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Abstract  
Dynamic Queries offer continuous feedback during range 
queries, and have been shown to be effective and 
satisfying.  Recent work has extended them to datasets of 
100,000 objects and, separately, to queries involving 
relations among multiple objects.  The latter work enables 
filtering houses by properties of their owners, for instance.  
Our primary concern is providing feedback from 
histograms during Dynamic Query.  The height of each 
histogram bar shows the count of selected objects whose 
attribute value falls into a given range. Unfortunately, 
previous efficient algorithms for single object queries 
overcount in the case of multiple objects if, for instance, a 
house has multiple owners.  This paper presents an 
efficient algorithm that with high probability closely 
approximates the true counts. 

1. Previous Dynamic Query work 

1.1. Single Object Interface 
Figure 1 shows a Dynamic Query (DQ) interface as 
implemented in VQE, a Visual Query Environment for 
exploring data from a database [1].  VQE is built on top of 
Visage [2], an interactive data visualization system 
developed by Carnegie Mellon and Maya Design Group. 

The subset of the database being explored at any given 
time by a VQE query is called the active subset.  The top 
row in the upper box of Figure 1 indicates that the query is 
being applied to an active subset of 195 people, and that 72 
of these people satisfy the constraints imposed by the 
sliders on the remaining two rows.  Namely, they have a 
birthdate between 8/1935 and 8/1968 and a salary between 
$15,760 and $66,729.  The rectangular sliders are 
superimposed on histograms where the dark bars show the 
distribution of the attribute values for the 72 selected 
people.  The dark bars partially cover the light bars, which 
show the distribution for all 195 people. When the user 
drags either end of the sliders to change a query’s selection 
range, the counts, histograms, and visibility of  the points in 
the chart are updated in real time. In Figure 1, the attributes 
shown on the axes in the chart are the same ones being 
filtered, so data only appears in a small rectangular area. 

1.2. Efficient Algorithms  
We will only describe algorithms for updating the 
histograms.  The counts in the top row of the upper box in 
Figure 1 can be implemented as a zero dimensional 
histogram. The chart can be implemented as a 2D histogram 
where the pixel at xy is turned on if the count for that 
histogram bucket is greater than zero.  For the following 
algorithms let 

 a  number of sliders 
 p  slider width in pixels  
 r  number of objects in active subset 

The sliders' edges can be positioned at any of the p pixel 
positions.  Even though the histogram bars as displayed are 
several pixels wide, the histograms are computed with p 
buckets internally.  Several of these buckets are then added 
when computing the bar heights for display.   

 
Figure 1  Restrictions on salary and birthdate have filtered the 
active subset of 195 people down to 72 visible in the chart.  
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After every mouse move drags a slider edge, the screen 
should update within 0.1s in order to feel like continuous 
feedback [3].  Several schemes have been presented to 
avoid scanning the entire active subset in raw form after 
each mouse move, by preprocessing to create index data 
structures.  Preprocessing can occur after any of four event 
types.  The higher level the event, the more time is available 
without annoying the user.  The first two numbers come 
from formal experiments [3], the third from informal 
observation [4], and the last from the observation that data 
warehouses are typically updated daily and that it would be 
reasonable to run an indexing program overnight. 

 
mouse move  0.1s 
mouse down  1  s 
active subset selection 10  s 
data warehouse update 10,000  s 

 
Previous Dynamic Query indexing algorithms have been 

restricted to records from a single relational database table, 
which we call `single object queries.’  In order to explain the 
reasons for our design decisions and where previous 
algorithms break down, we first describe in detail a previous 
mouse-down indexing algorithm and kd-tree based active 
subset selection algorithms.  While necessary for an 
understanding of the tradeoffs among these indexing 
schemes, the reader can skip to section 1.3 without major 
loss of continuity. 

TBS Algorithm 

Tanin, Beigel, and Shneiderman [4] present a mouse-down 
indexing algorithm that we will call TBS.  As soon as the 
user depresses the mouse button to begin dragging slider 
A, the active subset can be filtered to remove objects based 
on sliders B, C, etc.  Further there are only a limited number 
of possible updates to allow for, since the mouse can only 
move to the few hundred pixels of slider A.  For every 
bucket of slider A, B, C, etc an index structure is created for 
quickly calculating the number of selected objects in the 
bucket. The index structure for bucket Bi is an array of 
length p, where Bij is the number of objects whose B 
attribute falls into bucket i, whose A attribute falls into one 
of buckets 1-j, and whose B, C, etc attribute falls into the 
selected range for that attribute (see Figure 2). Then when 
the mouse moves, the count is updated to Bi = Bi right - Bi left , 
where right (left) is the pixel index of the right (left) edge of 
slider A. This gives the number of objects whose A 
attribute is greater than the left cutoff but less than the right 
cutoff.  This subtraction  must  be done  for each  bucket of 
each slider, so the complexity of updating the histograms is 
just O(ap).  Since this is independent of r, moving the 
mouse is very fast.  The bottleneck is creating the index 
structures. 

Computing the index structures requires looking at each 
attribute of each object, which takes O(ar)  time.  If its B, C, 

etc attributes fall within the selected ranges, then the 
appropriate Bij is incremented.  This produces non-
cumulative Bij.  The final, cumulative, Bij are computed by 
looping through each i and j for each slider B, C, etc, taking 
O(ap2).  The total time for computing index structures is 
therefore O(ar+ap2).  

TBS with kd-trees 

As future work, Tanin, Beigel, and Shneiderman [4] suggest 
that a kd-tree can be built at active subset selection time so 
that sequential scan is not necessary in order to build the 
structures above.  A kd-tree is a binary tree whose root 
represents all r objects.  Each node of the tree divides its set 
of objects approximately in half by thresholding on some 
attribute.  It always chooses the attribute with the maximum 
range of values over the node’s objects, relative to its range 
for the entire active subset. If the range falls within a single 
histogram bucket on all attributes, it is a leaf node.  Each 
node maintains a count of the number of data objects it 
owns, and the max and min value of each attribute over 
these objects. The number of leaf nodes is limited both by 
the number of objects and the cross product of all the 
histogram buckets, so the space complexity is O(a min(r, 
pa)). The time to build the tree is O(ar log r) [5]. 

When building the index structures on mouse-down, the 
tree is traversed top-down.  Nodes whose attribute ranges 
are disjoint from the ranges of one of the sliders B, C, etc 
can be pruned without looking at their children.  The counts 
of nodes whose ranges fall within a single A bucket and a 
single B bucket are added to the (not yet cumulative) Bij 
without looking at their children. 

For portions of the tree in the selected set, every leaf 
node must be visited for exactly one of the histograms – the 
one for the attribute its parent thresholds on.  At each node, 
the range of each attribute must be compared with the slider 
ranges.  So the worst-case performance is O(ar), the same 
as for sequential scanning. But if some of the sliders B, C, 
etc are restricting the selected set, the time will be reduced 

 
Figure 2  Calculation of TBS index structures upon mouse-down 
on slider A. Bij is the number of objects in the intersection of the 4 
labeled intervals. 



proportionally. It will also be reduced if multiple objects fall 
into the same leaf node due to small pa or skewed data. 

kd-trees without TBS 

For reasons explained in Section 2.2, the TBS algorithm is 
not practical for multi-object queries.  However, kd-trees 
can still be used to compute histograms directly.  In this 
case, nothing is done at mouse-down time.   At mouse-
move time, the tree is traversed top-down as before. The 
bucket count for Bi is the count in the intersection of Bi with 
Aselected, Bselected,  and Cselected (see Figure 2).  This still takes 
time O(ar). 

For an additional factor of a in space and build time, 
every histogram bucket can store its own kd-tree.  Then its 
bucket count is found with an independent range counting-
query on an a-1 dimensional kd-tree.  A range counting-
query on an a dimensional kd-tree takes O(r1-1/a) [6].  Each 
tree will have, on average, r/p objects.  Performing range 
counting-queries for every bucket therefore takes 
O(ap(r/p)1-1/(a-1)) = O(ap1/(a-1)r1-1/(a-1)).  Subjectively there 
seems no reason to provide histograms wider than a few 
hundred pixels, whereas it is desirable to increase r 
indefinitely.  Thus this is a theoretical  improvement. In 
practice it produced a significant speed up, which increased 
with the number of sliders and the number of objects.  For 3 
sliders and 1,000,000 objects the difference was a factor of 
10. 

It probably is not practical to use this trick with TBS, 
because its index structures are two dimensional compared 
with the histograms’ single dimension.  Therefore it requires 
an additional a2 factor in space and time to construct Bij-
specific kd-trees rather than just an additional factor of a. 

Detailed studies of kd-trees for Dynamic Query found 
them of little help except for skewed data distributions [7].  
They did not consider histogram-specific kd-trees, 
however.  Further, real data often is skewed. 

1.3. Multiple Object Interface 
Figure 3 shows an active subset that involves the 
relationship between two types of objects: people and the 
houses they own.  This sort of query is accomplished with 
joins in database systems.  The two boxes containing 
counts and histograms are called nodes of the query.  In 
general, queries can involve any number of nodes.  The 
chart showing salary of the owner vs appraised value of the 
house shows composite objects that  have attributes of 
both houses  and people.  By restricting the slider on the 
owner's salary, all composite objects containing owners 
outside the selected range are turned off.  Thus the chart is 
empty to the left of $44,741.  If all the composite objects 
containing a given house are turned off, the house is no 
longer counted among the selected set of houses or 
included in the dark bars.  As can be seen in the upper right 
box, 69 of the 100 houses have some owner who earns more 
than $44,741 and remain selected.  It is possible that some of 

the 69 selected houses also  have an owner who earns less 
than $44,731.  From the light gray bars in the Appraisal 
histogram it can be seen that the deselected 31 houses had 
appraisals near the low end of the range.  By sweeping the 
owner salary slider to the right, the user would see that the 
remaining selected houses' appraisals would lie increasingly 
at the high end of the range.  In this way DQ histograms can 
show correlations among multiple attributes through 
interaction, complementing that way the chart shows the 
correlation between two attributes statically. 

The fact that the boxes count base level objects like 
people and houses grounds the displayed information in 
the terms the user is familiar with.  The composite objects 
shown in the chart allow additional expressiveness by 
combining properties of multiple base level objects.  They 
also allow coordination across multiple visualizations that 
involve different combinations of base level types.  For 
instance if Figure 3 also contained a map showing people 
and their work locations, brushing a person/house plot 
point in the chart would also highlight the same person's 
work location on the map.  This behavior is built into the 
Visage architecture.  Applications built on top of Visage use 
a shared database and construct composite objects as 
needed.  Cross-application brushing and drag-and-drop is 
falls out automatically any time their composite objects 
share base level components. 

 
Figure 3  DQ sliders on people are filtering the houses they own.  
Points in the chart represent composite objects combining the 
attributes of people and houses, as indicated by the linked ovals.  
Only composites whose person component's salary is greater 
than $44,741 are visible.  Only the 69 houses included in at least 
one visible composite object are represented by the dark bars on 
the house appraisal histogram. 



2. Multiple Object Counting Problem  

2.1. Overview 
Internally DQ must use the composite objects to build its 
index structures in order to constrain histograms based on 
sliders from multiple query nodes.  Then the counts must be 
translated back to the base types on a node-by-node basis 
by removing duplicates.  For instance if a house is owned 
by two people with salaries of $10,000 and $20,000, it must 
contribute a count of 1 to house histograms if the person-
salary slider range includes either (or both) of these 
quantities.  If histogram B displays an attribute of houses, 
such as appraisal, and if the person-salary slider A is at full 
width, the TBS subtraction algorithm will incorrectly 
compute Bip - Bi1 = 2.  Each index structure count is 
supposed to measure the cardinality of the set of houses 
that fall into a range of appraisal and person-salary.  In the 
single object case, every object falls into exactly one Bij so 
the sets are disjoint, and cardinalities of subsets can be 
added or subtracted.  In the multiple object case, the 
subsets must be combined using set-union before the 
cardinality of the result set is computed. 

Although we described the problem as it occurs in the 
TBS index structures, it applies equally at all the other times.  
Even at mouse-move time each composite object must be 
added to the appropriate histogram bucket, but simply 
incrementing a counter fails because the base object may 
have already been encountered in a previous composite 
object.   

First we describe how to avoid the overcounting problem 
by using a bit vector representation of the sets rather than 
counts of their cardinalities.  This approach is infeasible 
because it requires O(r) storage at each Bij  rather than the 
O(log r) required for simple counts.  We then show how to 
use a randomized set cardinality representation that uses 
only O(log r) storage and with high probability gives an 
accurate estimate. 

As an aside, Query Previews encountered a similar 
overcounting problem due to overlapping attribute values 
in their geographical domain [8].  For instance data from 
“North Africa” and “Libya” overlaps at every grid point in 
Libya.  They describe a deterministic solution that relies on 
the fact that the areas of overlap are contiguous, so it does 
not apply here. 

Ioannidis [9] suggests an approach that gives exact 
counts in the case of multi-object queries, but it requires 
traversing pointers among the related objects at mouse-
move time, and takes O(ar)  time. Our first implementation 
was along these lines, and was much slower than using kd-
trees. 

2.2. Bit Vector Set Representation 
In a bit vector representation of a set, each possible element 
is assigned a bit position.  The bit is set if and only if the set 
contains the element.  Set union can be accomplished by 

bitwise OR of the bit vector representations.  The 
cardinality is found by counting the number of bits set, 
which is called the weight of the bit vector.  In the TBS 
index structure, each Bij becomes a bit vector with bits set 
for all objects whose B attribute falls into bucket i, whose A 
attribute falls into one of buckets 1-j, and whose B, C, etc 
attributes fall into the selected ranges. When the mouse 
moves, the count is updated to Bi = weight(BITORj = left to right 

Bij ).  Notice that the complexity is now O(ap2), due to the 
cumulative BITOR over the index structure instead of a 
subtraction.  The bitwise difference between Bi right and Bi left 
may undercount because a base object might show up to 
the left of the slider and within the slider range.  Bitwise 
difference would remove it due to the first occurrence, even 
though it should be counted due to the second. 

In the kd-tree for attribute B, each node maintains a bit 
vector with bits set for the B component of all composite 
objects that it owns. At mouse-move time Bi is computed by 
accumulating the bitwise OR of the bit vectors as the tree is 
traversed in the same manner as for the single object case. 
Since the complexity of traversing the kd-tree remains the 
same in the multiple object case, while the TBS algorithm 
slows down by a factor of p, it may no longer be a win even 
though it takes advantage of the factor of 10 increase in 
time available at mouse-down for scanning the active 
subset.  For this reason we compute the histograms from 
the kd-tree directly. 

Frequently the relationship between query nodes will be 
functional.  For instance in a query about people and their 
state of residence, every person will have a unique state.  
Thus there will be a 1 to 1 relationship between people and 
the composite objects.  In cases like these we can save a 
constant factor of space and time by using the numerical 
cardinalities in computing histograms for the people query 
node. Bit vectors must still be used to compute histograms 
for the states. 

2.3. Randomized Bit Vector 
Representation 

The bit vector representation described above is 
information preserving — it can be translated back to an 
explicit list of set elements because each potential element is 
assigned a unique bit position.  The size of the bit vectors 
can be reduced by mapping multiple potential elements onto 
the same bit position.  Information is lost, but if all we care 
about is cardinality, we can still estimate how many 
elements contributed to a given bit vector.  The more bits 
that are set, the more elements there probably were.  Using 
only O(log r) bits in the bit vectors, there will clearly be 
many collisions.  If the assignment of elements to bits is 
equi-probable, the bit vector will quickly saturate and 
estimates for large cardinalities will be terrible.  Flajolet and 
Martin [10] show that by assigning elements to bits with 
exponentially decreasing probability, the bit vector avoids 
saturation. Estimates with errors that are within a given 



percentage of the actual are possible.  By averaging the 
estimates from multiple random bit vector assignments, this 
percentage error can be brought arbitrarily low.  With V = 64 
bit vectors, the error is less than 5% with high probability, 
independent of r [10]. 

Each bit vector should be of length l = ceiling(log r).  To 
assign each object a bit, first choose a uniformly distributed 
random number, x, between 0 and 2l - 1.  Then compute the 
bit position of the first 1 in the binary representation of x.  
This gives a random number exponentially distributed from 
1 to l, and is the bit position assigned to the object.  Then 
randomly choose one of the V bit vectors in which to set 
the bit [10].  The array of V bit vectors for a kd-tree node or 
a TBS Bij is accumulated by setting the bits for all the 
objects that belong to it in each component bit vector.   

After each mouse move, when the bitwise ORed bit 
vector is accumulated for each histogram bucket, estimate 
the cardinality as follows:  for each of the V bit vectors, find 
the bit position of the first 0 bit.  Let R be the average of 
these bit positions over the V  bit vectors.  Then the 
estimate is 1.54703 · V · 2R .  The constant corrects for the 
bias toward undercounting inherent in the algorithm [10]. 

We can reduce the space further by windowing [10].  
The low-order bits of the bit vectors only contribute small 
amounts to the estimates, and can be dispensed with. Errors 
that contribute less than a pixel to the height of the bars are 
not even detectable.  If the histogram height is h pixels, we 
can get away with storing O(log h) bits per vector rather 
than O(log r). 

3. Experimental Evaluation  

3.1. Estimation Accuracy 
Figure 4 shows the visual impact of the estimation algorithm 
compared with the exact counts.  There is no noticeable 
difference.  Figure 5 shows the distribution of errors.  Most 
bars heights are within 5% of the correct value, which 
corresponds to about 1.5 pixels. We subjectively conclude 
that 64 bit vectors offers a good compromise between 
efficiency and accuracy. 

3.2. kd-tree Speed 
We used the VQE interface to display a varying number of 
attributes, histogram widths, and composite objects.  We 
used synthetic data in which each attribute is independent 

and uniformly distributed, which gives the worst case 
performance for kd-trees.  The number of attributes varied 
from 1 to 5, and the histogram widths were either 128 or 256 
pixels.  We posed single node queries, which don't require 
the bit-vector estimation algorithm and are thus directly 
comparable to earlier experiments.   We also posed 2 node 
queries.  For the 2 node queries, the composite objects were 
randomly chosen pairs from a set of 75,000 “houses” and 
100,000 “owners.”  In each case we measured the real time 
to build the kd-trees, and the real time to update all the 
histograms after a mouse move. Measurements were on a 
450MHz Pentium II computer with 384Mb of RAM.  The 
worst case for computing histograms from kd-trees is when 
each slider slightly restricts its range, so that there are few 
cutoffs due to either disjoint node hyperrectangles or 
totally containing node hyperrectangles.  So we first set 
each slider to select 90% of its range.  Then one of the 
sliders was stepped in 10% increments from 90% coverage 
down to 10% coverage.  90 such steps were made and the 
average elapsed time was computed. 

Figure 6 (top left) shows the tree build times for the 
single node queries with p=128.  The times for p=256 are 
nearly indistinguishable, because the number of nodes in 
the tree doesn't depend on p (except when a is very small, 1 
or 2 in this case).  We expect O(ar log r) time, but the data 
looks very close to linear in r and reasonably close to linear 
in a.  The absolute times are within our 10 second goal up 
to, e.g.,  3 sliders and 200,000 objects, but rise to several 
times worse for more sliders and objects. 

Figure 6 (bottom left) shows the query times for the same 
parameters.  For 1 and 2 attributes, the tree size is limited by 
pa rather than the number of objects, so the query time is 
constant.  For 3 attributes, the time grows slowly and is fast 
enough for interactive feedback with up to a million objects.  
With 4 attributes the time climbs from tolerable at 50,000 and 
100,000 objects to intolerable above 200,000.  With higher 
CPU performance and more memory, we would eventually 
reach the flatter part of the curve and beat the algorithms 
that are linear in both a and r.  But for now, the TBS 
algorithm fares better for 4 or more attributes.   

In comparing our kd-tree algorithm to TBS, we are 
comparing  the step that causes the bottleneck in each case.  
For us it is mouse-move, while for TBS it is mouse-down.  

 
Figure 4  The left histograms shows the exact counts for a 
normally distributed sample of 7500 objects.  The right histogram 
shows estimated counts for the same objects.  Overall, it 
estimates 7775 objects.  The shape of the distribution is almost 
identical. 

 
Figure 5  For each of the 128 histogram buckets used to 
compute the bars in Figure 4 (right), its error percentage was 
calculated.  This figure shows that over 40 of the bars had a 
0% error, and almost all the errors were within +/-5%. 



Since 10x more time is available at mouse-down, kd-trees 
have to be 10x faster in order to be preferred. 

Increasing the histogram width to 256 pixels moved each 
curve up by a constant amount (not shown).  This is due to 
the large overhead incurred in passing data among Visage, 
its Java API, and the C code that the kd-trees are 
implemented in, as well as rendering time in Visage.  This 
overhead is about 20ms per attribute with 128 bucket 
histograms, and 30ms per attribute with 256 bucket 
histograms, for both 1 node and 2 node queries.  So by the 
time we have 5 attributes, the goal update time is already 
used up in overhead before we even look at the data. On 
top of this constant difference between the 128 bucket and 
256 bucket cases, the increase we expect from the 
complexity formula O(ap1/(1-a)r1-1/(1-a)) is not noticeable. 

Figure 6 (top right) shows the tree build times for 2 node 
queries.  As expected, they require a constant factor (about 
2x) more time than 1 node queries due to the larger memory 
requirements.  The bit vectors add 98 bytes to each tree 
node, which translates into 6x more memory for 5 attributes. 
Due to the increased space requirements, we were not able 
to collect data for the full range of parameter values shown 
for the 1 node case. 

Figure 6 (bottom right) shows the query times for 2 node 
queries.  If we subtract the constant overhead, it appears 
that there is a constant factor penalty (about 1.7x) over the 
1 node case, as expected. This is due to the increased 
complexity of 64 ORs rather than 1 PLUS. However kd-trees 

are relatively better here, because the alternative is the 
Ioannidis approach.  kd-trees are surely a win with up to 4 
attributes.  Even with 5 and 6 attributes they are 
considerably better than our implementation of the 
Ioannidis approach.  

The complexity analysis and the experiments reported 
above are for the worst case data distributions.  We have 
anecdotal evidence that the average case is considerably 
better than this.  It suggests that kd-tree algorithms are 
better than the linear algorithms for a larger number of 
sliders.  We used data from the 1990 Census of Population 
and Housing for the New England and Mountain states 
[11].  This data contains 22 attributes about 481K census 
blocks.  We selected the 5 attributes listed in Table 1 for 
examination in VQE.  These were picked because they 
seemed intuitively interesting and independent of one 
another.  

The resulting kd-tree contained only 161K leaf nodes, a 
third of the number of objects, because the data is far from 
uniformly distributed and independent.  Many of the 
histograms had only 1 or 2 bars whose height was 
noticeably above zero.  For instance, a few census blocks 
had a land area in the hundreds of thousands, while 90% of 
the areas were less than 100.  Thus well over 90% of the 
distribution was shown in a single histogram bar.  Moving 
the sliders was extremely fast, but also not very interesting.  
We set the ranges of each slider to minimally enclose the 
bulk of the distribution, as indicated in Table 1 (middle 

 
Figure 6  Times to build the kd-trees (top row) as a function of the number of objects, for 1 to 5 attributes.  The bottom row shows the 
corresponding times for histogram construction.  The left column is for single node queries, while the right shows two node queries.  The 
single node queries are faster, because they don't require the bit-vector estimation algorithm.  The right column does not show data for 
as large a number of objects because two node queries require much more memory, and the computer began to thrash. 



column).  We made this a new active subset, now 
containing 238K objects with interesting distributions 
across all 5 attributes.  The resulting kd-tree has 228K leaf 
nodes, nearly as many as there are objects. 

Figure 7 shows the time required to move the latitude 
slider over 80% of its range, while the other sliders 
restricted their range as shown in Table 1 (right column).  
The growth is approximately linear, and much better than 
that found for independent uniformly distributed data.  In 
fact, the curve for census data is almost indistinguishable 
from that with random data for 1000 objects.  That is, the 
constant overhead per slider due to message passing and 
rendering overwhelms any time actually spent in the kd-
tree!  If this behavior is typical of other real datasets, it 
makes kd-trees at least competitive with linear approaches 
for single object queries.  It should therefore dominate for 
multi-object queries. 

4. Future Work 

4.1. Attributes of Dynamic Aggregates 
It is often useful as well to see attributes of dynamic 
aggregates as their definition changes.  For instance we 
might want to see the average price of houses owned by 
people in different age brackets, and observe how these 
averages change as the boundaries between age brackets is 
varied.  If we were interested in the count of houses owned 
by people in different age brackets this could be done using 
the kd-tree algorithm.  Every time we move the mouse to 
adjust the boundaries we compute new histograms. In the 
single object case we can store summary attributes at each 
tree node in order to compute “histograms” of sums, 
averages, minimums, and maximums for any attribute.  In the 
multiple object case we can still compute minimums and 
maximums this way, since including duplicate objects does 
not change the result.  For sums and averages we would 
use `bit vectors’ where the stochastically encoded value for 
an object is the attribute value rather than the constant 1 
used for counting.   

4.2. Efficient Query Previews  
For these DQ algorithms to execute within the time limits 
given in Section 1.1, the data must reside in main memory.  
In order to explore datasets of terabytes that reside on 
network servers, subsets must be downloaded to the local 
machine.  Query Previews [12] is an interface similar to DQ 
histograms to choose range restrictions on a number of 

attributes that result in a subset of appropriate size. At data 
warehouse update time an array of dimensionality a is built 
with an element for every possible combination of attribute 
values. This is closely related to the Datacube structure 
used for materializing database queries [13]. Here, the 
attributes must be quantized to a small number (e.g. Q = 20) 
levels and then a large array containing counts for all Qa 
combinations of attribute values is stored instead of the 
data. This has the problem of enormous memory for large Q 
or a, and in some cases, counts for individual bars in the 
histogram might need to be built from millions of table 
entries. 

Instead we can take advantage of AD-trees [14], a new 
data structure that allow constant-time counting 
(independent of number of records) for datasets with 
nominal values. They have the same functionality as 
datacubes and Query Previews except that they avoid 
storing redundant information and use the algebra of 
contingency tables to save memory.  In some cases (e.g. a 
birth-outcomes data warehouse) they reduced the amount 
of memory needed to store a 100-dimensional datacube from 
1038 down to 106 bytes. Recent work on Lazy AD-Trees [15] 
preliminarily provides much bigger savings, and may allow 
constant time querying for up to about 10 attributes each 
with as many as 30 values.  Unfortunately querying 
involves a subtraction step, so in their present form AD-
trees can not be used with bit vectors for multi-object 
previews. 

5. Conclusion 
We have presented an overview of precomputed index 
structures for efficient dynamic query histograms, and 
described three new theoretical contributions.  We verified 
these ideas experimentally, and compared the performance 
to previous systems. 

First, we showed how to modify existing algorithms to 
work with multi-object queries. The modification uses an 
algorithm due to Flajolet and Martin for counting the 
number of unique values in a database. Exponentially 
distributed hashed bit vectors are used to approximately 
represent sets of unique objects.  

Attribute Active Subset  Slider Range  
Latitude all values varies 
Land Area < 100 <90 
# Housing Units <25 <20 
Average # Rooms  all values <9 
% Owner Occupied <45 <12 
Table 1  Census data attributes and range restrictions. 

 
Figure 7  Census data scales much better than random data as the 
number of attributes increases. 



Second, we presented a theoretical complexity analysis 
of kd-trees for computing histograms, concluding that the 
asymptotic behavior is no better than sequential scanning. 

Third, we proposed building separate kd-trees for each 
histogram bucket, and showed that the asymptotic behavior 
scales better than sequential scanning as the number of 
objects increases, but worse as the number of attributes 
increases. 

Using single object queries, experiments show that 
having a kd-tree for each histogram bucket indeed 
generates histograms much faster than using a single tree.  
On random data, experiments also verified the relationship 
between kd-trees and sequential scanning. With a few 
hundred thousand objects, they are faster than sequential 
scanning for up to three attributes.  The improvement in 
theoretical complexity will translate into an advantage for 
more attributes as the computing capacity to explore larger 
datasets becomes available.  There is evidence that kd-trees 
are faster on real data at least up to 5 attributes. 

For multi-object queries, the kd-tree algorithm incurs a 
constant factor penalty in both space and time to store and 
process the array of bit vectors, rather than single integers.  
The overhead of the tree structure itself partially masks this 
effect. We observed only a 2x slowdown in tree 
construction and a 1.7x slowdown in histogram calculation.  
With 5 attributes, the tree took about 6x as much space as 
in the single object case.  These penalties seem quite 
acceptable. 

The subtraction step of the TBS algorithm does not work 
with the bit-vector representation as used in multi-object 
queries, and working around this problem probably makes 
the algorithm slower than direct computation of histograms 
at mouse-move time.  

The pointer chasing approach for multi-object queries 
produces exact counts rather than estimates, and does not 
incur the space penalty of bit vectors.  Its histogram 
building time scales linearly in both the number of attributes 
and the number of composite objects.  Based on our 
previous experience with this approach, we believe the 
algorithm presented in this paper performs much better for 
the range of parameters examined here. 
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