
This paper can be obtained via "http://www.cs.cmu.edu/Web/Groups/sage/sage.html".

Using Aggregation and Dynamic Queries
for Exploring Large Data Sets

Jade Goldstein and Steven F. Roth

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Tel: (412) 268-2145
Email: Jade.Goldstein@cs.cmu.edu, Steven.Roth@cs.cmu.edu

ABSTRACT
When working with large data sets, users perform three
primary types of activities: data manipulation, data
analysis, and data visualization. The data manipulation
process involves the selection and transformation of data
prior to viewing. This paper addresses user goals for this
process and the interactive interface mechanisms that
support them. We consider three classes of data
manipulation goals: controlling the scope (selecting the
desired portion of the data), selecting the focus of attention
(concentrating on the attributes of data that are relevant to
current analysis), and choosing the level of detail (creating
and decomposing aggregates of data). We use this
classification to evaluate the functionality of existing data
exploration interface techniques. Based on these results,
we have expanded an interface mechanism called the
Aggregate Manipulator (AM) and combined it with
Dynamic Query (DQ) to provide complete coverage of the
data manipulation goals. We use real estate sales data to
demonstrate how the AM and DQ synergistically function
in our interface.

KEYWORDS: Interactive Techniques, Data Exploration,
Data Visualization, Large Data Sets, Graphics
Presentation, Intelligent Interfaces

1. INTRODUCTION
Many applications involving large quantities of data
require mechanisms by which people can easily search,
access, manipulate, view, communicate, extract
information from, and discover relationships in their data.
This may involve an iterative process in which users select
some data, view it in a chart, map, table or other
presentation appropriate to their goals; and based on the
results, refine the selected data and repeat the process. In
such cases that involve repeated human interaction, it is
imperative to have user interface mechanisms which
maximize both usability and functionality.

In Proceedings CHI’94 Human Factors in
Computing Systems. ACM, April 1994.

To address these needs, we are examining and building
general data exploration tools. Our focus is on the class of
data that consists of objects (e.g., house) and their
corresponding attributes (e.g., sale price and number of
bedrooms). This type of data is usually visualized in charts,
maps, and network diagrams. Such data differs from
scientific data in that it is not sampled and is usually not a
measurement in a coordinate space. Accordingly, the
interface mechanisms we are considering need to support
this kind of data and its corresponding visualizations. To
address this issue, we classified the types of interactive
data exploration tasks (goals) that users would perform:
data manipulation goals involve selecting portions of data
and transforming data into new forms, data analysis goals
involve obtaining statistics on portions of the data, and
data visualization goals involve requirements and
specifications for viewing the data through appropriate
visualizations. Naturally, these categories are inter-
dependent, e.g., selecting portions of data (a data
manipulation process) can occur through a particular
visualization. However, the categorization provides a
useful framework through which to understand the tasks
that users perform.

This paper concentrates on the data manipulation aspect of
interactive data exploration. By examining the tasks users
perform, we categorize user goals for data manipulation
into three types: controlling scope, selecting focus of
attention, and choosing level of detail (Section 2). This
framework allows us to discuss and evaluate current data
exploration systems according to how they address the
particulars of these three categories (Section 3).

Based on our analysis, we find that Dynamic Query (DQ)
[1] and the Aggregate Manipulator (AM)1 complement
each other's functionality and apparent usability. DQ
enables selecting data based on value ranges of the
attributes. The AM allows the user to create and
decompose aggregates, which are groupings of data, and
see their derived properties. In order for these mechanisms

1Preliminary versions of the AM as well as the idea of distinguishing scope, focus
of attention, and level of detail were developed in collaboration with Maya Design
Group Inc., Pittsburgh, PA. We further elaborated the component operations for the
work reported here.

to be useful in a general purpose system, we extended DQ
to handle nominal data attributes as well as quantitative
attributes and both mechanisms to work on more than just
pre-defined cases (Section 4). These extensions make the
new versions of the AM and DQ both comprehensive and
flexible. We then discuss our integration of these new
versions in a data exploration interface (Section 5) and
illustrate the integration of these data manipulation
techniques in the real estate domain by providing example
analyses to show how the AM and DQ work
synergistically for exploring large data sets (Section 6).
Since the AM and DQ provide complete coverage of data
manipulation goals, combining them provides a highly
useful tool for data manipulation functionality in exploring
large data sets.

2. FRAMEWORK OF DATA MANIPULATION GOALS
The exploration goals that a user will have are clearly task
dependent. These goals are also dynamic, changing as the
user views various data and displays. Data manipulation is
one of the processes that users perform in data exploration.
Springmeyer performed an extensive empirical analysis of
the processes that scientists do in data analysis [8]. Her
category “data culling” is most similar to that of data
manipulation. We have analyzed the data manipulation
process in detail for object-attribute data and have
identified three types of exploration goals needed:
controlling scope, selecting focus of attention, and
choosing level of detail.

Controlling scope has to do with restricting the amount of
data one wishes to view. One way to control scope is to
select a subset of values of a data attribute. For example, a
user may wish to look at cities with a population over 2
million. This corresponds to selecting city data objects
using the population attribute. Similarly, we can control
scope using multiple data attributes (e.g. selecting cities
with population over 2 million and average rainfall greater
than 20 inches). In order to select data based on
quantitative attributes (i.e., numeric attributes like
population), users can select a range of values. For nominal
attributes (i.e., non-numeric, unordered elements, such as
state), users can select individual elements in the set (e.g.,
Florida) or select other types of attribute-value groupings
such as pre-defined ones (e.g., states in the Eastern US).
This type of pre-defined information could be stored in the
system as attributes of other objects (i.e., there would be a
city object with a state attribute and a state object with a
region-of-US attribute). This enables a user to select cities
partitioned by region-of-US. Users need the capability to
define such groupings and add them to the system
explicitly.

An alternative way of controlling scope is to disjunctively
join subsets of the data, which possibly have overlapping
elements. For example, a user may wish to look at data for
cities where the population is over 1 million (set 1) or
cities which have a population between 2 million and 10
million and are in the Eastern US (set 2). The population
and region-of-US attributes are used in this second set to
control the number of cities considered. Note that the two

sets (set 1 and set 2) can have overlapping data. For
example, New York is in both sets.

The second class of goals addresses focus of attention,
which involves choosing the attributes of data one wishes
to both view in displays and manipulate through level of
detail operations. For example, a database of cars may
consist of various attributes (car-model, year, company,
cost, miles-per-gallon, repair-rating, safety-rating), but a
user may wish to just focus on the relationship between
cost and safety-rating. Another type of focus operation is
the creation of derived attributes, attributes which do not
occur in the original data and are defined by the user. For
example, we can create an attribute called manufacturing-
location (with values of American, European and Asian)
by assigning a value to each car based on its manufacturer.
We can accomplish this by partitioning the data into three
groups. This can be expressed visually by coloring the cars
on a display based on their manufacturer [3] with
American cars in shades of blue, European cars in shades
of yellow/orange, and Asian cars in shades of red. Another
method is to manually select all American cars and create a
group (aggregate), and then form a group for European
cars and one for Asian cars. If the user wants to reuse this
derived attribute later, the user would need to have the
system store this information, analogous to the previously
mentioned attribute region-of-US. The coloring technique
is a visualization technique referred to as brushing [3] or
painting [5] and the group creation technique is provided
by the aggregate manipulator (Section 3). Another way to
create derived attributes is to transform existing attributes
by some filter [4], for example, create a binary attribute,
fuel-efficient, from the car attribute miles-per-gallon by
filtering the data by miles-per-gallon greater than 30.

The third type of goal is choosing the level of detail, which
involves changing the granularity of the data that the user
wants to examine, either by aggregation: grouping data in
some manner meaningful to the user, or by decomposition:
partitioning data by the values of attributes, i.e., breaking a
larger group into smaller groups. First we give an example
of the process of aggregation and then we will discuss
decomposition. Suppose we have house-sale data with the
following attributes: number-houses-sold, total-sale-price,
and date, where date represents a day of 1992. This
involves 365 data points. The user may wish to change the
level of detail by grouping dates into months and
displaying the total sales per month. This reduces a
display of 365 data points to one of 12. Users can also
create ad-hoc groupings. For example, in the house-sale
data, the user could aggregate the dates of the year into
quarters beginning in November. On any resultant
aggregate, users might want to do data analysis operations,
which involve examining derived properties of the data.
These include defining summary statistics, which are
statistics that can be computed on the values of attributes
(e.g., sum or mean). In the case of the “quarter”
aggregates that we created for the house-sale data, we
could request the total number-houses-sold or mean (daily)
total-sale-price for each quarter. These quarter aggregates

represent a coarser grain level of detail than individual
months.

Homogeneous and heterogeneous decomposition involve
reducing a data group into smaller groups based on the
same or different attributes of the included data objects.
Homogeneous decomposition is the process of using the
same attribute to repeatedly partition a group by choosing
more and more narrow ranges of the attribute's values.
Heterogeneous decomposition refers to the use of different
attributes to decompose sets for successive partitions. For
example, consider a real estate sales database with the
following attributes: house-selling-price, neighborhood,
number-of-bedrooms. Figure 1 illustrates heterogeneous
and homogeneous decomposition for houses whose
neighborhood attribute is Shadyside or Squirrel Hill. We
can partition this group of houses by the price attribute in
the ranges, 0-50K, 51-100K, 101-150K and over 150K.
Using homogeneous decomposition, we can further divide
the 51-100K house partition into the groups, 51-75K and
76-100K. Using heterogeneous decomposition, we can
partition the 101-150K aggregate created by the price
attribute, by the attribute number-of-bedrooms.

Shadyside and Squirrel Hill houses

0-50K 51-100K 101-150K

51-75K 76-100K 2 bdr 3 bdr 4 bdr
HOMOGENEOUS

DECOMPOSITION
HETEROGENEOUS
DECOMPOSITION

Figure 1: Aggregation: homogeneous & heterogeneous
decomposition.

Homogeneous and heterogeneous decomposition are two
ways to form a hierarchy, which structures data by
imposing meaningful groupings. When we perform these
operations, we need a way to specify how partitions are
formed. We have identified four classes for decomposition:
• user-defined or pre-defined natural groupings: These can

be defined interactively by the user or in advance as
built-in knowledge. A possible pre-defined natural
grouping is time, e.g., years -> quarters -> months. An
example of a user-defined grouping is data on crimes,
where each crime data object has a date attribute.
Psychologists may decide to break the year into holiday
days and non-holiday days (Figure 2a).

• element frequency divisions (computed by the system):
Each division has the same number of elements,
hereafter referred to as equi-frequency. For example, if
the user wants 20 divisions (partitioned by time) of the
1000 crimes committed in 1991, then there will be 50
crimes per each time interval and each time interval can
have a different length. (Figure 2b).

• set interval divisions (computed by the system): Each
division has the same length interval, equi-interval. In
the above example, if the user wants weekly divisions of
the data, the system would divide the data into weeks:
1/1-1/7, 1/8-1/14, etc. (Figure 2c).

ALL-DATES

HOLIDAY NON-HOLIDAY
AGGREGATES:

NUMBER OF
ELEMENTS:

ALL-DATES

1/1-1/5 1/6-1/29

USER-DEFINED EQUI-FREQUENCY

350 650

...
ALL-DATES

1/1-1/7 1/8-1/14

EQUI-INTERVAL

...

50 50 65 17

(a) (b) (c)

Figure 2: Types of decomposition: (a) user-defined,
(b) equi-frequency, (c) equi-interval.

• system-provided statistical methods: The system can use
clustering statistics or other methods to partition the data
into groups.

Aggregates are groups formed as a result of decomposition
or aggregation. Aggregates have data characterizations
which are derived from the data characterizations of their
elements. This characterization describes the application-
independent properties of data that are the basis for graphic
design [7], e.g., a nominal data type. When forming an
aggregate, the system uses the characteristics of the
individual data objects to infer the aggregate data
characterization, which is similar to computing summary
statistics for each of its attributes. For example, if the
system is grouping data which includes the attribute costs,
a representative data value for the aggregate object could
be average or total. This representative value is used when
displaying the aggregate. Values in our current system
include counts, averages, totals, and ranges. Which values
can be selected depends on the data characterizations of the
individual elements. For example, an average or total does
not make sense for nominal data.

3. EXISTING DATA EXPLORATION TECHNIQUES
There are several existing techniques for exploring large
data sets. As mentioned, these methods fall in three
categories: (1) data manipulation techniques, (2) data
analysis techniques, and (3) data visualization techniques.
Data manipulation techniques are methods of selecting,
grouping and transforming the data. In this section, we will
examine user interface mechanisms for data manipulation
techniques in terms of how they address the data
manipulation operations of scope, focus of attention and
level of detail (Table 1). We will not address query
languages, such as SQL, because our focus is on interface
tools that assist the user in manipulating their data.

Dynamic Query or Queries (DQ) is an interactive
technique which allows the user to manipulate sliders to
control the amount of data displayed [1]. Each slider
corresponds to a data attribute. This technique works best
for quantitative data, but can also work in the case of
nominal data, for which the user selects elements from an
exhaustive list. DQ has previously been implemented for
pre-defined attributes. The advantages of this technique are
that slider bars are easy to manipulate, and one can see the
changing effects on the visualization of the data. One
disadvantage is that there is no easy way to represent
disjunction, the combination of two sets of attributes.
Some simple cases of disjunction may be represented by
having multiple ranges available for manipulation on one
slider bar.

- filter data using attribute(s)
- select multiple disjunctive subsets

- select attribute(s) for viewing operations
- select attribute(s) for level of detail operations
- derive attribute(s) from existing attributes

- predefined aggregation & decomposition
- flexible aggregation & decomposition

SCOPE

DATA MANIPULATION OPERATIONS D
yn

am
ic

 Q
ue

ry
A

gg
re

ga
te

 M
an

ip
ul

at
or

Ic
on

og
ra

ph
er

P
ow

er
pl

ay
E

xc
el

xx

xx

x
xx

x
xx
xx

xx
xx

x
x

xx
x
x

x
x

x
x

x

x

x
x
x

x
x

FOCUS
OF

ATTENTION

LEVEL OF
DETAIL

Table 1: The data exploration operations provided by
different software or techniques. If the software
(technique) allowed the operation in a simple,
straightforward manner, we assigned the value “xx”. If
the operation involved non-intuitive operations, lots of
steps, or steps bordering on programming, we assigned
the value “x”.

Webs performs level of detail operations through an
aggregation mechanism called the “aggregate manipulator”
(AM). It was designed for level of detail operations, that of
aggregation (grouping) and decomposition (partitioning
groups). However, using these methods, the user can also
perform scope operations by controlling the amount of data
and focus of attention operations by partitioning through
ad hoc selection of attributes. The AM also provides a
mechanism to display summary statistics for attributes of
aggregates (a data analysis operation). The AM will be
discussed further in sections 5 and 6.

Iconographer [4] has several mechanisms to handle scope
and focus of attention, but only weakly supports level of
detail operations. Iconographer uses the model of directed
graphs that are programmed visually by the user. The
Object Filter handles the data filtering. The directed graph
methodology allows for both scope operations. The
Attribute Builder allows one to create derived attributes. by
visually programming a graph of functions that will
transform existing attributes. The Switchboard mechanism
allows the user to select attributes and link them to display
techniques. It does not appear that these mechanisms
would allow rapid data manipulation for scope and level of
detail operations.

Powerplay [2] allows the user to “drill-down” across pre-
defined hierarchical structures called data dimensions. For
example, for car sales data, total sales can be broken down
by year, then by quarter, then by month. Sales can also be
broken down by geographic region, and then by individual
states. Powerplay allows both homogenous and
heterogeneous decomposition. Powerplay also allows the
user to select attributes to display and to choose certain
types of display graphs. Displays or tables are created
based on the current level of detail. Powerplay does not
allow the capability to perform any scope operations other
than this drill-down capability. More importantly, since
Powerplay only allows decomposition of pre-defined
hierarchical structures, it does not allow decomposition by
ad hoc attribute selections.

Excel has the ability to perform level of detail operations
through an “outline” mechanism. Excel allows the user to
create groupings (aggregates) of data sets rather than
constraining the user to pre-defined groupings. However,
this is cumbersome in that Excel has no knowledge of
underlying data types, data attributes, data sets, data
objects, and the membership of objects in sets.
Consequently, Excel has few mechanisms for controlling
the scope easily, other than manually selecting cells. Users
must individually link cells to other cells to create a
hierarchical outline indented by levels. Once this structure
is defined the user can collapse and expand levels, but only
within this structure. Changing the decomposition requires
changing the spreadsheet model. Excel provides the means
of doing summary statistics by attaching formulas to cells,
which are manually linked by the user to the cells needed
for performing the operation. Since Excel allows the user
to select portions of any spreadsheet for display and also to
create new attributes from operations on the data, Excel
can perform all three focus of attention operations.

4. SELECTING INTERFACE MECHANISMS
Table 1 shows us that to have complete coverage of our
desired data exploration operations we could select just the
aggregate manipulator. However, the AM does not filter
data or select attributes for viewing operations as well as
DQ does. For filtering data, the AM requires creating user-
defined partitions, which might have to be re-created for a
slightly different choice of data (e.g., if users decide they
want to view data for houses which sold for $125,000-
$200,000 instead of $100,000-$200,000). Furthermore, if
the user partitions the data set several times, it can be
confusing what portion of the data (i.e., what range of
values for the various attributes) are being displayed. In the
case of DQ, determining these values is straightforward,
since each attribute has its own slider or selector
mechanism. However, DQ does not have the ability to
disjunctively combine sets (e.g., display houses which sold
for $50,000-$100,000 in the neighborhood Squirrel Hill
and those that sold for $50,000-$150,000 in Shadyside)
without creating methods that have multiple sets of
dynamic queries linked to the same display. Thus, there is
a need for a mechanism such as the AM to perform this
operation as well as other functions such as displaying
summary statistics. Examples of the interactions between
DQ and the AM will be given in Section 6.

In order to be able to use both the AM and DQ in our
system, we needed to extend them to function for any type
of data. For the AM, this required exploring the types of
operations that users would want to do with their data and
then extending the AM so it could perform these types of
decompositions and summary statistics based on the data
characterization rather than built-in mechanisms for the
particular application. For DQ, we needed to be able to
create a slider on demand and to have a method to select
elements of nominal data rather than just ranges of
quantitative data. For nominal data we use a scrolling list
of elements (see Figure 6) and allow the user to select
multiple elements of the list. Since the combination of

these new versions of AM and DQ is not data specific, it is
easily generalized to any new object-attribute data set.

5. SYSTEM DESIGN
In our system, we have selected two data exploration
mechanisms: Dynamic Query (DQ) and the Aggregate
Manipulator (AM) due to their coverage of the data
manipulation operations and their apparent ease of use in
an interactive interface. Figure 3 summarizes the main
functionality and data flow of the AM and DQ. Decoupling
the display and the AM (which were linked in Webs) has
the advantage that the user can explore and manipulate the
data in the display area or the AM without affecting the
other workspaces.

DISPLAY:
 map, chart, etc.

AGGREGATE
MANIPULATOR:
• filters data for display
• summary statistics
• good at level of detail
 operations, creating and
 manipulating aggregegates

passes
data and

aggregates
for

display

DYNAMIC QUERY:
• controls data on display
• good at scope operations

passes
aggregates

Figure 3: Data Flow for the AM & DQ.

The AM, DQ, and display comprise three of the five
workspaces in our interface (see Figure 6). The AM is a
workspace for creating, decomposing, and directing the
display of aggregates in other areas. The display area is
both a work area for creating aggregates and a place to
display the elements of the aggregates created by the AM.
The dynamic queries are always connected to the current
display. Changing the sliders changes the portion of the
data that is displayed. There are command buttons (under
the aggregate manipulator and display area) which allow
the user to create an aggregate, display an aggregate, clear
the display area, and perform related functions. New
aggregates can be created in the display area by selecting
data points (represented by icons or graphical symbols) or
by dragging a bounding box around them. Selected icons
can be composed into a new aggregate, by the “Create
Agg” command. The user gives the aggregate a name, and
the representation of the individual data objects disappear
and are grouped into the representation of the aggregate
data object, which we call an aggregate gateway. If the
user selects “Dsply->AM”, the aggregate is also displayed
in the AM with the name specified by the user. The user
can decompose an existing aggregate into its components
on the display by double clicking on the aggregate gateway
object. The number of objects displayed reflects the
bounds of the existing dynamic query sliders. This
decomposition operation does not affect the AM. If the
user wishes to display an aggregate from the AM, the user
can select the aggregate(s) and use the "AM->Dsply"
command or clear the display first using the “Clear
Display” command. An aggregate can be cleared from the
AM by selecting the aggregate and using the “Clear Agg”
command.

The last two workspaces consist of the attribute area and
the data detail area. The data detail area (lower right
corner) is used for the display of aggregates or individual

data objects. Attributes are displayed in this area by
pressing on the "Show Agg" command and selecting an
attribute via the resultant pop-up menu. The attribute area
lists the attributes available in the database.

 6 REAL ESTATE APPLICATION
We have implemented this design for a real estate sales
domain, in which the display area currently only consists
of a map display. Ultimately, we intend to integrate this
system with SAGE [6], which will provide a variety of
graphics for the display area. In this section we will
discuss the real estate domain and the tasks one might
perform with this data set. We will show that we need a
mechanism such as the AM to allow the user to
disjunctively combine sets and that the combination of DQ
and the AM is better than a single mechanism only.

Our data consists of attributes similar to that of an actual
real estate listing, but has additional information, e.g.,
selling price, because the data consists of houses that have
been sold. There are 27 attributes (Figure 4) with varied
data types: quantitative (e.g., selling price), nominal (e.g.,
neighborhood), and interval (e.g., date of sale). The
attributes of the house data have three natural hierarchical
relationships. City can be decomposed into neighborhoods
or zip codes. Companies can be decomposed into offices
(selling or listing), and offices can be decomposed into
agents. There are many possible user-defined partition
options, such as the partitions in Figures 1, 5 and 6.

¥ address
¥ neighborhood
¥ city
¥ zip code
¥ age of house
¥ type of house

¥ selling price
¥ asking price
¥ date of sale
¥ assessment
¥ tax

¥ selling off
¥ listing off
¥ listing age
¥ company
¥ days on mar

¥ number of rooms
¥ number of bedrooms
¥ number of bathrooms
¥ style of house
¥ fireplace
¥ garage

¥ lot size
¥ living room size
¥ dining room size
¥ kitchen size
¥ master bedroom size

Figure 4: Attributes of the real estate data set.

In this section, we will discuss two scenarios. The first
shows the weaknesses of using the AM alone. The second
scenario shows how using solely DQ requires a lot of work
for the user. For both these cases, we show how using the
combination of the AM and DQ involves less work to
achieve the user’s goals.

Consider the following scenario. Jennifer is new to the
Pittsburgh area and has the following goals for a house:

• in the price range $100,000 to $150,000.
• close to Carnegie Mellon University (CMU).
• a lot size larger than 5000 sq. ft. in the neighborhoods

Shadyside or Squirrel Hill, or a lot size larger than
8000 sq. ft, in the neighborhood of Point Breeze,
which is further away from CMU.

Since Jennifer is new to this area, she would like to see
how many houses which sold in recent years match these
criteria. In particular, Jennifer would like to see a map
display of both sets of houses (Shadyside-Squirrel Hill and
Pt. Breeze) that meet her criteria. DQ is not capable of
displaying two sets on the map (in one set the lot size must
be larger than 5000 sq. ft. and in the other set they must be

larger than 8000 sq. ft.). However, the AM is capable of
handling this scenario.

Using just the AM, Jennifer would divide the initial
aggregate group of AllHouses by selecting a user-defined
partition consisting of one group for the attribute selling
price. Using the provided slider, she would specify the
range $100-$150,000 and give the group a name, “100-
150K”. This new group is indented from the initial group
AllHouses in the outliner portion of the AM (Figure 5a).
She would then select the user-defined partition for
neighborhood and break this cost range into the three
neighborhoods: Shadyside, Squirrel Hill, and Point Breeze.
She would then select Shadyside and Squirrel Hill and
create a new aggregate, “SqHill-Shady” (composed
aggregates are flushed one indentation to the left of the
leftmost aggregate in the outliner of the AM table, see
Figure 5b). She then partitions SqHill-Shady by the
attribute lot-size, specifying one user-defined grouping of
data larger than 5000 sq. ft., which she names “>5000”.
She does the same for the group Point Breeze specifying
larger than 8000 sq. ft. She then composes these two
groups (“>5000” and “>8000”) into a new aggregate,
named InterestHouses (Figure 5b). From Figure 5b, it is
apparent that with several decompositions, recalling how
an aggregate was created or what it represents could be
confusing. Moreover, creating the user-defined partitions
through the AM involves more work than using DQ.

Figure 5: The functionality of the Aggregate
Manipulator. (a) The outliner of the AM showing
decomposition of houses by partition 100-150K followed
by a neighborhood partition of three neighborhoods. (b)
The outliner showing creation of the aggregate
InterestHouses, from the aggregates >5000 of SqHill-
Shady and >8000 of PointBreeze. (c) The AM as a
result of decomposing the aggregate ExpensiveSales
by the attribute company and decomposing the partition
Howell & Co. by the attribute sales agent.

It is therefore advantageous for Jennifer to use the
combination of the AM and DQ to cover this case (Figure
6). The initial state of the system has the aggregate
“AllHouses” in the AM and all houses displayed on the
map. First, Jennifer uses the mouse to press the “Create
Query” button to display a pop-up menu of all attributes.
She selects the attribute Selling Price and a dynamic query
slider is created. She then uses the same procedure for Lot
Size and Neighborhood. After she selects the appropriate

ranges or values for these queries, the map displays houses
in Shadyside and Squirrel Hill, with a price between 100-
150K and lot size between 5000-20000 sq. ft. Jennifer then
selects all the data on the map and uses the “Create Agg”
command to create a new aggregate “SqHill-Shady”. She
then selects this aggregate and uses the command “Dsply-
>AM” to transfer the aggregate to the AM. To create the
second set, she uses “Clear Dsply” to clear the map
display, selects the aggregate AllHouses from the AM,
uses the command “AM->Dsply” to put the aggregate
gateway object on the map and then double clicks on the
aggregate gateway to expand the aggregate into the
individual house data. She then uses the existing DQ
sliders to create a new range for lot size, 8000-20000 and
to select the neighborhood Point Breeze. Note that if
Jennifer wanted to see more or fewer houses, she could
change the sliders until she had approximately the number
she desired. This is an awkward procedure in the AM
because it requires creating a new user-defined partition
for each revision and then looking either at the summary
statistics or displaying the new partition on the map. After
adjusting the sliders, Jennifer creates an aggregate of the
whole map, “PtBreezeBigLot” and displays it in the AM.
She then selects the two aggregates PtBreezeBigLot and
SqHill-Shady and creates a new aggregate
“InterestHouses” and displays the result on the map
through the “AM->Dsply” command. She then presses on
the map aggregate to display a pop-up menu of operations
that involve this aggregate. She chooses “Set Query
Values” and the dynamic queries are set to reflect the
house data in the aggregate “InterestHouses”. She then
double clicks on the aggregate to see the individual house
data (the results of these operations are shown in the map
display and dynamic query area of figure 6).

Figure 6: The workspaces of the interface: display,
attributes, aggregate manipulator, data detail area and
dynamic query area.

Figure 6 also shows summary statistics and data for the
aggregate InterestHouses. Jennifer obtains these values by
pressing on the top column header area of the AM table,
selecting the summary statistic “mean” from the pop-up
menu, and then pressing on the lower header area of the
table to obtain a pop-up menu of the possible attributes that

can be used with “mean” and selecting “selling price”.
Note that this procedure could be done in reverse, choosing
“selling price” and then selecting from a list of possible
summary statistic options. This is possible because the
system has built-in knowledge of the data types of the
attributes and “knows” what summary statistics are
possible for each data type. For the second column,
Jennifer picks the summary statistic “count”, which does
not require a corresponding attribute. To partition
InterestHouses, she presses on “InterestHouses” in the
outliner of the AM, which gives a pop-up menu of
attributes and selects the attribute “# Bedrooms”. She
chooses to partition the attribute “# Bedrooms” into
individual values (refer to the AM in Figure 6). All non-
empty aggregate groups are displayed in the AM (in this
case 3-8) along with summary statistics for any specified
columns (in this case mean selling price and count). To get
the display in the Data Detail Area, she selects the
aggregate InterestHouses, presses the command “Show
Agg” and then chooses the attribute “# Bedrooms”.

The second scenario involves another situation in which
we hypothesize the combination of the AM and DQ is
superior to either method alone. John wants to sell his
house and is looking for possible real estate agents. He
figures his house will sell for around $250,000. He wants
to know which company and then which sales agent has
sold the most houses in the price range $200,000-$300,000
in his neighborhood in the last year. DQ alone is quite
awkward to use because John would have to select all
combinations of company and sales agents and then count
the number of houses that appear on the map. However,
DQ is easy to use for simple selection of ranges and value.
Thus, first John uses DQ to select ranges for the price, the
neighborhood and the date range. From this he creates an
aggregate ExpensiveSales (Figure 5c). He then partitions
this aggregate by the attribute company and selects two
summary statistics: “sum” for the attribute selling price
and “count”. After finding that Howell & Co. sold the most
houses, he decomposes this aggregate of houses by sales
agent. The result of this decomposition is that John can
quickly see that Helen Foster sold the most houses, but
only by one house.

7. CONCLUSION AND FUTURE RESEARCH
One important component in the design of user interfaces
for exploring large data sets is that of data manipulation
techniques. In this paper we explored these techniques with
respect to a framework for classifying user goals, that of
scope, focus of attention, and level of detail. Of current
techniques that cover level of detail functionality, the
aggregate manipulator seemed to perform the operations in
the most straightforward manner. However the aggregate
manipulation is somewhat unwieldy for selecting ranges of
attributes, and so we integrated into our system the
technique of dynamic query, whose strength is these types
of scope operations.

While we have demonstrated that a combination of these
tools appropriately applied can enable people to efficiently
solve questions that are typical in data exploration, an

important area of future research will be whether users are
able to recognize the most effective ways to use the many
possible combinations of aggregate manipulation and
dynamic query provided in the interface. Our current work
is to perform user studies to assess this and related
questions. In addition, we plan to explore how these
concepts need to be revised for relational data which does
not fall into the object-attribute paradigm, as well as
analyze the goals users have for data visualization, provide
a painting mechanism which supports coordination of
attributes across multiple displays, and integrate this
system with SAGE, our automatic presentation system, to
provide more types of visualizations.

ACKNOWLEDGMENTS
We would like to thank Pete Lucas, Jeff Senn, Joe Ballay
and Carolanne Fisher of Maya Design Group Inc. for their
contributions to this work. Thanks also to John
Kolojejchick, Joe Mattis, Carolyn Dunmire, Mei Chuah,
Octavio Juarez, Francesmary Modugno, Edoardo Biagioni,
Bob Doorenbos and Kathyrn Porsche for their useful
comments in discussions and/or on versions of this paper.
Funding for this project was provided by the Advanced
Research Projects Agency and the Army Research Office.

REFERENCES
1. Ahlberg, C., Williamson, C. and Shneiderman, B.

Dynamic Queries for Information Exploration: An
Implementation and Evaluation. In Proceedings of
CHI'92 Human Factors in Computing Systems (May
3-7, 1992, Monterey, CA), ACM/SIGCHI, pp. 619-
626.

2. Barr, R. Using Graphs to Explore Databases and
Create Reports. In SIGCHI Bulletin (July 1990), p. 24-
27.

3. Cleveland, W.S. and McGill, M.E. Dynamic Graphics
for Statistics. Wadsworth, Inc., Belmont, CA 1988.

4. Gray, P.D., Waite, K.W., and Draper, S.W. Do-It
Yourself Iconic Displays. In Human-Computer
Interaction - INTERACT '90, D. Diaper et al., Elsevier
Science Publishers B.V., 1990, pp. 639-644.

5. McDonald, J.A. and Stuetzle, W. Painting multiple
views of complex objects. In Proceedings of the.
ECOOP/OOPSLA'90 European Conference on Object
Oriented Programming (Oct. 21-25, 1990), ACM
Press, pp. 245-257.

6. Roth, S.F., Kolojejchick, J., Mattis, J., and Goldstein,
J. Interactive Graphic Design Using Automatic
Presentation Knowledge. In Proceedings of CHI'94
Human Factors in Computing Systems (April 24-28,
1994, Boston, MA), ACM/SIGCHI.

7. Roth, S.F. and Mattis, J.A. Data Characterization for
Intelligent Graphics Presentation. In Proceedings of
the CHI'90 Human Factors in Computing Systems
(April 1-5, 1990, Seattle, WA), ACM/SIGCHI, pp.
193-200.

8. Springmeyer, R.R., Blattner, M.M., and Max., N.L.
Developing a Broader Basis for Scientific Data
Analysis Interfaces. In Proceedings of Visualization
'92 (October 19-23, 1992, Boston, MA), pp. 235-242.

