
SDM: Selective Dynamic Manipulation of Visualizations

Mei C. Chuah, Steven F. Roth, Joe Mattis, John Kolojejchick
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA  15213, USA
Tel: +1-412-268-2145

E-mail: {mei+,roth}@cs.cmu.edu

ABSTRACT
In this paper we present a new set of interactive techniques
for 2D and 3D visualizations. This set of techniques is
called SDM (Selective Dynamic Manipulation). Selective,
indicating our goal for providing a high degree of user
control  in selecting an object set, in selecting interactive
techniques and the properties they affect, and in the degree
to which a user action affects the visualization. Dynamic,
indicating that the interactions all occur in real-time and
that interactive animation is used to provide better
contextual information to users in response to an action or
operation. Manipulation, indicating the types of
interactions we provide, where users can directly move
objects and transform their appearance to perform different
tasks.  While many other approaches only provide
interactive techniques in isolation, SDM supports a suite of
techniques which users can combine to solve a wide variety
of problems.

KEYWORDS: Interactive techniques, visualizations, direct
manipulation.

INTRODUCTION   
A well-designed visualization can be tremendously helpful
in analyzing data. However, current static visualizations are
limited in several important ways:
1. Users are not able to focus on different object sets in

detail while still keeping them in context with the
environment. This is especially important in large data
sets that have too much information to be displayed in
detail at once.

2. When the information space is dense, there will be a
lot of clutter and object occlusion. Occlusion is a
serious problem because data-points may be fully
occluded and thus appear invisible to the user. In this
way, occlusion may distort a user’s perception of the
data-space. In addition, clutter makes it difficult to
perceive patterns in subsets of objects.

3. A data set may contain elements that have vastly
different values. Thus, some objects may be dwarfed
when shown in the scale used for the entire data set. In
Figure 1, many of the objects (e.g., those in green)

To appear in
Proceedings UIST'95

Symposium on User Interface
Software and Technology ,

 ACM, November 1995.

are dwarfed by the tall cylinder towards the right. With
SDM we attempt to provide users with techniques that
temporarily  change the  scale  of  a  subset of objects,
while keeping them in context with the environment.
Figure 2 shows the same data set as Figure 1 except
that the green objects have their heights scaled
differently from the rest of the environment.  The
difference in height scales is shown by the ratio axes
on the left of the visualization. Note that some of the
bars that appeared to have the same height in Figure 1
actually have relatively large height differences when
put on another scale.

Figure 1: Data visualization of a relief effort data set. Green
bars are the currently selected objects.

Figure 2: Visualization showing the same data set as Figure
1, except the heights of the green bars are scaled
differently from the rest of the environment.



4. Many visualizations only allow users to view the
underlying data. No tools are provided to classify sets
of objects and save those classifications as new
information is discovered. For example, after a user has
identified several problematic/important data points,
the user might want to save them as a set and change
their color so that they are differentiated from the other
objects.

5. It is difficult to compare quantities represented by
graphical objects which are not spatially contiguous.
For example, in Figure 3 it is difficult to compare
which of the selected shelters (indicated by the green
bars) has the most supplies (indicated by their heights)
because they are not at the same distance from the user.

Figure 3: Selected objects that are at different distances
from the user

In this paper we present a paradigm, Selective Dynamic
Manipulation (SDM), which deals with all of the
difficulties mentioned above. While some of the individual
techniques that we discuss have been tried before, they have
only been tried in isolation. Instead of isolated solutions,
our approach is to provide a suite of interactive techniques
that can be flexibly combined to solve a wide spectrum of
problems. We believe that the unifying framework behind
the techniques will make the system easy to learn, and the
flexibility in using the methods will stimulate users to
come up with multiple novel ways to solve tasks.

Our approach is different from many other interactive
systems [4,9,15,18] because its selection and control
methods are strongly centered on objects rather than on
spaces. The goal of our approach is to provide a framework
for solving a basic set of tasks and problems that are
important when users are analyzing large, diverse data sets.

EXAMPLE DATA DOMAIN   
The data domain for our examples is from a supply
distribution network for a relief effort in a large-scale crisis.
In Figure 1, supply centers are represented by cylinders,
main routes between them by dark lines on the floor plane,
and shelters where supplies are needed by rectangular bars.
The heights of cylinders and bars indicate the quantities of

material available at supply centers and needed by shelters.
See [14] for color versions of figures.

Next, we outline the basic structure and approach of SDM
and discuss how SDM can be used to address the five
limitations mentioned previously.

SDM COMPONENTS
The structure of our SDM system is described based on the
three primary components of interactive techniques: method
of selection, interactive operations, and the feedback
mechanisms and constraints placed on the behavior and
appearance of objects.

1) Object-centered Selection
In object-centered selection the focus or selected set is made
up of objects. Selection of these objects is done through
their visualized representations or through data constraints.

Selection in SDM can be accomplished by clicking on
objects and/or using sliders to place data constraints. The
slider interface in SDM allows users to combine data
constraints both conjunctive and disjunctively. In the
future, we plan to generalize the selection facility so that
there can be multiple linked displays. Selecting objects in a
display will cause objects that have the same underlying
data, in the other displays, to be selected as well.

After object sets are created, they may be named and saved.
Users may save as many sets as they desire. Sets that are
created will appear in a scrollable menu. Selecting a set in
the menu causes it to be displayed. All the slider panels
that form the set will also be shown. In this way users may
switch between multiple self-defined sets easily. Note also
that the object sets need not be made up of homogeneous
types (e.g., a set may contain supply centers, shelters and
routes).

2) Dynamic and Flexible Operations
Users may directly manipulate object set parameters
through object handles. Direct manipulation refers to
operating directly on objects instead of through menus or
dialogues. The Document Lens [12] and Magic Lens [18]
are examples of direct manipulation techniques that allow
users to control their views of objects by operating on a
lens. In contrast to manipulating an external object (such as
a lens), SDM allows users to control an object set by
directly controlling any element within that set through
handles. Figure 4 shows the SDM handles used to
manipulate objects. Our use of handles was motivated by
related work on 3D widgets [7,17] and by 2D scaling
handles in draw programs.

Attaching a handle to an object in a selected set and pulling
or pushing its parts causes some or all objects in the
selected set to change. The handles (Figure 4) were designed
to look similar for different object types so that users need
not remember the functions of many visually distinct
handles. When handles are pulled or pushed, the objects
contract, expand or move continuously. Using animation in



this way helps users perceive the changes that have occurred
or are occurring to an object set more easily.

Figure 4: SDM handles

SDM operators can be applied flexibly. SDM allows users
to control object parameters singly or alternatively to
control multiple parameters simultaneously. The latter can
be achieved by linking the object controls or by linking the
parameters through formulas. This is in contrast to more
constrained interactions offered by fisheye lenses [4] or
stretching [15], which allow only a fixed technique for
distortion.

Through handles, users may select which object parameters
to change. For example, in Figure 4 part (a) controls the
radius of the cylindrical object, part (b) controls the height
of the object, and part (c) controls the width of the bar. The
arrow handles on top of each object in Figure 4 enable
users to shift the objects anywhere in the 3D space.
Parameters can also be combined so that they can be
manipulated through one handle.

3) Object Constraints and Feedback Techniques
SDM is an attempt at introducing a new physics of objects
that supports great malleability and flexible control. In this
new physics, an object may pass through other objects in
the scene or have its position or appearance altered. For
example, objects may be elevated (Figure 9) or translated
on the floor plane (Figure 7). Objects may also have their
widths (Figures 6,11, and 12) or heights (Figure 2)
changed.

We believe that flexibility is key to the success of
interactive techniques, but may lead users to lose context of
the environment as well as misinterpret the data. Thus we
have developed a small set of constraints and a suite of
feedback techniques that we believe will help reduce
confusion while still maintaining a high degree of
flexibility.

Context persistence is one of the most important
constraints in SDM. This is because many data analysis
tasks require users to focus on or manipulate a select set of
objects in the visualization, while still maintaining some
relationship between the focus objects and the rest of the
environment. For this reason we have constrained SDM
operations to always maintain various degrees of context
between the focus set and its environment. To this end we
have also introduced feedback mechanisms that help users
relate the focus set to other objects in the visualization
without any confusion.

Another constraint in SDM is set-wide operations. All
objects in the selected set are subject to the same forces
applied to any object in the set. This is useful because it
helps base SDM techniques on several real-world analogies.
SDM move-shift operations are analogous to putting all
objects in the selected set on a platform and then moving
the platform. SDM width and height scaling operations are
analogous to stretching a set of malleable objects from the
top or side with the same force. All these operations
maintain the relative position, width, and height of all
objects in the selected set.

A defining feature of SDM is that changes are made to the
objects  and  not to the view  on  the  objects, as is  done
in [18]. Because of this, it is important to clearly indicate
which objects have been altered, how they have been altered
and how they can be returned to their home positions. To
serve these purposes, SDM has a set of feedback
mechanisms to reduce user confusion and increase system
usability. These feedback mechanisms fulfill the following
functions:

Clearly Identifies the Selected Set, and thus the Objects
that will Change in Response to a User Action.  This is done
by painting the selected set differently from all other
objects in the scene. In addition, a white grid may be drawn
beneath all selected objects (as is shown in Figures 7 and 9)
so that the approximate positions and spread of its elements
can be easily identified.

Maintains Scene Context. When objects are displaced, users
need to get feedback on the original object positions in
order to maintain context with the rest of the environment.
One way that SDM achieves this is by having multiple
representations of an object. Each data object is represented
by two graphical representations: the 'body' and the 'shell'
graphical objects. Object shells are left behind in the home
position when the object bodies are drawn out and
displaced. Object shells always appear in the original object
width and height. Figures 7, 9, and 13 show some
examples of object sets which have been displaced and their
shells, left behind at the original positions, widths and
heights.

Maintains Temporal Continuity. Interactive animation is
used to provide users with temporal continuity so that they
can perceive, track and undo the effects of an operation on



the scene. Animation helps users perceive changes to the
scene without having to cognitively reassimilate
relationships between the pre-action and post-action
scenes [13].

This shift of cognitive load to the perceptual system allows
the user to concentrate more on the results of an action
rather than on the process of the action. It also provides
additional feedback to the user as to which objects have
changed and how they have changed relative to their
previous states. Techniques such as fisheye lenses [4] do
not have object continuity (interactive continuity).
Focusing on one point causes a sudden magnification of
that point and demagnification of other regions. Because of
the abrupt change in the visualization it is easy for users to
lose track of where they were before and how they got to
the current state. User tests in [8] showed that insufficient
temporal continuity caused poor user performance in some
tasks.

Maintains the Relationships Between the Selected Set and
the Environment. It is important to maintain the
relationship between the selected set and other objects in
the visualization so that elements within the selected set,
which may have been altered, can be correctly interpreted
with the rest of the environment. An example of such a
feedback technique is the ratio axes technique (left of Figure
1 and 2). The ratio axes display the scale of the
environment and the scale of the current selected set. By
comparing the lengths of the axes, users can tell what the
scale difference is between the selected set and its
environment.

Allows Objects to be Easily Returned to Their Home
Positions. Home mechanisms are available to return
objects back to their home positions, as well as to their
original width, height and color. In addition, we have
implemented “object bumpers”. It may be hard to manually
move objects back to their home positions because such an
action requires precise movement. With manual control, it
is easy to accidentally overshoot the home point. For this
reason, we provide object bumpers, where the initial object
move indicates the direction of freedom, and from then on
objects can only be moved back as far as their home
positions.

APPLYING SDM TO VISUALIZATION PROBLEMS
We have discussed five useful operations in the data
analysis process that are lacking in current static
visualizations. Next we outline how SDM techniques can
be used to fulfill those needs.

Focusing on a Select Set of Objects while
Keeping Scene Context .
While navigating through an information space, it is often
necessary for users to focus on certain parts of that space.
However, during and after focusing, it is important for
users to be able to tell where they are in the information
space.  

Figure 5: Painting focus objects

Figure 6: Expanding the selected set in place

Figure 7: Pulling focus objects to the front

In SDM, focus can be achieved with several strategies.
Objects may be painted so that they appear visually distinct
from other elements of the environment. Objects can also
be made more salient by increasing their widths. Figure 5
shows the original visualization and the selected object set
(shown in green). Figure 6 shows the visualization after
objects in the selected set have been expanded. Spatial
context is maintained in these cases because the objects are
not moved from their original positions. However, some
context may be lost because expanding the selected objects
may cause other objects in the scene to be occluded.



Alternatively, users may shift/move all focus objects to the
front of the scene (shown in Figure 7). Context is still
maintained because object shells (shown in white) are left
behind. In addition, a user can move the focus set back and
forth between its home position and its position at the
front of the scene to achieve better scene context.

Viewing and Analyzing Occluded Objects.
Occlusion is closely related to the task of focusing while
maintaining context. As was previously mentioned,
expanding the selected objects may introduce occlusion, but
this can be prevented by elevating the objects before
expanding them.

Figure 8: Initial view of occluded objects

Figure 9: Selected object set is elevated to solve occlusion
problem

Figure 8 shows a dense information space with the interest
objects (barely visible) shown in green. Many of the
interest objects are partially if not fully occluded. After
elevating the interest objects we can clearly see the pattern
that they form (Figure 9). Another way to deal with
occlusion is to make all objects, other than the interest set,
invisible. This method, however, sacrifices scene context.

Figure 10: Objects other than the selected set are scaled to
have zero height

Figure 11: Objects other than the selected set are scaled to
be very thin

The occlusion problem can also be solved by reducing to
zero, the heights of objects that are not of interest (Figure
10). In this way, the spatial position of the other objects
with respect to the interest objects is maintained. However,
their height patterns are lost. Alternatively, users may
make all objects, except the interest objects, very thin
(Figure 11). This allows us to view the interest set clearly
as well as use object heights to maintain information about
the amount of supplies a center has or that a shelter needs.
We are also exploring the use of transparency to deal with
object occlusion.

Viewing Different Sets of Elements Based on
Different Scales.
It is often the case, especially in large information spaces,
that the widths and heights of objects are quite diverse. In
these instances, the overall scale used may dwarf some
objects, and it would be very difficult to observe width and
height relationships among those dwarfed objects. This
problem is worsened by the aggregation operation, which
can create aggregate objects that show the total value of all
its members. These objects will have much greater values



associated with them compared to the other objects in the
environment.

For these reasons it is important to provide ways to view
different data sets at varying scales [6]. SDM allows users
to do this. Suppose a user wants to compare a set of
shelters (shown in Figure 1 in green) with low demand and
see whether the demand distribution of those shelters are in
any way related to the neighboring shelters, routes, and
supply centers. To perform this task, the user can scale up
the heights of the selected objects, so they can be compared
more easily (Figure 2). The ratio axes on the left indicate
that the selected objects are now eight times larger than the
scale of the environment.

Interactively Augmenting the Visualization with
New Classification Information.
It is often the case that a lot of new insights and
information is revealed during data analysis. However,
because this new information is not part of the underlying
data, most visualization systems will not be able to
visualize it until it is fully described in the database. This
means that the newly discovered property will have to be
fully characterized and values must be assigned for it to all
elements. This is very cumbersome because it is often the
case that users only have a partial characterization of the
property and may only care about showing it for a subset of
objects in the data set. It is therefore useful to be able to
interactively classify subsets of objects in a visualization as
new information is discovered about them.

Object classification is one of the main tasks in data
analysis [16]. To support this task, SDM allows users to
interactively change any property of an object or object set
in the visualization so that they share some common
properties that are not present in other objects in the
environment. With this technique users can  construct their
own grouping/classification structure by making different
subsets of objects distinguishable from each other and from
objects in the environment. Note that the object sets may
be changed and redefined at any time, so users are free to
change the definitions of the classification structure any
time throughout the data analysis process.

In Figure 12 the user has identified some important
shelters. The user has chosen to increase the widths of these
shelters as well as color them yellow, to differentiate them
from the other shelters. The new features that have been
added, width and color, only make sense to the user or
group of users that are familiar with this convention.
Nevertheless, this technique is useful because it offers a
quick way to add information into the visualization, very
much like the way we annotate printed text or paper maps.

Figure 12: Visualization augmented to show a new property,
danger areas.

Comparing the Patterns, Widths, and Heights o f
Ob jec ts .
In the data analysis process, users frequently compare the
various attributes of data objects. In a visualization, these
attribute values are represented by graphical objects; thus
this task reduces to comparing the different parameters of
graphical objects. However, comparisons of object widths
and heights are especially difficult to make in 3D
visualizations. This is because it is difficult to compare the
widths or heights of objects that are at different distances
from the user (e.g., the green bars in Figure 3). The same
problems are encountered in 2D visualizations when trying
to compare the lengths of interval bars.

Figure 13: Two sets of objects made for height comparisons

SDM allows users to easily perform comparisons among
objects of different depths by giving users the ability to
draw a line of reference in the scene plane. Users can then
move any set of objects to the reference line. By lining up
objects in this way, their heights can be easily compared.
Figure 3 shows the initial visualization and the selected
objects (in green). Figure 13 shows the visualization after



the selected objects have been pulled to the reference line.
To maintain the relationship between objects and their
shells, users may paint the objects which will cause their
shells to also be painted. Users may also slide the objects
back and forth between the reference line and their home
points.

In addition to making comparisons within sets, users may
also compare height trends among multiple sets. Figure 13
shows that the user has lined-up two different sets of
objects. From the two lined up sets it is clear that one set
(in green) has larger height variations than the other.

Another typical comparison operation is to find patterns
formed by different object sets and then look for property
differences among those patterns. In large data spaces, it is
difficult enough to notice patterns among objects, much
less  compare them. This problem can be solved in SDM
by separating out the subsets with the shift-move operator.
The spatial shift operation maintains relative positions
among elements within each subset; thus the patterns they
form are preserved. The subsets may be further manipulated
in their separate spaces to tease out any important
differences or similarities.

In this section we have presented some techniques that can
be used to aid users in exploring and analyzing large data
sets. However, this set of techniques is by no means
comprehensive. We envision that as users learn and get
more comfortable with the system, they will start to
combine the basic operations in new ways to fit their
preferences in solving the task at hand.

IMPLEMENTATION
The current SDM implementation was developed in GL and
C on a Silicon Graphics Indigo workstation. Figure 14
shows the general system architecture. The SDM
architecture can be divided into three main sections: the data
modeling section, the physicalization section and the
manipulation section. We discuss each of these sections in
greater detail below.

Data Modeling
The main component in the data modeling process is the
data set builder. The data set builder takes data objects and
groups them into data sets, based on the task being
performed. A data set denotes a group of objects that will
be visualized in a uniform manner, and as such can only
contain homogeneous data object types (e.g., a data set of
supply centers cannot also contain supply routes).
However, a single data object can occur in multiple data
sets. This allows, for example, a supply center to be
grouped into both the "Critically Important" data set and
the "Low on Supplies" data set.

Figure 14: SDM system architecture and information flows

Physical izat ion
The physicalization process is based on the metaphor of
creating "physical" objects in order to represent abstract data
objects. The main component that performs this process is
the instantiator, which has the responsibility of taking a
selected data set and visualizing it as one or more graphic
sets. Every object in a graphic set corresponds to a unique
object in the data set that it represents.

Each object in a graphic set utilizes the same visual
specifications.  The specifications define the  class of
graphic object (e.g., cylinder, bar, sphere, etc.) that the
graphic set will contain, along with the mapping between
select attributes of the data objects and the various physical
properties of the graphical objects.  For example, a data set
of supply centers might be visualized as a set of cylinders;
where the "materials-weight" attribute is mapped to the
height of the cylinder, and the "longitude" and "latitude"
attributes are mapped to the x and y location of the
cylinder.

Encoders perform the actual conversion of data-values (e.g.,
pounds of food) into graphical-values (e.g., height in
inches).  Some examples of encoders are x-axis encoders, y-
axis encoders, and color-key encoders.  Physical object
properties that do not encode a data attribute are assigned a
default value.



A single data set may be visualized as multiple independent
graphic sets, in single or multiple data-graphics. Objects
from the various graphic sets may encode different
attributes of the data set, or may encode identical attributes
of the data set multiple times. Allowing a data set to be
multiply represented is useful in the case where a single
graphical set is insufficient to effectively show all
important attributes of the data set. It is also useful in
those cases where we want to strengthen the effect of a data
attribute by encoding it twice.

Manipulation
Once data objects have been "physicalized" as graphic
objects, SDM gives users the ability to move and stretch
the graphic objects, analogous to the manner in which
users might manipulate physical models placed on a table.
However, the "physics" provided by SDM is not limited to
real-world manipulations;  users can also elevate, compress,
and perform other operations upon objects that wouldn't be
possible with actual physical models.  Thus, SDM exploits
common physical metaphors so that users may quickly get
comfortable with the system, and then extends these
metaphors to take full advantage of the capabilities that
real-time computer graphics provide.

There are two main components to the manipulation
process: the selection manager and interactors. The
selection manager  enables users to group graphical objects
into alternative focus sets. Users can group objects by
selecting them with the mouse or by manipulating sliders
and buttons, actions which the selection manager interprets
to construct a focus set.  Users can switch between focus
sets in order to quickly locate objects that are relevant to
the current task.  Users may also save any focus set that
might be relevant to a later task. This focus set will be
present the next time the system is invoked.

The other major component of the manipulation is the set
of interactors.  Each focus set is associated with an
interactor, which is responsible for changing the physical
appearance of graphical objects in that set.  Interactors are
controllable through the handles that can be attached to
objects in the visualization.  Pushing or pulling on a
handle causes the interactor to transform the values of select
properties of graphical objects.  Thus, encoders generate the
original appearance of the graphical objects, based on the
data that they represent, while interactors perform
transformations on these properties to manipulate the
objects as serves the user's purpose.

Values are only changed for those objects which have the
properties that are being controlled. Because SDM allows
for heterogeneous focus sets, it is possible that a set may
contain bars, cylinders and lines. Operating on the radius
property only affects the cylinders, since radius is not a
property of bars or lines.

An interactor may be classified based on its two properties:
cardinality and type. Cardinality  indicates the number of
properties that the interactor affects, and may be single or

multiple. Single property interactors include those that
change the height of an object, and those that move the x-
position of an object. Multiple property interactors use
constraints or evaluation functions to determine a "derived"
property for an object, based on several of its basic
properties. An example of a multiple property interactor is
the alignment interactor, which transforms object positions
in order to scale their perpendicular distance to a line on the
object plane.

Type indicates the nature of the graphical transformation,
and may be scale or shift.  Shift interactors add constants to
object properties. They are usually applied to graphical
properties that are not relevant to the user's immediate task
in order to make other properties more noticeable.  An
exception to this is position, since shifting objects to the
front can make their relative positions more apparent.
Scale interactors, on the other hand, proportionately
transform property values so that they maintain their ratios
relative to each other. They are typically used to enhance
differences among the data values that are encoded.

PREVIOUS WORK
Previously, we discussed how SDM deals with the five
limitations of current static visualizations. In this section
we discuss how other interactive systems deal with these
limitations. In doing this we highlight some of the major
differences and the advantages and disadvantages of SDM
compared to other systems.

Focusing on a Select Set of Objects while
Keeping Scene Context.
Focus areas can be made larger in two ways: object
magnification and spatial  magnification. SDM uses object
magnification, which only acts on the objects and not on
the space between objects.

Magnification in other interactive techniques [3,4,15,18] is
spatial because expanding the selected set causes the entire
selected space to expand and not just the objects within it.
Thus, the objects move out of their original positions and
farther away from each other as their size increases. In [8],
subjects found the change in distances between objects to
be disorienting and jarring. In addition, because the
between-object spaces have expanded, either some other
space has contracted (as in [4] and [15]), or some objects are
now occluded by the newly expanded region (as in a
magnification magic lens [18]). Another disadvantage of
spatial magnification is that is works well on tasks that are
strongly based on object spatial position but fail when
users want to focus on multiple object sets based on non-
spatial properties.

Like some spatial magnification techniques, object
magnification also faces the problem of occlusion. In
object magnification many of the newly expanded objects
may occlude or collide with other objects. This problem
can be solved in SDM by elevating the expanded objects.



In contrast to spatial magnification, however, object
magnification works for both spatially and non-spatially
based tasks. For spatially based tasks users can simply
collect all the data points in the desired space (either
through their longitude and latitude or by selecting them
from the visualization) and form a data set. Operating on
that data set would effectively produce the effect of
operating on the area that contains the data points. One
disadvantage of object magnification, however, is that users
cannot operate  on parts of objects. For example, enlarging
a particular road would mean that the whole road has to be
enlarged and not just part of it. To solve this problem we
are currently exploring techniques that combine spatial and
object metaphors.

Some interactive techniques do not use magnification for
focusing. Instead, they allow users to focus on certain data
points (objects) by giving users the ability to change the
appearance of object groups in real-time. Objects that are
not in focus are either temporarily invisible [1] or
uncolored [11] (i.e., they have a different appearance than
the objects that are in focus). Users may easily regain
context by making the invisible points reappear [1] or from
the uncolored points [11].

Another important issue of focusing in context is the scope
of the operation. Techniques such as fisheye lenses [4] and
stretching [15] have unlimited scope because changes to the
selected set causes changes to occur throughout the
visualization. SDM and other techniques such as magic
lenses [18] have limited scope in that operations affect only
the selected space(s). Unlimited scope may be disconcerting
to the user because a local action may affect objects in the
entire visualization. A disadvantage of limited scope is that
it may cause certain objects/regions to be occluded by the
focus objects/regions.

Viewing and Analyzing Occluded Objects.
In dense information spaces, object occlusion is a major
problem. Dynamic query sliders [1] solve this problem by
providing users with the ability to flexibly change the
visibility of objects. Other techniques deal with occlusion
by only partially displaying the objects. For example
in [2], when the telephone links are too dense, only
sections of the links are shown to reduce occlusion. A
problem with the approach in [2] is that the technique is
limited to the length of the lines. In SDM, we propose
more general techniques that apply to  multiple object
types.

Viewing Different Sets of Elements Based on
Different Scales.
Under the stretching paradigm [15], this problem may be
solved by pulling on the region surrounding each of the
small objects in order to extend their heights. Care must be
taken that the force applied to all objects is equal so that
the object heights can be fairly compared. To solve this
problem using fisheye lenses would be just as awkward

because all dimensions of the objects would be magnified,
not just its heights.

Another way to analyze objects that have widely differing
widths and heights is to change the width and/or height
scales to a logarithmic scale. In this way, width/height
order is maintained. However, the linear relationships
between the objects are lost. Therefore, it would be hard to
compare the heights of two or more bars and determine
approximately how much wider or taller one is than
another.

Interactively Augmenting the Visualization with
New Classification Information.
Painting is a way to classify object sets by using color.
SDM allows users to classify objects not only by changing
their color but also by changing any other parameter. In
addition, current classification methods only have
temporary effects, whereas SDM allows users to save
objects sets to disk and restore them in future sessions.

Comparing the Patterns, Widths and Heights o f
Ob jec ts .
The calendar visualizer [10] solves the problem of width
and height comparisons by using lighting to cast shadows
on the back and side planes of the visualization  (i.e.,
projecting an orthogonal image/shadow of the scene onto a
flat plane). The main problem with this method is
difficulty in identifying an object and its corresponding
shadow. In addition, if the information space is dense, there
will be too much overlap between shadows of the focus set
and shadows of objects that are not relevant.

In general, the approach taken by SDM is different from
other approaches because SDM provides a flexible set of
methods that allow users to manipulate their information
space in many different ways. Many other interactive
techniques only allow users to distort the information space
based on a fixed method. Fisheye lenses [4] and
stretching [15] allow users to increase the area of the focus
region by reducing the area of surrounding regions.
Painting [11] allow users to focus on the selected set by
changing its color.

An exception to this is the magic lens technique [18],
which allows many different distortions depending on the
lens that is being used. Like SDM, that research defines a
unifying paradigm, derives a tool set from it, and provides
composition of multiple operations. SDM operations,
however, are designed to enable users to directly manipulate
object appearance as they would in a draw program. Lenses,
on the other hand, provide metaphors for viewing regions
containing objects in different perspectives and can be
general-purpose (e.g., to distinguish occluded objects) or
application-specific (e.g., to view semantically related
properties of objects). Unlike SDM, lenses do not address
parameter manipulation per se.



CONCLUSION AND FUTURE WORK
We have presented a suite of techniques based on the SDM
paradigm. These techniques enable users to:
• View selected objects in detail while keeping them in

context with the rest of the environment.
• View occluded objects by elevating them or by

reducing the widths and heights of surrounding objects.
• View different object sets in different scales.
• Add new information to the visualization that is not

part of the underlying data.
• Compare the widths and heights of objects even when

they are positioned far from each other.

Many current interactive techniques tend to examine and
present solutions to isolated problems. The goal of SDM is
to provide users with enough tools and flexibility that they
can solve a wide spectrum of data analysis tasks. The
flexibility provided also presents users with multiple
alternative solutions for any given task. Although the
examples presented in this paper use rectangular objects and
cylinders, the same techniques apply just as well to other
graphical objects.

In the future, we plan to integrate current SDM operations
with other aggregation and interactive data manipulation
interface techniques [5, 14]. We also intend to explore the
possibility of using SDM to perform “what if” analyses,
where changes to objects in the visualization actually
propagate to the data objects that they represent.

ACKNOWLEDGMENTS
Funding for this project was provided by the Advanced
Projects Agency (DAAA1593K0005) and the Army
Research Laboratory.

REFERENCES
1. Ahlberg, C., Williamson, C., and Shneiderman, B.

Dynamic queries for information exploration: An
implementation and evaluation. Proceedings CHI ‘92
Human Factors in Computing Systems,  ACM, May
1992, pp. 619-626.

2. Becker, R.A., Eicks S.G., and Wilks, A.R. Visualizing
network data. IEEE Transactions on Visualization and
Graphics, March 1995, pp. 619-626.

3. Bederson, B.B., and Hollan, J.D. PAD++: A zooming
graphical interface for exploring alternate interface
physics. UIST ‘94, November 1994, pp. 17-27.

4. Furnas, G.W. Generalized fisheye views. Proceedings
CHI ‘91 Human Factors in Computing Systems,
ACM, April 1991, pp. 16-23.

5. Goldstein, J., Roth, S.F., Kolojejchick, J., and Mattis,
J. A Framework for knowledge-based interactive data
exploration. Journal of Visual Languages and
Computing, No. 5, 1994, pp. 339-363.

6. Herndon, K.P., van Dam, A., and Gleicher, M.
Workshop report: The challenges of 3D interaction.
CHI '94 Human Factors in Computing Systems,
ACM, May 1994, pp. 469.

7. Herndon, K.P., and Meyer, T. 3D widgets for
exploratory scientific visualization. UIST ‘94,
November 1994, pp. 69-70.

8. Hollands, J.G., Carey, T.T., Matthews, M.L., and
McCann, C.A. Presenting a graphical network: A
comparison of performance using fisheye and scrolling
views. Designing and Using Human-Computer
Interfaces and Knowledge Based Systems, Elsevier
Science B.V., Amsterdam, 1989, pp. 313-320.

9. Lamping, J., Rao, R., and Pirolli, P. A focus+context
technique based on hyperbolic geometry for visualizing
large hierarchies. Proceedings CHI '95 Human Factors
in Computing Systems, ACM, May 1995, pp. 401-
408.

10. Mackinlay, J.D., Robertson G.G., and DeLine, R.
Developing calendar visualizers for the information
visualizer. UIST '94, November 1994, pp. 109-119.

11. McDonald, J.A. Painting multiple views of complex
objects. ECOOP/OOPSLA '90  Proceedings, October
1990, pp. 245-257.

12. Robertson, G.G., and Mackinlay J.D. The document
lens. UIST '93,  November 1993, pp. 101-108.

13. Robertson, G.G., Mackinlay, J.D., and Card, S.K.
Cone trees: Animated 3D visualizations of hierarchical
information. Proceedings CHI '91 Human Factors in
Computing Systems, ACM, April 1991, pp. 173-179.

14. Roth, S.F. The SAGE Project.
http://www.cs.cmu.edu/Web/Groups/sage/sage.html

15. Sarkar, M., Snibbe, S.S. Stretching the rubber sheet:
A metaphor for viewing large layouts on small screens.
UIST ‘93,  November 1993, pp. 81-91.

16. Springmeyer, R.R., Blattner, M.M., and Max, N. L. A
characterization of the scientific data analysis process.
Visualization '92, October 1992, pp. 235-242.

17. Stevens, M.P., Zeleznik, R.C., and Hughs, J.F. An
architecture for an extensible 3D interface toolkit. UIST
‘94, November 1994, pp. 59-67.

18. Stone, M.C., Fishkin, K., and Bier, E.A. The movable
filter as a user interface tool. Proceedings CHI '94
Human Factors in Computing Systems, ACM, April
1994, pp. 306-312.






