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ABSTRACT
We present three novel tools for creating data graphics:
(1) SageBrush, for assembling graphics from primitive
objects like bars, lines and axes, (2) SageBook, for
browsing previously created graphics relevant to current
needs, and (3) SAGE, a knowledge-based presentation
system that automatically designs graphics and also
interprets a user's specifications conveyed with the other
tools. The combination of these tools supports two
complementary processes in a single environment: design
as a constructive process of selecting and arranging
graphical elements, and design as a process of browsing
and customizing previous cases. SAGE enhances user-
directed design by completing partial specifications, by
retrieving previously created graphics based on their
appearance and data content, by creating the novel displays
that users specify, and by designing alternatives when users
request them. Our approach was to propose interfaces
employing styles of interaction that appear to support
graphic design. Knowledge-based techniques were then
applied to enable the interfaces and enhance their usability.

KEYWORDS:  Graphic Design, Data Visualization,
Automatic Presentation Systems, Intelligent Interfaces,
Design Environments, Interactive Techniques

INTRODUCTION
Graphic displays of information have been valuable for
supporting data exploration, analysis, and presentation.
Still, current graphics packages remain very limited
because: (1) they do not provide integrative displays for
viewing the relations among several data attributes or data
sets, (2) they have time-consuming and complex interfaces,
and (3) they provide little guidance for the majority of
users who are not experienced graphic designers.

Consider these problems in the context of two graphics in
Roth Color Plate 1. In 1a, a sequence of indented text,
charts, and a table are aligned to integrate six attributes of
activities (organization, start, end, status, cost, resource).
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All information about a single activity can be obtained by
glancing horizontally across the graphic. Most packages do
enable users to create charts and tables like these, but only
as isolated displays. Even painstaking cutting, pasting, and
resizing (usually the only means provided) are insufficient
to layout and sort the bars and text in a coordinated way.

Similarly, current packages provide no way to create a
single display with different graphical objects. In 1b,
properties of lines, text strings and diamond-shaped marks
vary to integrate ten data attributes. Also, graphical objects
are clustered to express facts (i.e. each diamond is
accompanied by two text labels to convey the geographic
location, city, and date of battles). Together, these graphics
illustrate the large number of possible combinations of
object types, their graphical properties, the encoding
spaces in which they occur (e.g. within a chart, map, table,
or network), and the different ways they can be clustered
and aligned. Clearly, current menu-style interfaces in
spreadsheet packages would not support the creation of so
many alternatives, nor could they help users assign data
attributes to these graphics easily. Imagine the difficulty of
conveying the relationship between data in spreadsheet
columns and all the graphical objects and properties in 1b.

Furthermore, imagine the considerable design expertise
required of users to produce these displays, including an
awareness of the appropriateness of graphic choices for
each data type. Even when users can judge the
effectiveness of a particular display of their data, they often
lack exposure to the many types and combinations of
graphics that are possible. Systems that provide the ability
to create new integrative designs will need to provide
design guidance as well.

One approach to these problems is to build systems that are
knowledgeable of graphic design, so they can generate a
variety of effective displays based on descriptions of data
and viewing goals [1,3,4,9,10]. This research has provided
a vocabulary for describing the elements of graphics,
knowledge about the appropriateness of their use for
different data and tasks, and design operations for
combining elements to form integrative displays.

Armed with this knowledge, automatic design systems
should reduce the need for interaction and expertise, while



providing great flexibility in customizing displays.
However, previous automatic design research has not been
concerned with supporting interaction with users and has
focused on issues of identifying and encoding knowledge
of data, tasks, and design. No paradigms have been
developed for a collaborative process between human and
automated designers.

This paper describes a novel approach to interactive
graphic design, in which automatic mechanisms are used to
support users, not  replace them. The following sections
describe an overview of our approach, two major
components of the system that correspond to two
complementary styles of design, and some sample design
interactions which illustrate these capabilities.

OVERVIEW OF CURRENT APPROACH
Our approach to supporting design has been to integrate an
evolving automatic presentation system called SAGE
[9,10] with two new interactive design tools called
SageBrush and SageBook. Both tools enable users to
manipulate familiar objects in order to perform natural
design operations, shielding users from the more complex
representations and operations that SAGE uses to create
graphics.

SageBrush (also called Brush) is representative of design
tool interfaces in which users specify graphics by
constructing sketches from a palette of primitives and/or
partial designs. Our goal is to provide a flexible,
generative, direct manipulation design interface, in which
users can create a large number of possible combinations
of graphical elements, customize their spatial and structural
relationships, and map them to the data they wish to
visualize.

SageBook (also called Book) is an interface for browsing
and retrieving previously created pictures (i.e. complete,
rendered designs) and utilizing them to visualize new data.
Book supports an approach to design in which people
remember or examine previous successful visualizations
and use them as a starting point for designing displays of
new data, extending and customizing them as needed. Our
experiences in graphic design, as well as related research
on engineering and software design [2,6], suggest that
search and reuse of prior cases with customization is a
common process. Therefore, our goal is to provide methods
for searching through previously created pictures based on
their graphical properties and/or the properties of the data
they express. A picture found in this way can optionally be
modified in Brush prior to sending it to SAGE, which
creates a graphic for the new data.

SAGE is an automatic presentation system containing
many features of related systems like APT, BOZ, and
ANDD [1,3,4]. Inputs are a characterization of data to be
visualized and a user's data viewing goals. Design
operations include selecting techniques based on
expressiveness and effectiveness criteria, and composing
and laying out graphics appropriate to data and goals. A
detailed discussion of automatic design capabilities,

including the operations that produced Roth Color Plate 1a,
can be found elsewhere [7,9].

The current version of SAGE goes beyond previous
systems in several ways. SAGE can create graphics when
users completely specify their designs as well as when they
provide no specifications at all. Most importantly, it can
accept partial specifications at any level of completeness
between these two extremes and finish the design
reasonably. User specifications serve as design directives,
which constrain the path of a search algorithm that selects
and composes graphics to create a design.

The ability to accept partial specifications from Brush is
due to a rich object representation of the components of
graphic displays, including their syntax (i.e. their spatial
and structural  relationships) and semantics (i.e. how they
indicate the correspondence between data and graphics).
The representation allows SAGE to produce combinations
of a wide variety of 2D graphics (e.g. charts, tables, map-
like coordinate systems, text-outlines, networks). It also
enables SAGE to support Book's search for previous
pictures with graphical elements specified by users.

The object representation is highly extensible, allowing
new graphical objects (e.g. lines, polygons, custom icons)
and encoder mechanisms (e.g. charts, color keys, maps) to
be added incrementally. For example, when a line object is
added to the library, each end-point is defined as having
horizontal and vertical positions, enabling the line to be
displayed against the axes of a chart. If a map-style is later
defined in the library as an encoder that displays horizontal
and vertical positions, then SAGE can automatically draw
lines on maps (as in Roth Color Plate 1b).

SAGE also contains a richer representation of the
characteristics of data (e.g. distinguishing scales of
measurement, temperature, dates, spatial coordinates, etc).
Data transformation operations enable the design of
graphics without depending on the surface form of input
data (e.g. in relational database terms, SAGE can display
N-ary relations and is not dependent on whether data is
expressed as multiple binary relations or as a single N-ary
relation).

ARCHITECTURE
Figure 1 illustrates the conceptual relationships among
SageBrush, SageBook, SAGE, and a Data Selector - a tool
for indicating the mapping between data and graphics. The
process of retrieving data needs to be integrated with
graphic creation but is not the focus of this paper. We are
exploring several interactive methods for retrieving and
transferring data to the selector, where data appears as a
table whose headers can be mapped to graphics (Figure 2).

Users interact with Brush to create graphic design sketches,
which are schematic views of designs. These are translated
into design directives, which are specifications expressed
in SAGE's graphic representation language. Directives
include:



• grapheme and property choices (e.g. color and size
of circles, lines, text, and other graphical objects),

• encoding mechanisms that provide frames of
reference against which properties of graphemes are
interpreted (e.g. 2-axis chart, table, map, network),

• layout constraints (e.g. alignment of multiple charts
horizontally; ordering  of labels and graphemes),

• grouping constraints indicating that clusters of
graphemes are being used to express a single fact
(e.g. a bar annotated with a text string; a cluster of
items around a city on a map),

• mappings between data and these graphic elements.

Figure 1:  Architecture

Design directives from Brush serve two purposes: they
guide SAGE's automatic processes and provide criteria for
Book to use in searching its library of previously designed
pictures. Brush can also translate graphics produced by
SAGE back into sketches so that users can modify them.

Users interact with Book to view and save pictures created
by SAGE. The saved information includes a bit map scaled
to a browsable size, a sequence of design operations that
SAGE can use to reconstruct the picture efficiently (i.e.
without redesigning), the picture's data and data type
characteristics, and a complete representation of the
rendered graphic. Book searches its picture library based
on data users specify with the Selector and/or design
directives derived from sketches created in Brush's work
area (Figure 2). Users request the creation of a graphic
based on a previously found one by transferring it to Brush
(where they modify it as a sketch) or directly to SAGE.
The next sections describe these components in detail.

SAGEBRUSH
Brush is representative of tools with which users sketch or
assemble graphical elements to create designs and map
them to data. Brush provides users with an intuitive and
efficient language for sketching their designs, and
translates these sketches into a form that can be interpreted
by SAGE. There are other possible styles of graphic design
interface that could be coordinated with SAGE's internal
design mechanisms. One alternative is the demonstrational
approach proposed for Gold [5], in which users draw
examples of displays. Our claim is that any interactive
design interface that attempts to provide complete coverage

of graphics will require a knowledgeable system behind it
to be successful.

An example:  Figures 2, 3, and Roth Color Plate 1b
illustrate a sequence for creating a new version of the
famous graphic by Minard showing Napoleon's 1812
Campaign [11]. One data set describes the march segments
(start and end latitudes/longitudes of each segment, the
number of troops remaining, and the temperature). The
other data set contains the city, date, and location of each
major battle. These will be visualized by composing
multiple graphemes and their properties on a map.

Figure 2:  Starting a design sketch in SageBrush.

Anchoring new designs with partial prototypes.  The
creation of a new design begins with a user's selection of a
partial prototype. As illustrated in Figure 2, Brush's
interface consists of a design work area (center) into which
users drag prototypes (top), graphemes (left), and data
names (bottom). Prototypes are partial designs, each with a
spatial organization, graphemes, and/or encoders that
commonly occur together. Encoders are frames of
reference for interpreting properties of graphemes. For
example, axes enable us to interpret (i.e. derive a data
value from) the position of a bar in a chart.

The choice of prototypes to include in the top menu can be
customized to applications and could include previously
designed graphics. Although primarily a constructive
interface, Brush still allows design to be viewed as a



process of refining prior, effective graphics. The first
prototype in the top-left of Figure 2 is a general one for
constructing all charts. It is actually a composite of
horizontal and vertical axes. Although users could
construct charts by assembling separate axes, doing so
requires more steps and appears less intuitive than selecting
a chart prototype. A similar rationale led to a network
prototype, consisting of both graphemes (i.e. lines) and an
encoder against which the graphemes are interpreted (i.e.
the nodes).  This eliminates the need for users to construct
networks from primitives each time. In the example, a map
prototype (more precisely, a 2D spatial coordinate display)
was dragged to the design work area.

Customizing by adding primitives to prototypes.
Prototypes are extended by adding graphemes. While the
chart and map prototypes have no graphemes, dragging
them into the design work area creates an encoding space
which supports new design choices. The encoding space of
a chart or map is defined by the interior of the two axes or
coordinate-frame, respectively. Dragging line and mark
graphemes (to represent march segments and battles) from
the left window into the map's encoding space results in
directives to SAGE to include these grapheme types in a
design, with their positional properties interpreted relative
to the map's coordinate system.

Figure 3:  Property selection and data mapping in
SageBrush's work area.

Customizing the properties of graphemes.  Graphemes
have other properties for encoding data besides position.
Properties are chosen by selecting property icons,
displayed by double-clicking a grapheme in the design
work area. Double-clicking on the line in Figure 3 displays
a menu of line properties (width and color) and arrows
representing the positional properties of end-points.
Selecting a property directs SAGE to use it to encode data
in a design but does not indicate the data to which it
corresponds. Double-clicking on a property icon allows
users to convey specific directives (e.g. make all marks
diamond-shaped or all lines blue; reject the use of color).

Completing the graphic requires a way to create grapheme
clusters. As described above, dragging graphemes into an
encoding space results in directives to use their positional
properties in a design. When two or more graphemes are
dropped close together in the same space, the position of
one is interpreted relative to the axes or coordinate system,

while the positions of others are interpreted to convey
association by adjacency. In Figure 3, two text strings have
been placed next to the mark (which has been customized
to be diamond-shaped) to convey association. Note that
Brush only determined that the two strings and diamond
are associated. SAGE must infer which of the three is used
to convey position in the coordinate system (using
knowledge of data characteristics and graphic
expressiveness criteria [8,9]). Of course, a user can
explicitly double-click on the diamond and select its
property icons for position (a pair of arrows).

Communicating the mapping of data to graphics. Dropping
a grapheme in a chart and selecting its color result in
directives to SAGE to generate a design where position and
color encode data. It does not specify which data (i.e.
relation domains) to assign to these properties. While
SAGE could attempt to infer this (just as it could also make
choices of graphemes and properties), users can explicitly
make these choices by dragging data labels from the Data
Selector (bottom Figure 2), and dropping them on property
icons. In Figure 3, Troop Size was mapped to line
thickness and Start Latitude and Start Longitude to the
position of one end of the line. Battle and Date have been
mapped to text labels adjacent to the diamond (dragging a
data name into the space simultaneously specifies that a
text grapheme be used and maps the data to it). The
completed design resulting from this interaction is shown
in Roth Color Plate 1b, which was generated by  SAGE.

Coordinating multiple design spaces. In addition to
defining encoding spaces, prototypes also define layout
spaces, which enable users to specify the relative positions
of prototypes with respect to each other. There are two
types of layout spaces, reflecting adjacency and embedding
relationships. Adjacency spaces enable horizontal and
vertical alignments among charts, tables, maps and other
prototypes. Two charts and a table in Figure 5 have been
sequenced by placement adjacent to each others' layout
spaces. Embedding spaces enable the placement of one
prototype within another (e.g. a network placed within a
map or chart;  a list placed within a network node).

Finally, it is important to emphasize that all of these design
choices are optional. Users only need to specify the data
they wish to visualize, but may further specify (to any level
of completion):

• prototypes only,
• prototypes and additional graphemes,
• graphemes and their properties,
• the mapping of data to graphemes, and
• the mapping of data to specific grapheme properties.

The Napoleon example illustrates that users needn't specify
all mappings. The system inferred End Latitude, End
Longitude, and Temperature (and could have made choices
for the other data, possibly differing from those of the
user). The strength of this approach is that it can (1) reduce
the amount of work needed to convey design choices and
map them to data, (2) enable the construction of
composites that could not be created by menu-based



approaches, (3) provide design expertise to supplement that
of users, and (4) provide design directives for SageBook to
use in searching its library of  previously constructed
pictures.

SAGEBOOK
The goal of Book is to provide users with the ability to
create new pictures analogous to existing ones they
consider useful. Our intent is to provide users with access
to a growing portfolio of graphic designs to provide ideas
for visualizing their data. Book capitalizes on the explicit
representation of designs and data characteristics by SAGE
to provide a vocabulary for expressing search criteria.

Book provides two mechanisms for browsing pictures. The
first is a file-folder metaphor analogous to that used in the
Macintosh system, in which pictures created by SAGE are
named and stored in locations defined by users. The second
mechanism provides browsing by two types of picture
content: graphical elements and data. Search criteria are
based on exact match or partial overlap with data in the
Data Selector and/or design elements in Brush.

Figure 4 illustrates the interface for browsing pictures
retrieved by a search based on data overlap. The data for
the search were facts about activities in a project
management database (the final picture is shown in Roth
Color Plate 1a). Pictures in the library that expressed
similar data were listed by the interface. As a user selects
each picture name, its bitmap is displayed. Multiple full
size pictures can be displayed and arranged by users for
comparison.

Figure 4:  Browsing graphics by their data content in
SageBook.

We have designed search criteria for several levels of
match overlap based on data. These involve retrieving
pictures which:

• show exactly the same data relations/attributes as in
the data selector (e.g. find pictures of Activity End),

• contain the selected data in addition to other data,
• show different data that have the same underlying

data characteristics.

For example, a data relation (to use relational database
terms) representing quarterly expenses for a company's
departments (Department, Business Quarter, Operating
Cost) may have the same properties as another relation for
stock market data (Stock, Calendar Date, Shares Traded).
Both relations contain three domains with identical data
characteristics: a nominal type, a temporal coordinate, and
a quantity. There is also exactly one quantity for each
nominal-time pair in both  relations (i.e. functional
dependency).  See [8] for a more complete treatment of
data characterization relevant to graphic design.

We have designed search criteria for several levels of
match overlap based on graphical elements as well. These
involve retrieving pictures that (1) show exactly the same
design elements as those in the Brush sketch and (2)
contain the Brush elements as a subset of a more complex
design.

Our current work is addressing the problem of defining
match criteria for combinations of data and graphical
properties. We are also exploring similarity criteria for
defining close matches with partial overlaps. For example,
we need criteria for determining whether a network where
the color of links encodes data is more similar to a chart
using the color of bars or to another network where the
widths of links encode data (i.e. what graphical elements
are salient to users). Our intuitions suggest the latter, but a
cognitive model based on user studies is needed to define
similarity, as well as to verify the appropriate graphical
primitives for the Book and Brush interfaces.

Our preliminary view is that searches based on different
criteria serve different purposes for users, including:

• discovering how basic techniques can be expanded
with additional graphical elements (e.g. how a
network can encode using additional text or marks
along its links or within its nodes),

• quickly retrieving a picture whose name has been
forgotten, but some of whose elements are known,

• minimizing the effort of sketching a new design by
retrieving a picture similar to the one desired and
then modifying it in Brush.

Figure 5:  Adding graphics in SageBrush to a picture
found using SageBook (see Figure 4).

The last case is illustrated in Figures 4 and 5. Book found
an indented chart with color-coded interval bars for data
matching only part of a large data selection (activity,
organization, start, end, current-status, labor-cost,
resource). The chart was converted to a sketch in Brush,



and the user added a bar chart and table aligned with the
original interval chart. The user also mapped Current-
Status to the interval grapheme, leaving it to automatic
mechanisms in SAGE to map it to color (because the
original picture used color). SAGE can automatically
assign Activity to the Y-axis, dates to the interval bar, and
Labor-Cost to the horizontal position of the bars in the
added chart, based on expressiveness rules for these
graphical properties. The resulting picture is shown in Roth
Color Plate 1a. SAGE integrated all design elements and
determined appropriate data mappings. Notice that
Resource is placed in the table, while Organization is
placed in the indentation of the Y-axis...an arbitrary choice
that a user can easily reverse. The operations that produced
Roth Color Plate 1a can be found in [9].

SUMMARY AND CONCLUSIONS
Our approach views the task of creating visualizations of
data as a combination of two interrelated processes:

• constructing designs from graphical elements, and
• finding and customizing relevant prior examples.

The extent to which each process occurs varies with user
and context. Consequently, we created two tools that play
flexible, mutually supportive roles to enable design.
SageBrush provides users with an interface for
constructing graphic designs and customizing graphics
found with SageBook. Brush also enables users to compose
graphical queries to be searched using Book.

Another central theme of our approach is the use of
automated design knowledge in SAGE to provide new
display capabilities, to enhance the usability of graphic
design interfaces, and to provide design expertise when
needed by users. These are realized in several ways.

First, SAGE enables users to create a wide variety of
integrative displays, which coordinate multiple spaces,
graphemes, and visual properties to show the relationships
among several data attributes or data sets. This is possible
because SAGE recognizes and parses the structure and
semantics of sketches that users construct.

Second, knowledge enables a system to automatically
design a graphic when requested by users. This can occur
when users do not know how to represent data (i.e. they
lack expertise in general or for a specific problem) or when
they want to compare alternative designs with the ones
they have created.

Third, SAGE reduces the work of designing a graphic by
completing it automatically when partially specified. This
often eliminates the need for users to assign data to
elements of the graphic, select graphical properties once
objects are specified, or perform other repetitive selections.

Fourth, SAGE makes it possible to search displays created
previously based on meaningful criteria: the data and
graphic elements they contain. Without this knowledge,
Book would be limited to browsing graphics based on file
attributes.

There are many research problems remaining, especially
for supporting users with limited graphics expertise. First,
the operation of any automatic presentation system
depends on the existence of data characterizations [8]. In
this research, data characterizations were already present in
the database or spreadsheet. We will be exploring ways to
infer them or obtain them interactively.

Second, although SAGE considers user information-
seeking goals or tasks [1,8,9], no attempt was made to
provide users with the ability to specify these. We are
considering creating a goal-selection interface so users can
convey their intentions as design directives.

Finally, there are numerous new graphic design problems
to address, including the design of interactive mechanisms
for manipulating data displays, displays of large data sets,
and graphical techniques such as animation and 3D. See [7]
for a more complete discussion of research problems in this
area.
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