311
0.259
0.457
0.256
0.285
0.237
0.151
0.037
0.305
0.669
0.006
0.251
0.050
0.290

ST1
0.041
0.326
0.255
0.451
0.233
0.289
0.250
0.168
0.053
0.305
0.675
0.006
0.279
0.043
0.293

T1
0.076
0.432
0.287
0.518
0.270
0.816
0.250
0.400
0.360
0.304
0.540
0.040
0.487
0.044
0.477

Table 4.2: percentual classification error of different tree-based classifiers with axis-oriented splits in fifteen different data sets as reported by Lim et al. (1999). For a  short description of each algorithm, consult the reference.

Table 4.2 shows the accuracy results, expressed as the percentual error of misclassifications, for axis-oriented decision trees, as well as the highest accuracy achieved among all of the thirty-three classifiers evaluated in each problem. Note that Table 4.2 does not include all results of Lim et al. because the purpose of this chapter is to compare classifiers that are similar to BPF in terms of inductive biases, i.e., restricted to axis-oriented components (leaves, overlapping rules) with symbolic interpretation for the sake of comprehensibility. However, the best result obtained in each data set, not necessarily obtained using one of the decision trees algorithms, is included as a guideline to indicate when this bias is considerably harmful for accuracy. This information is under the line labeled Best in Table 4.2. The default classification error (i.e., the percentage of misclassifications if one assigns all examples to the majority class) is indicated under the line Def. 

Each other line in Table 4.2 represents variations of the standard procedure of recursive partitioning for tree induction (see Chapter 2). The exceptions are C4R, which is in fact a post-processing algorithm to generate rule sets from unpruned C4.5 decision trees (Quinlan, 1993), and T1 (Holte, 1993), which adds the special restriction of creating trees of just one level (i.e., trees with heights equal to one). Note that T1 is interesting to indicate if more complex classifiers are likely to achieve better accuracy. The other decision trees include variations of CART (Breiman et. al., 1983) expressed by the labels IC0, IC1, ST0, ST1; QUEST decision trees are also included (Loh and Shih, 1997) under the labels Q0 and Q1, as well as C4.5 (Quinlan, 1993), identified by C4T. For more details concerning other less well-known algorithms, Lim et al. (1999) have the references.

Table 4.3 shows the average number of leaves for decision trees algorithms. It does not include information concerning IB, IB0, IM and IM0 because these algorithms produced a much higher number of leaves (due to Bayesian combination of different trees), being uninteresting to compare. C4R is also excluded due to the difficult of comparing rule induction and tree induction algorithms in model complexity issues, as explained on Section 4.1.1.


bcw
bld
bos
cmc
hea
led
pid
sat
seg
smo
tae
thy
veh
vot
wav

QU0
9
29
24
11
14
31
3
140
66
1
21
20
68
3
34

QU1
7
10
7
10
6
24
2
112
44
1
15
18
31
2
16

FTU
5
5
14
23
6
21
6
102
53
1
9
19
38
2
26

C4T
11
26
36
143
23
29
18
216
42
1
79
12
65
10
54

IC0
13
12
18
12
7
22
9
63
69
6
43
11
71
5
14

IC1
7
7
6
8
5
21
5
29
28
1
14
6
27
2
9

OCU
19
4
9
48
6
30
7
70
39
10
39
6
51
2
15

ST0
7
16
13
18
9
22
9
33
16
1
13
6
30
3
26

ST1
5
7
8
8
3
19
4
19
15
1
7
6
24
2
17

T1
3
3
5
5
4
3
3
8
9
5
27
5
6
4
5

Table 4.3: model complexity of each tree-based classifier according to each data set. The measure of complexity is the number of leaves.
 LISTNUM Section4-1  Experiments using PRIM and BPF

In this section, we discuss the results obtained using rules induced by the Patient Rule Induction Method, PRIM (Friedman and Fisher, 1999) on the same data sets presented in the previous section. This algorithm usually produces far more rules than it is necessary for good classification (as defined in Chapter 1), but it must be clear that the PRIM procedure does not include a post-processing stage for pruning rule sets
, since its main purpose is only to point out salient subspaces where the average of a given function is higher than in the whole input space, as explained in Chapter 2. If one wants to use PRIM rules in a classifier, it is also necessary to define a policy about dealing with conflicts. The conflict policy suggested by Friedman and Fisher is ordering the rule set in a decreasing order of mean, forming a decision list (Rivest, 1987). A new input is classified by the first rule that covers it, according to the order given by the decision list. A second conflict policy normally used is to combine the rules in an analogous way to the network of weighted units that consists the BPF model, but using the original, boolean, rules. As it will be shown later, there are subtle differences between these two approaches in the impact of both accuracy and complexity features.

In the following experiments, the rule-based classifier with a decision list policy for conflicts will be henceforth indicated by the label PRIM1
, while the second variation, with conflict handle by combination of rules, will be denominated PRIM2. Two variations of BPF are used:

· BPF-M: it uses kernel (3.1) and computes output weights by application of (3.7);

· BPF-P: it uses kernel (3.2) and computes output weights by application of (3.7);


PRIM1
PRIM2
BPF-M
BPF-P


mean
sd
mean
sd
mean
sd
mean
sd

bcw
0.0467
0.0333
0.0423
0.0310
0.0437
0.0355
0.0439
0.0285

bld
0.3395
0.0844
0.2961
0.0850
0.3190
0.0596
0.3104
0.0619

bos
0.2404
0.0401
0.2445
0.0374
0.2550
0.0292
0.2506
0.0307

cmc
0.4500
0.0328
0.4610
0.0346
0.4570
0.0414
0.4583
0.0406

hea
0.1481
0.0740
0.1556
0.0776
0.1519
0.0663
0.1555
0.0547

led
0.2725
—
0.2725
—
0.2815
—
0.2825
—

pid
0.2313
0.0411
0.2397
0.0379
0.2205
0.0528
0.2353
0.0392

sat
0.1410
—
0.1340
—
0.1235
—
0.1310
—

Seg
0.0472
0.0145
0.0523
0.0088
0.0450
0.0139
0.0455
0.0139

smo
0.3130
—
0.334
—
0.3060
—
0.3110
—

tae
0.5204
0.1185
0.5508
0.1295
0.5496
0.0756
0.5495
0.0877

thy
0.0128
—
0.0105
—
0.0178
—
0.0213
—

veh
0.3071
0.0393
0.2967
0.0304
0.2837
0.0446
0.2863
0.0472

vot
0.0614
0.0371
0.0503
0.0365
0.0457
0.0301
0.0503
0.0315

wav
0.2560
—
0.2180
—
0.2110
—
0.2120
—

Table 4.4: accuracy of the rule induction algorithm PRIM when compared to variations of BPF. BPF-M stands for kernel (3.1) and weight update (3.7). BPF-P stands for kernel (3.2) and weight update (3.7).

For all variations, we applied the pruning methodology discussed in Section 3.4, setting ( to zero. Both PRIM1 and PRIM2 results showed in Table 4.4 and Table 4.5 were measured with respect to pruned rule sets. The BPF variations are initialized by a remapping of the final models obtained using PRIM2. This choice was made because the weighted rule set has a more similar bias to the proposed hybrid model, and is less likely to prune rules in a way that results in a badly-behaved (with respect to BPF bias) mixture of kernels. However, brief experiments using the same benchmark and PRIM1 as the initialization algorithm resulted in basically the same results on accuracy: even though PRIM1 is less adequate to initialize networks of kernels, the cycles of pruning and fitting are able to correct it. Experiments using PRIM1 are discussed later in the next subsection. 

Since the rule base given as input for the fitting procedure is evaluated according to the policy of combined rules, it is possible that some experiments result in kernel models that are more complex than rule bases evaluated by the decision list criteria. The results obtained show that this variation was able to deliver more simplified rule sets in all studied data sets, but this does not mean that it will happen in all situations. Two measures of complexity were used: the number of rules (R) and the total number of premises (P) in a rule set.



PRIM1
PRIM2
BPF-M
BPF-P



mean
sd
mean
sd
mean
sd
mean
sd

bcw
R
4.8
0.9189
5.8
0.7888
3.8
0.4216
3.9
0.7379


P
7.9
1.852
8.7
2.111
4.8
1.033
5.5
1.509

bld
R
9.8
1.989
14.6
2.270
9.4
2.170
9.3
1.337


P
24.9
4.408
34.3
7.349
18
5.517
15.9
5.934

bos
R
12.1
1.595
15.9
1.595
9.6
1.897
8.9
1.729


P
35
7.303
47.4
5.211
18.3
6.447
18.7
4.831

cmc
R
34.4
3.204
41.5
3.028
17.6
2.797
20.6
4.061


P
143.7
16.74
164.2
18.32
30
10.33
42.7
16.21

hea
R
7.8
1.398
9.4
1.173
6.2
1.135
6.2
1.549


P
16.4
4.948
19.5
4.649
8.4
2.875
8.2
3.155

led
R
21
—
30
—
19
—
18
—


P
58
—
75
—
35
—
29
—

pid
R
9.7
3.020
14.3
2.163
8
1.700
7.4
1.430


P
24.1
8.850
37.2
9.114
11.4
3.921
10.7
4.300

sat
R
62
—
73
—
39
—
46
—


P
292
—
343
—
123
—
165
—

seg
R
23.6
2.503
24.9
2.470
15.9
1.370
15.9
1.287


P
78.8
11.59
84.6
11.72
43
7.439
41.3
8.807

smo
R
10
—
22
—
9
—
16
—


P
10
—
56
—
7
—
12
—

tae
R
5.3
1.337
6.6
1.647
5
1.633
4.9
1.595


P
7.1
3.247
10.2
4.492
6.5
3.536
6.4
3.748

thy
R
8
—
13
—
9
—
8
—


P
16
—
29
—
11
—
9
—

veh
R
26
3.155
31.2
2.201
19.8
2.441
20.2
1.932


P
91
12.21
107.7
9.334
50.3
8.845
51.2
7.829

vot
R
4
1.333
4.6
1.074
3.6
1.075
4.2
1.229


P
5.1
2.514
5.8
2.394
3.2
1.229
4.2
2.098

wav
R
17
—
19
—
12
—
13
—


P
67
—
78
—
35
—
40
—

Table 4.5: information concerning the total amount of parameters of PRIM and BPF variations, as described in the previous table. R indicates the number of rules in the network, while P represents the total number of premises summed over all rules.
The optimization procedure used for adjustment of parameters was the conjugate gradients algorithm. The actual implementation was adapted from Masters (1995). For a general background on conjugate gradients, Press et al. (1992) is a basic reference for numerical algorithms, while Shewchuk (1994) provides a more detailed and self-contained derivation. The data was normalized to a 0-1 range to increase stability of the optimization method. In all experiments, the stop criteria for the fitting stages was convergence of the conjugate gradient procedure. The complete cycle of pruning and fitting for each data set is finished when a given pruning stage fails to achieve any kind of simplification.

A first glance at Table 4.4 and Table 4.5 reveals that the BPF procedure is not useful for increasing accuracy, as it was already expected. PRIM1 basically gives the same results of the tree-based classifiers registered in Table 4.2, and so does BPF. The only exceptions are the domains bld, sat, wav and tae. For the first three, PRIM2 and BPF, which combine the kernels, give statistically significant improvements when compared to PRIM1, according to a simple test such as McNemar’s test (Dietterich, 1998; Salzberg, 1997). The differences in tae are not significant, but some decision trees achieved much better accuracy (although many also were worse). The BPF-P classifier for the problem sat gives the best result when compared with Table 4.2, but the practical importance of such a small difference cannot be analyzed due to our lack of domain knowledge. Bigger differences are obtained in the smo domain, but these are not useful outcomes by any means, since they are worse than the default rule. Some trees (e.g., ST0) seems to be significantly better  in the domains veh and thy, although we lack data for a more formal comparison.

Analyzing the average behavior of BPF, let gain-mdata set be the ratio of the (average) number of parameters of BPF-M with respect to PRIM2 (which was used to initialize the former algorithm) for a given data set. Analogously, let gain-pdata set be defined for BPF-P. We have that the mean values of gain-m and gain-p considering all the fifteen data sets are 0.422 and 0.445, with standard deviations 0.139 and 0.144, respectively. It represents an average simplification of more than 50%. If we exclude the data sets that gave the worst results in terms of classification accuracy (cmc, smo and tae), those means become 0.448 and 0.465, with standard deviations of 0.079 and 0.123. BPF-M is apparently more stable (it has a more consistent rate of simplification) than BPF-P in this benchmark, but it is not clear if this happens in a more general test bed.

It is hard to compare Table 4.5 and Table 4.3, even if one considers that trees can be straightly translated into rules by following all the paths from the root to each of the leaves. Lim et al. preferred not to include C4.5RULES in the table of model complexity, even though it appears in the accuracy comparison (under the label C4R, as can be seen in Table 4.2). Trees are inherently more difficult to interpret than rules, and a direct translation of trees into rules greatly augments the amount of premises used, since a node that is used in a single partition reappears in multiple rules, making the original tree representation preferable in some situations. The choice of which model to analyze is problem-dependent. Our objective in this work treats specifically rule sets, and Table 4.3 should be used more as an indicator of difficult of each problem
.

Another difficult in this comparison is the fact that sample size affects the final model size, as discussed in section 4.2, and some of these trees reserve part of their training sets to evaluate pruning decisions. We use a different pruning methodology in the next subsection.

 LISTNUM Section4-1  Explaining gains

This subsection discusses some reasons why BPF works consistently well for simplification of rule sets and how it could behave with different pruning policies. It also evaluates its sensitivity to the initialization procedure.

The main evidence supporting the viability of mapping rules induced by recursive covering (or partitioning) into a network of kernels is the fact that each rule is generated by maximization of a measure of purity, indicating that a induced rule bounds a subregion of the input space where the concentration of data of a given class is high. PRIM is one of the best algorithms for this task, as suggested by a comparison made with CART in (Friedman and Fisher, 1999). However, pruning of rules makes those rules cover more of the input space. This increases the chance of a bias mismatch between the original rule set and the network of smooth kernels, having a negative impact on the described initialization procedure. However, the cycle of pruning and fitting performed by BPF makes this model more robust to violations of the assumption of similarity. Table 4.6 shows a comparison of PRIM2 results, repeated from Table 4.4, and an initialized, but not optimized, BPF-P (similar results are obtained from BPF-M). Note that the biggest differences are on the training sets, not the test ones. In fact, the initial difference in test set errors and training set errors is much lower in untrained BPF models than in the original rule-based classifier. This provides evidence for part of the answer to why BPF successfully simplifies rules: it ignores some of the overfitting of the rules by smoothing out irrelevant details. The degree of smoothness is controlled by the parameter s, as described in Section 3.2.2. This has a relation with adjustment of Parzen windows and the bias-variance trade-off, as discussed in Chapter 2.


PRIM2
BPF-P

PRIM2
BPF-P


train
test
train
test

train
test
train
test

bcw
0.02
0.04
0.05
0.05
seg
0.02
0.05
0.09
0.09

bld
0.18
0.30
0.26
0.31
smo
0.29
0.334
0.30
0.312

bos
0.14
0.24
0.23
0.29
tae
0.44
0.55
0.52
0.53

cmc
0.34
0.46
0.41
0.45
thy
0.004
0.01
0.024
0.03

hea
0.11
0.16
0.14
0.19
veh
0.13
0.30
0.27
0.33

led
0.24
0.27
0.31
0.33
vot
0.03
0.05
0.03
0.05

pid
0.14
0.24
0.20
0.25
wav
0.09
0.22
0.18
0.21

sat
0.06
0.134
0.11
0.14






Table 4.6: the differences in accuracy on train and test sets for pruned PRIM rule sets and a BPF variation not yet optimized. Note that the highest differences are on the training sets, not the test ones. The differences in training sets for a unpruned PRIM rule set and a BPF approach are usually lower.
After the pruning and fitting cycles, some of the training error measures reach approximately the same of the original PRIM rule sets, while others still converge to higher train errors, but with no damage to generalization. In the experiments performed with the discussed benchmark, BPF‑P achieved a training error of 0.07 in sat and 0.10 in wav, which are basically the same achieved by PRIM2, while getting higher error in bos (0.19) and pid (0.19), for instance. 

Another explanation for the simplification gains of BPF comes from the nature of the fully supervised learning procedure embedded in this framework. Since the minimization of the training error is performed with respect to the network as a whole (unlike the separate-and-conquer process of recursive covering), BPF is able to redistributed its basis functions in a similar way by which fully supervised learning in RBFs works (Bishop, 1995). This leads to the formation of redundant components that are later removed by pruning cycles.

One could argue that the applied pruning procedure does not fully explore possibilities of simplification for the rule-based classifier, since it was based on a relatively stringent criteria of zero-valued (. We performed some experiments with varying (, and in all of them the BPF procedure was still able to perform significant simplifications. Since determining a suitable ( would require some kind of resampling technique as cross-validation, we preferred to show the results obtained using an independent pruning data set with ( set to zero. The original training set was divided in two disjoint, independent, samples. Two thirds were used for rule induction and kernel fitting and one third as a pruning set. Table 4.7 depicts the outcomes for the bigger data sets of Lim et al.’s benchmark
. The BPF-P model was initialized by PRIM1 outcomes, as a demonstration that not necessarily a better initializer as PRIM2 is mandatory to convergence to good models. It is important to remember that, although BPF-P seems to improve the accuracy significantly in sat and wav, PRIM2 is able to reach about the same precision.



PRIM1
BPF-P



complexity
error
complexity
error

led
R
21
0.265
16
0.2775


P
86

58


sat
R
34
0.161
19
0.134


P
184

104


wav
R
10
0.251
4
0.226


P
34

7


Table 4.7: outcomes of experiments with independent pruning sets. BPF still maintains a large difference.
Note that using a pruning set made a considerable difference with respect to Table 4.5. Part of this is explained by the less amount of data used for rule induction in combination with the effect described in Section 4.2, but it is also due to the independent pruning set, since it permits a more unbiased evaluation of the importance of the parameters. In any case, BPF provides a valuable approach for model simplification, even when one does not have sufficient data to use as a separate pruning set. When compared with decision trees by Table 4.2 and Table 4.3, BPF also achieved the simplest models with the best accuracy in these three data sets (with the exception of led, which resulted in slightly great classification error).

 LISTNUM Section4-1  Final observations

This collection of data sets has problems of varying degrees of difficult, ranging from extreme difficult ones, where no classifier achieved significantly better results than the default rule (like smo), to very easy, almost linearly separable ones (bcw, for instance). However, one cannot say that this collection is a representative sample of all practical real-world problems of classification, as pointed by Salzberg (1997). We expect that the experiments performed in this section are a good indication of usability of BPF, but problem-dependent decisions should always be taken to judge the adequance of a data analysis procedure.

Kernels (3.1) and (3.2) presented little difference in the final outcomes. Activation functions of type (3.1) take less computational effort to evaluate, but it can introduce more instability to the fitting procedure, since its derivative is not continuous. So, it is hard to predict which approach will take less computational resources, specially due to the non-linear optimization. A more unstable kernel could lead to more steps.

The optimization technique is where, most of the time, the bottleneck of the proposed approach lies. But it is interesting to note that practical applicability of BPF not necessarily needs to wait till convergence. Interrupting the optimization when differences in error improvement fall below a given threshold can speed up the process and make it more competitive in terms of computational time.

A similar decision can be made with respect to pruning. As a consequence of the imposed ordering, most of the performed removal of rules and premises happens for the initial components (rules and premises) of the ordering. One can implement a stop criteria which quits this step when noticing that a large sequence of evaluation of components did not lead to any further pruning.
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Figure 4.1: a typical learning curve registering an asymptotic maximum accuracy near 85%.
 LISTNUM Section4  Learning curves and model complexity

Usually, all classifiers achieve an asymptotic level of generalization accuracy as a function of the amount of data used for training. Learning curves are a useful way to visualize this process. These graphs plot the number of instances against the resulting accuracy of a process of training, as shown in Figure 4.1.

It is interesting to observe the behavior of model complexity under those asymptotic conditions. It is desirable that a learning model does not increase in complexity when it is not possible, under its fitting capabilities, to improve the generalization accuracy when more data is given.

Many non-parametric models like tree and rule inducers are specially sensitive to this problem, as pointed out by Oates and Jensen (1998). They present evidence of an approximate linear relationship between model complexity and number of available instances, regardless if accuracy increases or not, in a series of experiments involving popular algorithms. This leads to needlessly complex and cumbersome rule sets. Oates and Jensen (1999) develops explanations for the failure of some known pruning procedures for decision trees, but these theoretical results do not extend directly to rule pruning and are left by the authors as a future work. Empirically, cost-complexity pruning methodologies, like those introduced by CART decision trees (Breiman et al., 1983), which explicitly accept a trade-off between accuracy and complexity, are less susceptible to this problem (but may result in higher generalization errors). With ( set to zero, the pruning policy used in this work does not sacrifice training accuracy for simplified models. It is interesting to see how it behaves under the condition of increasing data sets.

We performed an experiment with one of the data sets used by Oates and Jensen, the led-24 domain. Its objective is to classify the image of a digit from a led display in one of ten classes (from 0 to9), using 0-1 valued attributes, where each attribute indicates if the corresponding light of the led is on or off. In principle, it is a very easy problem, but to test the robustness of a classifier, 10% noise was added to each attribute. Also, 17 random attributes are added: their values are chosen within a uniform distribution not related with the class of the instance
. The Bayesian optimal error is about 26% and according to the documentation available at the UCI Machine Learning Repository (Blake et al., 1998), it is considered a difficult problem. As one should expect from the effects of the curse of dimensionality, it is interesting to notice that plain nearest neighbors algorithms (that do not use adaptive measures of distance) fail by a large margin to achieve reasonable results: the UCI Repository reports an error rate of 59% for a standard nearest neighbor model.

Seven trials were run with a varied amount of data for comparison of BPF and C4.5RULES
. Figure 4.2 depicts a graphical comparison between the two classifiers. The BPF variation used product kernel (3.2) and C4.5RULES sets were post-processed by the same pruning procedure, with an ordered decision list as the conflict policy. The mean error rate of BPF was 25.09%, with a standard deviation of 0.004. C45RULES achieved 27.62% and a standard deviation of 0.007. The low standard deviations are an indication that the error was nearly uniform in all trials, independently of the amount of data.

[image: image100.png]Parameters

600
500

Complexity curve: BPF

400

300
200

Y

100 ————v——

0
2000

2500 3000 3500 4000
Instances

4500 5000





[image: image101.png]Parameters

600
500

Complexity curve: C4.5RULES

400

300 ———t——v

200

100

0
2000

2500 3000 3500 4000 4500 5000
Instances






Figure 4.2: Complexity curves for BPF and a post-processed C4.5RULES.
Even though BPF considerably simplifies rules obtained by C4.5RULES with a slight increase in classification accuracy, the linear relationship shows its influence. Table 4.8 details statistics obtained  during the trials, with the corresponding increase in complexity when compared with the number of premises in the model induced with 2000 instances. There is a huge leap at 4500 instances, denoting that in principle there is always a bias favoring increase in complexity even under the BPF framework. However, the increase has different practical impact when one considers that jumping from 70 premises to 109 is less harmful for understandability purposes than jumping from 226 to 505 according to the absolute number of parameters. 


BPF
C4.5RULES


premises
increase
premises
increase

2000 instances
70
—
226
—

2500 instances
76
8.6%
327
44.7%

3000 instances
90
28.6%
292
29.2%

3500 instances
73
4.3%
399
76.5%

4000 instances
78
11.4%
367
62.4%

4500 instances
137
95.7%
518
129.2%

5000 instances
109
55.7%
505
123.4%

Table 4.8: variation in the number of parameters as a function of the number of training instances. The column “increase” indicates the ratio between the correspondent number of premises with respect to the number of premises obtained with 2000 instances.

Also, it is interesting to see the role of the multiple iterations, where each iteration is composed of a stage of pruning followed by a stage of fitting. Figure 4.3 depicts the steps taken in the simplification of the model. The first mark in each graphic indicates the initial number of rules after the first process of pruning. Each following indication informs the number of parameters after a fitting procedure. In this data set, the initial pruning eliminates approximately half of the initial parameters, while another quarter is eliminated during the consecutive pruning and fitting cycles.
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Figure 4.3: evolution of model simplification as a function of the number of steps for four of the trials, indicated by their respective number of instances used for training. Each step consists of a fitting and pruning procedure. The stopping criteria is convergence: no premise or rule can be pruned, and gradient-based optimization is halted by the finding of a local minimum.

Sometimes, the fitting procedure, while decreasing the mean squared error (MSE), in fact increases the classification error, due to the irregular connection between MSE and classification error. In all experiments described in this chapter, this amount of increase was always slight, at the order of 2% with respect to the lowest error achieved in a cycle. However, it is possible that a large increase can suddenly happen even with the mean squared error always decreasing. Anomalous situations, like the complete overlapping of all bumps corresponding to small disjuncts (see next section), are usually the cause of this irregular behavior. Cherkassky and Mulier (1998) suggest to always output the set of parameters that results in the lowest classification error during the process of optimization, not the one that comes out after convergence, that usually has the lowest MSE. The authors also point that they rarely seen this attitude in published papers.

However, we still maintain the position of using MSE as a guide to model optimization. The differences in classification error are rarely significant, and in cases where anomalous behavior is observed, evaluation with respect to the training set usually is able to detect it. The modeler can, in this context, implement the criteria suggested by Cherkassky and Mulier (or an intermediate choice, rejecting only when the difference is significant) and rerun the process without relying in extra data. The importance of using MSE appears when observing the evolution in model simplification, as depicted in Figure 4.3. If one applies a strict criteria of not accepting a better fitted model (according to MSE) if it produces any increase in classification error, probably it will converge earlier and it will result in models with increased complexity but no real gain in accuracy. MSE is less sensible to variance factors, being part of the strategy of smoothing the rule base.

 LISTNUM Section4  More about rule quality: weight distribution and small disjuncts

In this section, we evaluate how the BPF framework changes some characteristics of the rule sets given as input. The objective is to give insight about distribution of the rules, their locality characteristics and also other possible explanations of how BPF is able to carefully simplify a network of kernels without losing prediction accuracy. 

Since BPF uses less rules to express a mapping, one could suppose that the final model is more “distributed”, or less “local”, than the original one, i.e. what was previously classified by a single rule (or a small subset of rules) is now the result of a combination of a significantly larger set of kernels. For interpretability purposes, this may seem somewhat undesirable, although much less problematic than distributed representations in dictionary methods (such as RBFs), where the same components are used for every class. However, we still want to evaluate how kernels are weighted, since one of the motivations of not treating the output weights as adaptive parameters was to bias the kernels towards local coverages. Table 4.9 summarizes information concerning weight distribution for the benchmark discussed in Section 4.1. For a given training set divided in cross-validation folders, we took the average of the hidden unit weights in each trial, and then computed the mean and standard deviation of those trials.


PRIM2
BPF-P

PRIM2
BPF-P


mean
sd
mean
sd

mean
sd
mean
sd

bcw
0.8635
0.0423
0.9369
0.0805
seg
0.7143
0.0396
0.7795
0.1019

bld
0.6981
0.0307
0.6572
0.0467
smo
0.4146
—
0.2478
—

bos
0.6613
0.0327
0.6940
0.0623
tae
0.4764
0.0219
0.4030
0.0275

cmc
0.5466
0.0128
0.4772
0.0345
thy
0.7539
—
0.4921
—

hea
0.7820
0.0315
0.7299
0.0543
veh
0.6278
0.0195
0.6650
0.0740

led
0.4939
—
0.3951
—
vot
0.8397
0.0347
0.7984
0.0550

pid
0.7162
0.0373
0.6922
0.0376
wav
0.7745
—
0.8510
—

sat
0.6888
—
0.8092
—






Table 4.9: weight statistics, showing mean and standard deviation of the average weight associated with the kernels of the network. 
The way weights are computed in PRIM is slightly different from BPF, of course, but the purpose of this comparison is to show that there is not a definitively better approach between these methods, and so this difference is not much relevant. PRIM2 wins in nine of the fifteen data sets, but it is not clear at all if this result could be extended to a more larger sample of data sets. In fact, excluding the ill-defined smo (where normally a classifier converges to the default rule), PRIM2 wins only in 8 of 14 data sets, or only 57% of the experiments. So, one cannot say that there is a clear winner even in this benchmark, specially when considering that in some data sets (as pid and vot) the difference is relatively small. 

The large difference in thy can be explained by the fact that in this data set the error rate is extremely low in a reasonable large data set. Some original rules of very high weight, but small coverage when compared to the size of the data set, were excluded by the smoothing process of initialization, significantly impacting the average weight of the final network produced by BPF. For the led data set, the boolean rules already composed a model of low average weight. BPF followed this bias by making the mapping even more distributed. Both tae (much higher error rates than CART) and cmc (much higher number of rules, even after pruning with BPF) are exceptional domains where PRIM bias was not appropriate, and hence weakens the relevance of weight distribution difference for those data sets.
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Figure 4.4: in (a), we have a typical distribution of accumulative percentage of coverage against accumulative percentage of errors in a real-world data set (one of the training sets derived from data set seg of Section 4.1). Picture (b) shows an idealized distribution where the percentage of error is proportional to the accumulated coverage.
A different approach to evaluate the quality of the induced model can be undertaken by observing the sensitivity of the probabilistic rules to the problem of small disjuncts
. The problem of small disjuncts was formalized by Holte et al. (1989) as the tendency that induced rules with small coverage have to be highly error-prone: most of the errors committed by rule-based classifiers (including decision trees) are due to rules that cover a small portion of the input space. For example, Holte et al. present a set of experiments where rules with individual coverage less than ten cases were responsible for up to ninety-five percent of the classification errors. Collectively, those rules were able to match a reasonable amount of data, but it is still far from the proportion of committed errors. 

Figure 4.4 is a typical graphic for analyzing this problem. One axis is proportional to the accumulated coverage, obtained by summing the coverage of individual rules in a crescent order of number of matched instances: i.e., for the partial coverage of the first j rules,

Coverage(ri) = number of instances covered by ri

  LISTNUM Equations4 
AccumulatedCoverage(j) = 
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  LISTNUM Equations4 
there is no rule rk, k > j, where Coverage(rk) < Coverage(ri), 1 ( i ( j.

The other axis gives the percentage of all incorrectly classified instances that are covered by the j rules that correspond to the point of AccumulatedCoverage(j). For example, for a point where the accumulated coverage percentage ((4.2) divided by the total number of instances) is 0.45 and the error percentage is 0.70, it means that the disjuncts that cover 45% of all training instances are responsible for 70% of all errors. Note that in Figure 4.4, 50% of coverage gives raise to more than 90% of all errors.

Holte et al. propose some approaches as partial solution to this problem. For example, eliminating all small disjuncts. The strategy is to force an algorithm not to create rules whose coverage is below a certain threshold. This is not desirable, since it is hard to predict how the uncovered examples will be classified and the collective covering of small disjuncts cannot be neglected, as stated in the beginning of this section. Default rules, those that associated a uncovered example to a default class, are usually very imprecise and rejecting examples is not a ideal solution, either. Small disjuncts are necessary for a good accuracy.

A less stringent criteria is eliminating only “undesirable” disjuncts. Pruning is a common technique for the elimination of bad rules. However, some methodologies relying only on significance tests and error-rate estimation during the induction are more suited to the elimination of big disjuncts, being unreliable for small ones
. Another approach is to make small disjuncts highly specific. This solution introduces a different bias into the classifier, specializing rules by adding all premises that do not conflict with the description of the covered examples. By matching less cases, those rules are less likely to commit errors. Note that rule inducers usually have the so-called “maximum generality bias”, because they try to create disjuncts with the minimum number of premises, which is good for large disjuncts, but not for small ones. However, applying the maximum specificity bias tends to result in an increased error rate. In practice, it is necessary a criteria that applies this bias only to selected disjuncts
 that sometimes may seem arbitrary. 

Note that small disjuncts are a major factor causing the increase in the number of components of a rule-based classifier. As stated in the beginning of this section, this next paragraphs will focus on the analytical goal of evaluating the quality of the probabilistic rules obtained: we are not trying to give any different treatment to small disjuncts in order to improve accuracy, as it is done, for example, by Ting (1994).

Following Ali and Pazzani (1995), it is interesting to emphasize the role of weighted rules in measuring the small disjuncts effect. They concluded that allowing formation of overlapping disjuncts and choosing a class by a function of the weights of the rules that cover a given input lessen the impact of small disjuncts, as they demonstrate by a comparison using different relational learning models. For boolean kernels as those obtained by PRIM, we define that a rule “covers” an instance if it has the highest weight among all rules that matches the given input. For BPF kernels, we define that a (probabilistic) rule covers an instance if the product of its activation and its weight is the highest among all rules. Ties are rare and in practice this criteria guarantees that instances are not counted twice. The accumulated error is just the number of instances that are covered by a unit that is from a different class.

To summarize the comparison of accumulated covering against accumulated errors, CE, we report the following statistic

CE(model) = 
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  LISTNUM Equations4 
where N is the number of rules. AccumulatedError(j) is the number of instances incorrectly covered by the first j rules . AccumulatedCoverage(j) is defined in (4.2). Note that this statistic can be negative. It can be interpreted as a estimator proportional to the area above the diagonal of a Coverage x Error graphic (like Figure 4.4) minus the area below the diagonal. Table 4.10 presents the results for the benchmark of Section 4.1 comparing PRIM2 and BPF-P. Note that this definition counts errors with respect to the units and, though similar, not necessarily corresponds to the accumulated errors of the whole mapping. 

This measurement can be interpreted as another indicative of the quality of the rules. Since rules of small coverage commit less errors, and they are the majority, they are more likely to individually contribute for the classification without interfering with another kernels. 

Also, distributions more similar to Figure 4.4a than Figure 4.4b tend to require more fragmented rule sets, implying in more complex models (i.e., larger rule sets). However, this is only another partial factor that explains why BPF generates simpler models, since for some data sets (e.g., veh) there is no real difference in this statistic.


PRIM2
BPF-P

PRIM2
BPF-P


mean
sd
mean
sd

mean
sd
mean
sd

bcw
0.2247
0.0961
0.0898
0.1072
seg
0.3085
0.0421
0.2524
0.0595

bld
0.0498
0.0349
-0.0177
0.0327
smo
-0.0059
—
-0.0937
—

bos
0.1225
0.0207
0.0449
0.0369
tae
-0.0086
0.0188
-0.0197
0.0313

cmc
0.0346
0.0140
0.0169
0.0158
thy
0.3906
—
0.0923
—

hea
0.0832
0.0420
0.0467
0.0596
veh
0.1159
0.0336
0.1163
0.0338

led
0.0309
—
0.0449
—
vot
0.1356
0.0519
0.1770
0.1166

pid
0.0555
0.0339
0.0194
0.0362
wav
0.1233
—
0.0321
—

sat
0.1718
—
0.1215
—






Table 4.10: summarized information concerning the distribution of accumulated coverage against accumulated errors for PRIM2 and BPF-P.

The main explanation for the differences is a decrease in error rate for the kernels of lower coverage at the expense of increased errors in the kernels of greater receptivity. The more the high coverage rules are responsible for errors, the more the difference, as it shows in data sets such as bld and bos. Notice that is a factor which influences the number of rules. Figure 4.5 compares the distribution of PRIM2 and BPF in the sat domain.
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Figure 4.5: comparison of coverage percentage against error percentage in the sat domain. Figure (a) depicts the distribution for PRIM2, while Figure (b) does the same for BPF-P. BPF-P is closer to the diagonal line of the graph, as suggested by the results in  Table 4.10.

 LISTNUM Section4  Example of rule set simplification

This section illustrates a refinement process of rule reduction using the sample data set hea, which was previously described in Section 3.3. Applying the PRIM rule induction algorithm for this data set resulted in 13 rules with a total of 36 premises. After reducing these rules with the pruning algorithm described in Table 3.3., we obtained 11 rules (24 premises). Table 4.11 shows the rules obtained by the pruned PRIM output as well as the same rules after processing them in a BPF framework using the product kernel (3.2). The number in brackets after each rule represents the respective rule weight, as computed by Equation (3.6) (for PRIM) and Equation (3.7) for BPF. The numerical variables were scaled to a [0, 1] interval.

PRUNED PRIM RULES
BPF RULES

Rule 1

IF  age < 0.61

AND number of colored major vessels < 0.17

AND thal ( reversible defect

THEN

    Absence [0.93]
Rule 1

IF  number of m. vessels < 0.0 + [0.08]

AND thal ( reversible defect [0.37]

THEN

    Absence [0.87]



Rule 2

IF  sex ( male

AND chest pain type ( 3

THEN

    Absence [0.96]
THIS RULE WAS PRUNED

Rule 3

IF  maximum heart rate achieved > 0.55

AND number of colored major vessels < 0.17

THEN

    Absence [0.83]
Rule 3

IF  number of m. vessels < 0.0 + [0.08]

THEN

    Absence [0.75]

Rule 4

IF  chest pain type ( 3
AND maximum heart rate achieved < 0.42

AND slope the of peak exercise ST < 0.25

THEN

    Absence [0.91]
Rule 4

IF  chest pain type ( 3 [0.65]

THEN

    Absence [0.75]


Rule 5

IF  age < 0.45
AND maximum heart rate achieved > 0.31

AND exercised induced angina ( False

THEN

    Absence [0.67]
THIS RULE WAS PRUNED

Rule 6

IF serum cholestoral im mg/dl < 0.24
THEN

    Absence [0.65]
THIS RULE WAS PRUNED

Rule 8

IF  number of colored major vessels > 0.17

AND thal ( normal

THEN

    Presence [0.92]
Rule 8

IF  thal ( normal [0.34]

THEN

    Presence [0.74]

Rule 9

IF  sex ( male

AND resting electro results ( 0

THEN

    Presence [0.65]
Rule 9

IF  resting electro results ( 0 [0.69]

THEN

    Presence [0.52]

Rule 10

IF  exercise induced angina ( True
AND oldpeak > 0.008

THEN

    Presence [0.80]
Rule 10

IF  exercise induced angina ( True [0.56]

AND oldpeak > 0.29 – [0.13]

THEN

    Presence [0.85]

Rule 12

IF  resting blood pressure > 0.35
AND number of colored major vessels > 0.17

THEN

    Presence [0.78]
THIS RULE WAS PRUNED

Rule 13

IF  chest pain type ( 1
AND resting blood pressure > 0.18

THEN

    Presence [0.51]
THIS RULE WAS PRUNED

Number of rules: 11
Number of premises: 24
Weight average: 0.78
Test set error percentage: 11%
Number of rules: 6
Number of premises: 8
Weight average: 0.75
Test set error percentage: 11%

Table 4.11: illustrative table comparing the rule sets obtained by the rule induction algorithm PRIM and the post-processing neural network BPF.
Although interpreting these probabilistic (“fuzzy”) rules is not as straightforward as it would be with the “crisp” hyper-rectangles, one can easily relies on the interpretation discussed on Section 3.6. The number attached to each premise are the spread parameters (. For example, a numeric variable k in rule r with a premise denoted by vk < (rk + (rk can be interpreted as a marginal probability P(Ck | vk ( (rk) = 1, and P(Ck | vk > (rk) = exp{– (vk – (rk)2 / (rk 2 }. For the first premise of the first rule, (1-1 = 0.08. 

We defined a similar measure for the other numerical intervals and categorical variables. In rule 9, for instance, P(Class = Presence | resting electrocardiographic results = 0) = exp{(12 / 0.692} =  0.12. Note that these marginal probabilities are in fact more informative than the simpler premises of the boolean rules. Graphical visualization of these marginals may aid interpretation. 

 LISTNUM Section4  Summary

This chapter presented empirical evaluations of BPF in sixteen different domains. Those assessments were made under following perspectives:

· a general benchmark of fifteen data sets were used to measure the ability of BPF to optimize a rule set for better distribution of kernels without losing classification accuracy. The simplifications were dramatic in many data sets, even when one uses a separate pruning set;

· the problem of models that indefinitely grows with larger data sets was approached by a comparison with a popular rule induction algorithm in a artificial data set. This data set was built to emphasize problems where irrelevant information is used to generate additional model components without increasing its capacity of classification. Although BPF using the proposed pruning algorithm showed to be unable to completely avoid the trend of unnecessarily growing, it still performed much better than the original rule inducer;

· objective measures of rule quality were defined to compare the original rule sets with models refined by BPF. Even though BPF uses kernels of higher coverage, the average of the weights are similarly high, providing evidence that the quality of the rules is the same on average. The small disjuncts problem was introduced as another motivation to explain the ability of BPF to simplify models, as well as another indicative of rule quality;

Closing this chapter, an example of rule summarization using BPF was given to illustrate the potential applications of this framework.

Chapter 5


Conclusion

This chapter summarizes the importance of the proposed approach for rule refinement, its motivations and design decisions. Also, it is clarified which improvements can be done as future work in order to extend BPF to overcome difficulties as variance, computational complexity and classification accuracy.

 LISTNUM Section5  Summary of contributions

This dissertation introduced an approach for rule refinement with a focus to construction of simplified models, where simplicity is defined as keeping the number of parameters of a model as low as possible without harming its predictive accuracy. The main motivation behind it came from a discussion at the First Brazilian School on Machine Learning and KDD (Rio de Janeiro, Brazil, 1998). Some participants emphasized that many work has been done on improving accuracy of classifiers, but relatively little attention has been given to other important desirable properties of adaptive algorithms, such as comprehensibility and scalability. Interpretability is often an overlooked topic, even tough it is on the roots of machine learning under different names such as “mental fit” (Michie et al., 1994). Another motivation comes from benchmarks such as Lim et al. (1999), where complex, time-consuming classifiers barely achieves higher accuracy rates in most of the data sets analyzed. The experiments of Michie et al. (1994) show that hardly a single approach dominates as the clear best classifier over most domains. From a theoretical perspective, Friedman (1997) provides some explanations why using more complex classifiers does not necessarily implies that one will build better predictive models.

Three major topics composed this dissertation:

· a survey on hybrid systems of local basis functions. As foundation blocks for those hybrids, the most widespread local basis models were introduced. With this information, it was possible to point out how the combination of different approaches could be profitably exploited in order to avoid limitations of the most common techniques;

· a new approach for producing simpler rule sets. This is the main contribution of this dissertation. The BPF framework wraps rules induced from traditional recursive covering algorithms in order to perform a pruning guided by a supervised learning. The transformation of boolean rules into probabilistic ones has a two-folded motivation: smoothing the constant kernels once represented by the original rules in order to discard irrelevant details and defining a continuous error function, permitting the computation of the gradient of the error function to be plugged into a gradient-based optimization algorithm. The supervised learning helps to correct the initial bias mismatch between crisp and smooth kernels as well as redistributing the mapping in order to detect more irrelevant parameters;

· an empirical evaluation of the proposed framework at different perspectives. First, a general benchmark on typical real-world problems of classification was used to demonstrate how BPF was able to reduce the number of rules and premises given as input from a recursive covering algorithm. It was important to show that simplification did not imply on accuracy losses by more than 1% on average, unlike, for example, the 1-SE criteria of CART (Breiman et al., 1983) that generally overprunes the tree generating real losses (Esposito et al., 1997). Since locality is important for understandability purposes, another evaluation was made concerning the quality of the induced rules. Statistics showing the average value of rule weights and the sensitivity to small disjuncts give strong evidence that BPF maintains a model at least as local as the original rule set;

 LISTNUM Section5  Limitations and future work

The major limitation of BPF is its computational cost. The cost of the adopted pruning procedure , as described in Table 3.3,  is O(nm), where n is the number of training instances and m the number of free parameters (rule premises). In fact, the size of the data set has a quadratic influence on pruning costs, since as it was discussed in Section 4.2, recursive covering algorithms tend to linearly increase the number of components of the model, i.e., m is approximately a linear function of n in many rule induction (and tree induction) algorithms. Cohen (1995b) argues that exhaustive pruning algorithms
 such as the one used in BPF are difficult to apply for very large data sets. Anyway, we adopted the exhaustive algorithm to demonstrate that it was not a weak pruning algorithm that gave advantages to BPF when compared to the rule induction technique
, i.e., the original rule sets could hardly be more simplified according to the misclassification criteria and so BPF genuinely added simplification capabilities. If one has extra memory, it is possible to follow the advice suggested in Section 3.5.4. We observed that following this implementation resulted in a very fast pruning. For the sat problem (4435 instances, 632 initial parameters), a Pentium 233 was able to complete a whole cycle of pruning in approximately five minutes. Another alternative is to use pruning sets with fewer instances.

The proposed parameterization may seem unnecessarily costing, since classification is our primary purpose but probability estimates are not fundamental for good classification (Friedman, 1997; Cherkassky and Mulier, 1998). Furthermore: theoretically, minimizing the mean squared error does not necessarily minimize misclassification and may even increase it. However, unlike the stepwise recursive covering or recursive partitioning, we want to perform the fitting following a “global” error measure, an error measure that takes the contribution of the whole set of kernels. Directly minimizing the misclassification rate leads to combinatorial problems that requires even more computational power than greedy gradient-based search, such as genetic algorithms or simulated annealing (Masters, 1995). So, the parameterization proposed is in fact a reasonable good computational approach for the problem. Also, we do not expect to achieve significant gains in generalization, so the differences between mean squared error and classification error are hardly significant, even less when one considers that pruning is guided by classification and can correct some errors introduced by the MSE criteria. Concerning the probability-like parameterization, even the most anti-probability modelers (motivated mainly by black-box predictive tasks) admit that it can give better insights in a domain (see, for example, page 306 of Cherkassky and Mulier, 1998).

But it is also possible to criticize BPF under a probabilistic point of view. The assumption of P(j | x) = P(j), where j is a kernel component of the model, is rather unrealistic
. Nonetheless, even under the assumption of independence, it still gives a good insight. On the other side, if one is considering conditional probability estimates instead of only classification, it may be important to change the pruning procedure. As we were interested in classification rates, the pruning methodology was designed to minimize misclassifications, not (for example) the MSE. However, this criteria can result in worse conditional probability estimates P(Ck | x).

Under those limitations and other possibilities, the following topics constitute future work that can be done to extend and evaluate the BPF methodology discussed along this dissertation:

· scaling up. A straight implementation of gradient-based optimization is usually very slow for larger data sets, where “large” can be as little as 10,000 instances. However, improvements can be achieved by taking advantage of the local characteristics of the kernels. Omohundro (1991) sketches some structures to rapidly evaluate basis functions that can be used as a starting point to the development of faster BPF algorithms;

· performing full conditional probability estimations in a mixture of experts framework (Jordan and Jacobs, 1994) by computing input sensitive weights (i.e., the weight of the jth unit would now be a function of input x, P(j | x));

· evaluating BPF in benchmarks of conditional probability estimation, which would include modifications to the pruning procedure in order to minimize MSE instead of classification error;

· evaluating BPF as an approach for recovering from overpruning. Since some pruning algorithms may cause true losses in classification prediction (Esposito et al., 1997), how the supervised learning would be able to recover the model from those losses without addition of new kernels, i.e., just by fitting the existing parameters? For example, by branching the process at a given point into separated networks (pruned with different ( values), performing the fitting and returning the one with lowest classification error in a training/validation set. If networks with ( values greater than zero lead are chosen, it will result in even simpler models. The computational cost of this beam search in a model space is higher, of course, but easily leads to parallel implementations;

· handling variance. The variance in the number of parameters after BPF remained high, inheriting it from the rule-based induction itself and the adopted pruning methodology. It would be interesting to experiment how resampling techniques such as bagging (Breiman, 1994) and boosting (Schapire, 1999) could be used with different pruning methodologies (Breslow and Aha, 1997; Fürnkranz, 1997) to reduce this variance;

· extending BPF for first-order recursive covering algorithms such as FOIL (Quinlan, 1996);

· evaluating the behavior of BPF for sequential learning (Sarle, 1999), where old training sets are discarded and the fitting is performed with new, independent sets. This includes observing effects of catastrophic interference (French, 1999) and how results vary when one compares a BPF network trained with the same training set used for the rule induction algorithm or a BPF trained with a different set;

· creating measures of rule surprisingness for knowledge discovery purposes (Freitas, 1998). One could investigate how the differences between the initial and final states of a given rule would be related to its degree of surprisingness. For example, rules of low coverage tends to be discarded as noisy or irrelevant components by the smoothing, pruning and fitting process. If they remain in the final rule base with little or no modification, they could be pointing to interesting subclasses of the domain; 

· approaches for accuracy improvement. While this dissertation was completely focused on the issue of getting the simplest model to perform a given classification task, it could lead to algorithms for refinement of accuracy precision. One common approach is identification of regions of the input space where error is high followed by introduction of new kernels (Chang and Lippman, 1993) or substitution of small disjuncts by instances (Ting, 1994). One could also integrate approaches that define order criteria for symbolic variables, such as the ones used in (Loh and Shi, 1997) and (Pyle, 1999) and so lower the number of parameters of a BPF network, since a single spread parameter would be used to represent all the values of a symbolic variable;

 LISTNUM Section5  Final conclusions

It must be clear that BPF is not simply a pruning algorithm. In fact, the exhaustive pruning algorithm used in this experiments could be substituted without affecting the major philosophy of BPF: simplification by smoothing and full supervised learning. The pruning procedure is just another step that takes advantage of the parameterization and search performed by the other modules. BPF should not be understood as a surrogate for pruning methodologies, but as framework where a pruning technique takes part.

Going back to the hybrid systems categorization of Chapter 1, under a learning perspective BPF is clearly classified as a transformational hybrid system, since it separates different learning strategies in disjoint steps. Under a knowledge representation perspective, one can say that BPF is a unified hybrid system, because the kernel based approach can both be interpreted as a mixture model, neural network or a symbolic knowledge base expressed in probabilistic rules. 

Providing understandable models is just a significant but small part of machine learning and data mining research, fields that are still in their infancy (Mitchell, 1999). It is expected that this dissertation will help to bring new insights in those difficult tasks that machine learning and data mining researchers will face in the years to come.
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� Classification trees is a classic example, where pruning procedures create robust models that are often very similar or even superior to neural-based solutions (Lim et al., 1999).


� For instance, by a distance-based metric of vector similarity.


� There is no clear boundary between parametric and non-parametric model. Some authors considers that artificial neural networks of fixed topology (e.g., standard multilayer perceptrons) are non-parametric, because even tough the number of parameters are defined prior to a learning step, the final topology of the network is usually defined by trial-and-error.


� In some situations, we also call “parameter” any structural component of a induced non-parametric model. For example, rule induction is often performed by non-parametric approaches. However, the premises generated by rule induction algorithms may be interpreted as “parameters” of the model. 


� Vectors are represented in the text by bold letters, while scalars are represented in italic (e.g., x is a vector, while x is a scalar variable).


� And so was the assumption of using local basis functions as the language of choice.


� Although a single inference may require contributions from all nodes making this problem NP-hard.


� i.e., a disjunction of conjunctions.


� “Bias” here must be understood as any criteria that makes an adaptive model assume a determined instantiation instead of another.


� See, for example, (Bishop, 1995), pg. 240.


� The (-percentile is a robust statistic: when ordering a set of numbers in a crescent sequence, the amount of numbers that is less or equal to the (-percentile corresponds to (% of this set.


� Linear splits, i.e., decisions that involve linear combination of attributes, are also common (for example, the original CART permitted linear decisions, too), but we will not treat this aspect, as we are interested in representations closer to the rules defined in the beginning of this section, which are axis-oriented.


� Aha considers “instance-based” an inadequate name, since all learning algorithms process instances in some sense.


� As a counter-example, Bayesian networks may take exponential time to perform inference (Pearl, 1988).


� This nomenclature is not a standard by any means, however. For example, Ripley (1996) explicitly classifies mixture models as a family of non-parametric approaches, and this is the most common practice. Neural networks, decision trees and other flexible models are usually called non-parametric, all of which labeled as semi-parametric according to Bishop's definition.


� This name is a bit misleading, since kernel functions can be applied to both “dictionary”  and “kernel” representations.


� Although normalization is useful if one wants to make extrapolation, which is often the case when no rejection decisions are made.


� We do not discuss clustering algorithms, which are unsupervised learning methods, in this dissertation. However, as a brief description, we can say that clustering consists of dividing the data into a determined number of groups. However, the training examples are not labeled: in principle, a given training example can belong to any group. This assignment will be determined by a criteria that maximizes the difference inter-groups and minimize the difference intra-groups. See Ripley (1996) for a discussion of unsupervised methods.


� Like describing the behavior of many automatic controllers. 


� i..e., the distances are computed in separate for each dimension and then summed.


� Note that the rules defined by Tresp et al. are causal rules: the expert determines the probability of  a “symptom” given a cause, f(x | C), not the posterior P(C | x) that is more common in classic expert system engineering with certainty factors. Experts tend to feel more comfortable with causal rules (Russell and Norvig, 1995).


� Note this effect does not constitute a problem for classification tasks, where it is possible to encode the class vector with a 1-of-n codification (Pyle, 1999).


� A softmax parameterization (Sarle, 1999) is a straightforward approach to guarantee this partition of unity.


� To simplify the notation, we still represent it by (rk instead of (rk, as well as xk instead of xk.


� It is asymmetric.


� Domain knowledge is vital, of course, for any successful data analysis (John, 1997), but not necessarily at the same level of detail as usual for knowledge acquisition in classical expert systems.


� In the experiments described on Chapter 4, it gave slightly lower initial training errors. It must be clear that this is only a theoretical observation: this constant can be absorbed in the value defined for s.


� See Chapter 2.


� Available, at the time of this writing, at http://www-stat.stanford.edu/~jhf/SuperGEM.html


� The numerical values are normalized into the range [0, 1].


� RIPPER iterates through all rules. Before simplification of a given rule, it first generates a new one based on it. Details on the refereed paper.


� As expected, reduced error pruning requires (much) more computational time.


� Note that unlikely the example given in Section 2.2.3.1, we are modeling a conditional probability.


� At the current time of this writing, all data sets, with the exact split in folders for cross-validation or hold-out samples used in the experiments, are available at http://www.recursive-partitioning.com.


� The data set dna was excluded because the available implementation of PRIM, used in our experiments, does not handle domains with more than forty attributes.


� However, it does indeed provide a way to prune premises of a rule, but by a “local” procedure: the effect of the pruning is considered only for the rule being processed at a given point of the covering, not for the whole set.


� They are not exactly the results obtained by PRIM, since the classifiers were submitted to a given pruning policy. The classification errors are largely equivalents, however, within much more concise models.


� The T1 classifier of � REF _Ref463943866 \h ��Table 4.3� clearly gives the least complex models, but also the highest classification errors.


� We excluded thy because the results were already similar, with a very small number of rules. smo was excluded because we knew it was not an interesting problem to compare, since the best results achieved converge to the default rule.


� Notice that a simpler dataset, led-7, was used in the previous benchmark in Section 4.1. It does not add the irrelevant attributes.


� We did not use PRIM in these experiments because the publicly available implementation (SuperGEM) does not generate more than 20 rules per class, and because C4.5RULES was used in the original reference by Oates and Jensen. It was also interesting to test BPF with other rule inducers.


� “Disjunct” can be interpreted here as a synonym for “rule”, i.e, a component from a disjunctive concept.


� This pruning concerns methods to eliminate the most recent rule during induction, or to define a stop criteria. We are not talking here about post-processing pruning such as the one adopted in BPF.


� Holte et al’s. criteria adds a premise consistent with all examples covered by a given disjunct only when that premise did not satisfy more than 25% of the uncovered examples of the opposite classes.


� “Exhaustive” here means a pruning where all parameters are tested by temporally dropping it from the model and evaluating the behavior of the model against a pruning set.


� As it could be argued about the initial work published in (Silva and Ludermir, 1999), where a simpler pruning algorithm was used.


� In fact, we do not even normalize the weights P(j), although it is just trivial to modify them.
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