
 SageBook: Searching Data-Graphics by Content
Mei C. Chuah, Steven F. Roth, John Kolojejchick, Joe Mattis, Octavio Juarez

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, 15213, USA
Tel: +1-412-268-2145

E-mail: mei+@cs.cmu.edu; steven.roth@cs.cmu.edu

ABSTRACT
Currently, there are many hypertext-like tools and database
retrieval systems that use keyword search as a means of
navigation. While useful for certain tasks, keyword search is
insufficient for browsing databases of data-graphics.
SageBook is a system that searches among existing data-
graphics, so that they can be reused with new data. In order
to fulfill the needs of retrieval and reuse, it provides: 1) a
direct manipulation, graphical query interface; 2) a content
description language that can express important
relationships for retrieving data-graphics; 3) automatic
description of stored data-graphics based on their content; 4)
search techniques sensitive to the structure and similarity
among data-graphics; 5) manual and automatic adaptation
tools for altering data-graphics so that they can be reused
with new data.

KEYWORDS: Data-visualization, Data-graphic design,
Automatic presentation, Intelligent interfaces, Content-
based search, Image-retrieval, Information-retrieval

INTRODUCTION
Our approach to supporting the creation of data-graphics is
to view their design as two complementary processes:
design as a constructive process of selecting and arranging
graphical elements, and design as a process of browsing and
customizing previous cases. SageBook supports the latter
process by enabling users to find, browse, and apply
previously created data-graphics to the construction of new
ones that reflect current data and design preferences.

Current data-graphic design tools, particularly those
provided with spreadsheets, do not support these processes
well because they do not enable people to combine diverse
information in a single graphic. They are unable to integrate
different kinds of graphical objects, properties, or chart
types to show the relationships among many data attributes.
Instead, isolated graphical styles must be selected
individually from a lengthy menu (e.g. charts with bars,
charts with lines, charts with plot points, etc.).

There are constructive tools that enable users to assemble or

sketch combinations of graphic elements flexibly [5,8].
These tools support a vast number of different data-graphics
based on the combination and organization of many
graphical elements (e.g., those in Figures 2, 4, 7, 9).
Nevertheless, constructing a data-graphic, especially one
that contains a lot of information, still requires a user to
have substantial design expertise. Even expert designers
may need ideas when working with new data sets, and a
good source of ideas exists in other users' successful
visualizations of similar data.

One of our approaches to providing expertise has been to
give users access to a library of data-graphics, created by
users of a constructive system called SageBrush or created
automatically by a related knowledge-based system called
SAGE [8]. Since searching a portfolio of hundreds of data-
graphics can be laborious, we created SageBook, a content-
based search and browsing tool that enables users to retrieve
data-graphics based on their appearance and/or the properties
of the data they present.

In [8], we gave an overview of the three components of our
system (SAGE, SageBrush, and SageBook), but primarily
focused on SageBrush. In this paper, we focus on
SageBook's browsing interfaces and mechanisms for
content-based search and reuse. SageBook's goal is to
provide content-based retrieval facilities in the context of
supporting user-directed, data-graphic design. To fulfill this
goal, we identified five crucial needs:
1. A direct manipulation graphical query interface - a

flexible and intuitive query interface with which users
sketch graphics similar in appearance to those they
want to browse. Alternatively, users may select subsets
of their data to retrieve graphics that display similar
data. SageBrush serves as SageBook’s query interface
(Figure 2 Bottom).

2. A content description language - an expressive
vocabulary for describing the graphical and data
relationships contained in data-graphics, so that they
can be searched by content. In addition, it is necessary
to translate user queries into this vocabulary, so that
users can communicate them unambiguously (i.e.
without vocabulary mismatches). The problem of
vocabulary mismatch is well summarized by Lesk [1].

3. Automatic description - automatic indexing of stored
data-graphics, so that the data-graphic library can be
easily populated, maintained, and organized for efficient

To appear in
Proceedings CHI'95

Human Factors in
Computing Systems ,

 ACM, May 1995.

search. By indexing we mean the categorization of data-
graphics using the content description language.

4. Structural and similarity-based search - a mechanism for
matching queries and stored data-graphics, based on the
spatial organization and structural relationships among
graphical elements, and the characteristics of and
dependencies among data attributes. This mechanism
supports retrieval based on partial matches (i.e., based
on similarity between query and graphic). Structural
search is more powerful than keyword search because
the latter is not expressive of the relationships among
multiple data and graphical components.

5. Manual and automatic adaptation - facilities to help
users alter the data-graphics retrieved by SageBook’s
search strategies, so that they can be applied to a user's
current task.

We are aware of no other approaches that address these needs
for data-graphics. Some have been addressed in systems for
retrieving photographs or images, but none have provided a
solution that takes into account all of them. Garber [2]
developed a retrieval system for advertising photographs
based on a study of art directors. Queries are posed by
typing in keyword descriptions of objects or travel locations
(e.g. man, dog; Florida, New England). Users can select a
level of similarity for defining the degree of relaxation
allowed in retrievals. Photographs are ordered according to
how close they match the keywords in the query (based on
the implementors prestored judgments of similarity). The
use of keywords in the query system makes the process
susceptible to vocabulary mismatches (i.e., the descriptions
specified by the user may not match those used to describe
the stored photographs). In addition, the photograph library
has to be manually indexed; thus populating it is laborious
and error-prone.

Nishiyama et al. [6] described an image-retrieval system that
searches based on the relative position of objects in a
photograph, and on some object attributes. Queries are
graphical sketches, so users need not learn a keyword
system (thus reducing the mismatch problem). However,
the content description language and query interface are
limited to six object types. As was shown in their
evaluation, this is insufficient to describe the space of
pictures that might be in the library. As in Garber’s system,
pictures in the library are manually indexed.

TRADEMARK [3] is an image-retrieval system that does
matching based on physical features (e.g. colors, lines) of
images. Using image analysis techniques, TRADEMARK
can automatically index or sort its library. However, this
type of search (characterized as "machine-oriented" in [6])
does not produce a content description beyond the surface
features of the image. Therefore, it is unable to search for
concepts like "person" or "beach". Furthermore, the
interface requires users to create a detailed query also at the
surface feature level.

ART MUSEUM [3] is an image-retrieval system for art
pieces. Its search criteria are graphical features and keywords
of artistic impressions. The search for graphical features is

based on the physical appearance of the pictures (e.g. color,
texture) and has the same limitations as TRADEMARK.
The artistic impressions associated with each picture have to
be manually entered. Furthermore, the search done on
artistic impressions is a keyword matching process, making
it especially sensitive to vocabulary mismatches.

None of these systems provide adaptation tools because they
were created for the task of image-retrieval only. In data-
graphic design, reuse is a primary user task, thus adaptation
facilities are of the utmost importance. Reuse involves
extracting the design that was inherent in an existing data-
graphic and reapplying it to the design of a new data-
graphic.

We have designed a system that directly supports the five
needs of a retrieval and reuse facility for data-graphic design.
Our system provides users with a direct manipulation
interface (shown in Figures 2 and 7) to pose complete or
partial data and graphic queries. A query is translated into a
content description language, which has also been used to
express automatically-generated descriptions of the data-
graphics in SageBook's library. SageBook compares the
query with these descriptions and retrieves a set of data-
graphics that fulfills its similarity tests (Figure 7). Users
can then manually or automatically adapt these data-graphics
as desired. We first give an overview of the interactions and
information flow among system components, and then we
discuss how we deal with the needs of retrieval and reuse.

SYSTEM OVERVIEW
SageBook is integrated with two other modules: SageBrush
and SAGE. SageBrush is a tool for sketching data-graphics
from primitive graphical elements; as such, it can be used
both as a design space and query interface. SAGE is an
automatic presentation system. Details on SAGE and
SageBrush can be found in [8].

A retrieval transaction emphasizing the relations among
SageBook and the other modules is shown in Figure 1.

Figure 1: The flow of typical transactions among
SageBook, SageBrush, and SAGE.

1. A user creates a data or graphic query using SageBrush.
2. The query is converted by SageBrush into design

directives, which are then passed to SageBook. Design
directives are partial specifications of a data-graphic,
expressed in terms of the system's content description
language.

3. SageBook's search module uses the design directives to
locate matches between the query and stored data-
graphics.

4. The matching items are retrieved from SageBook's
data-graphic library.

5. The data-graphics found are then sent to the browser in
SageBook.

6. From the browser, the user may pick one or more data-
graphics to be (a) manually modified in SageBrush or
(b) automatically modified in SageBook.

7. To manually modify a data-graphic, SageBrush first
converts it into a sketch and displays it. This sketch
can then be adapted by the user. Figure 2 (Top) shows
an example data-graphic that has been retrieved by
SageBook. Figure 2 (Bottom) shows a sketch of the
data-graphic when it is brought into SageBrush for
manual adaptation.

8. After editing the sketch, a user may generate a new
graphic (i.e. direct SageBrush to convert the sketch
back into design directives and send it to SAGE).

9. SAGE automatically generates the new data-graphic.
10. The user may then save the data-graphic in SageBook's

library so that it may be reused later.
The example above only shows one possible sequence of
actions. A user is not restricted to executing exactly these
actions, and can combine the different functionalities of the
three modules flexibly.

Figure 2: (Top) Example data-graphic retrieved by
SageBook. (Bottom) SageBrush interface, showing a
sketch of the data-graphic created by SageBook.

The process of retrieval and reuse described above can be
divided into four phases, each emphasizing the different
needs of information retrieval and data-graphic design.
• How do I tell the system what I want (easily and

without any ambiguity)?
• How can the content of queries and data-graphics be

expressed?
• How does the system find what I want?
• How can a data-graphic be adapted for new data after

retrieval?

The following sections describe each of these phases in
detail and explain how we dealt with the retrieval and reuse
needs that were previously raised.

QUERY INTERFACE: HOW DO I TELL THE
SYSTEM WHAT I WANT?
Queries are constructed in SageBrush by assembling
graphical sketches or by selecting data-domains (i.e.
database attributes) to be visualized. Interface details are
provided in [8]. Whether querying based on graphical or data
content, users do not need to know a complex vocabulary
for describing that content. They do not have to learn the
terms the system uses internally to refer to axes, map
spaces, interval bars, gauges, indented text, etc. Instead with
SageBrush, they can select and arrange spaces (e.g. charts,
tables), the objects contained within those spaces (e.g.
marks, bars), and the objects' properties (e.g. color, size,
shape, position). Likewise, users do not have to learn the
terms for describing the characteristics of data, like scale of
measurement (nominal, ordinal, quantitative) or
relationships among data-domains (functional dependency,
interval, 2D coordinate). Instead, they simply load the data-
sets that they wish to peruse into SageBrush's data area, and
select the data-domains that they wish to visualize. This is
in contrast to previous systems [2,3,10] that require users to
specify the characteristics of the query object via keywords.
Systems that do not provide direct-manipulation query
interfaces force users to learn an underlying object
description language.

SageBrush contains methods to convert a data or graphical
query into a language (design directives) that is understood
by SageBook and SAGE. When users select a data set of
current interest, the system extracts the characteristics of
each selected data-domain (attribute) and reformulates the
query in terms of underlying data properties.

SageBook does require data objects to be characterized when
the data is first created. Currently, this characterization must
be provided by database creators. We expect to be able to
build modules that extract this characterization either by
examining the information typically stored in databases
(e.g. relation schemes), by examining the data itself, or by
interacting with users. However, once data is characterized
and stored, users need not be aware of the characteristics or
the language that is used to describe them.

In addition to serving as a query interface, SageBrush can
also be used to construct data-graphics and to manually
adapt retrieved data-graphics. Because of SageBrush's

multiple functionality, any data-graphic that can be
constructed can also be queried.

REPRESENTATION: HOW CAN THE CONTENT OF
QUERIES AND DATA-GRAPHICS BE DESCRIBED?
A common data and graphic representation is used by all the
modules of our system. It provides a vocabulary that is
capable of expressing the syntax and semantics of data-
graphic designs, and of characterizing the data contained
within them. It is able to express the spatial relationships
between graphical objects, the relationships between data-
domains, and the various graphic and data attributes.
Through this language, the content of data-graphics can be
fully described.

A query specified by the user with data and graphical
symbols is first translated into this internal representation
before it is passed to SageBook for processing. This
common language allows the user and the different modules
of the system to communicate without any vocabulary
mismatches. In addition, all data-graphics generated by
SAGE are described using this language. SageBook, in turn,
uses the description associated with each data-graphic as an
index for its search strategies. As a result, all data-graphics
in the SageBook library are automatically indexed by SAGE
when they are first generated. This is a significant advantage
compared to other visual search systems [2,3,6], which
require the descriptions of images in the graphic library to
be manually entered as keywords.

The data characterization has been described in [9] and is not
repeated here. It includes the scales of measurement
(nominal, quantitative, ordinal), structural relationships
among data (such as between the endpoints of ranges and
between the two domains of a geographic 2D coordinate),
and the dependencies among domains (e.g. whether a person
has one or more birthdates, residences, or children).
However, we will briefly describe the main structures of the
graphical representation that relate to SageBook in order to
facilitate an understanding of the search procedures.

Graphic Representation
Each data-graphic is described as a design specification,
which consists of several spaces. Each space represents a
grouping of graphical elements that are positioned according
to a single layout discipline. There are many types of layout
disciplines; some examples are shown in Figure 3.

Figure 3: Different types of layout disciplines.

Within each space there may be several objects called
graphemes. Examples of graphemes are marks, bars, text,
lines, and gauges. Each grapheme uses different properties
to define its appearance. Some of these properties may be
used to encode data-domains or distinguish different relations
shown in the same space. For example, Figure 4 shows a
data-graphic of steel-factory data. This graphic was designed
using SAGE and it uses the size of the marks in the first
space to encode billet-thickness and the color of the bars in
the second space to distinguish between materials-cost and
labor-cost. Attributes not encoding domains or relations
have default values (e.g. the color of the marks).

Figure 4: Steel-factory data.

Figure 5 expresses the data-graphic in Figure 4 in terms of
its constituents. The data-graphic contains three horizontally
aligned spaces. Two of the spaces use the chart layout
discipline and one the table layout discipline. Within the
first space are two sets of graphemes: marks and interval
bars. The position of the interval bars is used to express the
furnace schedule for the different billets, and the size of the
marks is used to express billet-thickness. The second space
contains two sets of bar graphemes that use the color
property to distinguish the two cost data attributes that the
bars encode. Their lengths encode the data values. The last
space has a set of text graphemes whose lettering encodes
data.

Figure 5: Constituents of data-graphics.

Thus, the content description language describes: classes of
objects, the spatial relationships among spaces and
graphemes, the graphical properties of objects, and the way
that those properties are assigned to data.

Chart Table Map

Network Indentation Grid

y-axis

x-axis

y-coordinate

x-coordinate

A

D

B

E

C

F

United States
 Ford
Japan
 Toyota
 Mazda
Germany
 Volkswagon

SEARCH: HOW DOES SAGEBOOK FIND WHAT I
WANT?
The process of matching a user query to the SageBook
library is carried out by two components of the search
module: the data-matcher and graphic-matcher. The graphic-
matching component has three alternative match strategies
and the data-matching component has four. The different
match strategies provide different degrees of relaxation on
the search criteria based on the degree of overlap between the
library data-graphic and the user query. Each retrieves a
different number of data-graphics depending on its degree of
relaxation. Partial overlap matching or similarity matching
was shown to be important and useful in Garber's
photograph retrieval system [2].

A typical reason for relaxation is to find compromises in
lieu of finding exactly what one wants. Additionally,
similarity-based relaxation finds items that are equally
desirable but that would otherwise not match because of
insignificant feature differences. Most importantly,
supporting data-graphic design suggests an additional
function of relaxation: giving users ideas for how to
integrate additional graphical elements and properties with
partial designs they have created. The latter answers
questions such as: How can additional graphemes be added
to the space I've created and integrated with the graphemes
I've already included? How have previous data-graphics used
additional properties of these graphemes? How can other
spaces or graphemes be substituted for the ones I've selected
to express the same data? Enabling users to answer
questions like these motivated the choice of match criteria
that evolved in SageBook. Finally, our choice of criteria
reflected the fact that it was easy for users (or the system) to
remove extra spaces, graphemes, and properties when
adapting the design for new data.

The search strategies in SageBook are based on the
structural properties of the graphical and data elements in a
data-graphic. Structural search is more robust and powerful
than keyword search because:
• It recognizes positional relationships among graphical

elements and the functional relationships in data. For
example, structural search would be able to distinguish
between Figure 6a and Figure 6b because it can tell that
in Figure 6a the mark is in the same space as the bar,
while in Figure 6b the mark is in the same space as the
line. Similarly, it can also tell that the color property
is used to encode data for the bar in Figure 6a, whereas
in Figure 6b the color property is used to encode data
for the mark.

(a) (b)
Figure 6: Data-graphics that are distinguishable by
structural search but not by keyword search.

• It can separate graphical and data elements and relations
into different classes and weight the classes differently
in its search criteria. For example, the layout discipline
(chart, map, table, etc.) could be weighted more
heavily than the type of grapheme (mark, bar, line,
etc.).

A. Graphic-Matching Strategies
Figure 7 shows a graphical query (i.e. sketch) and the data-
graphics retrieved with that query, using a moderately-
relaxed matching strategy. SageBook provides the following
three alternative graphic-matching strategies.

Close Graphic-Matching: This strategy searches for library
data-graphics that have the same number of spaces as the
query. In Figure 7, this strategy would have retrieved the
first four stacks of similar data-graphics (i.e. the stacks
outlined in black). These data-graphics only contain one
space because the query has only one space.

For a space in the query to match a candidate space in a
library data-graphic, both must employ the same layout
discipline, and every grapheme in the query space must
match a grapheme in the candidate space (i.e. the candidate
space may contain unmatched graphemes, even though the
query space may not). For a grapheme in the query space to
match a candidate grapheme, both must have the same
grapheme-class (e.g. bar, line, mark), and every property
specified in the query grapheme (e.g. color, shape, size)
must be used by the candidate grapheme. Using this search
strategy, the query in Figure 7 will retrieve only those data-
graphics consisting of a single chart that contains at least
one mark grapheme. Note that only the positional
properties of the mark were specified in the query; thus
retrieved data-graphics may use additional grapheme
properties that the query did not specify.

Subset Graphic-Matching: This strategy is more inclusive
than close graphic-matching. In subset matching, a library
data-graphic may contain more spaces than the query, as
long as every query space matches a space in the data-
graphic. This strategy retrieves all of the stacks of data-
graphics in Figure 7. The stacks are sorted according to their
degree of similarity to the query, based on the match
criteria. For example, in Figure 7, all one-space matches are
shown first, followed by all two-space matches, etc.

Subset matching supports a process resembling a library
search. First, the user enters a query and retrieves a super-set
of data-graphics, each of which will contain every element
specified in the query. If the set is too large, the user can
narrow it by adding more constraints or features to the
query. The user may then browse through the data-graphics,
and pick one based on other criteria. Any unwanted spaces
can be easily deleted from the data-graphic using SageBrush.

Overlap Graphic-Matching: Subset matching may exclude
data-graphics that are useful but fall slightly short of
meeting the match criteria (i.e. that every query space must
match a space in the library data-graphic). Thus, in addition
to a strict subset search, we implemented a match strategy

that sets upper and lower bounds around the number of
query spaces that need to be matched. These bounds are set
to be percentages of the total number of spaces in the query.

B. Data-Matching Strategies
Data-Relation Matching: This strategy searches for library
data-graphics that contain every relation that was specified
in the query. This matching strategy is useful when sets of
daily or weekly data must be redisplayed in a consistent
style. This also suggests an additional use for data-graphic
retrieval - searching for information (rather than just graphic
displays) stored as graphic media.

Close Data-Matching: This strategy enables users to find
graphics showing data that has similar characteristics to
their current data. Given a list of domains (i.e. the query)
and their characteristics, the close data-matching algorithm
tries to find a mapping from the query domains to the
domains in a library data-graphic. For a query domain to
match a candidate domain in a data-graphic, they must have
the same data-type (nominal, ordinal, quantitative) and frame
of reference (quantitative/valuation, coordinate), and must
participate in the same kinds of functional-dependencies and
complex types. Figure 8 shows an example of this data-
matching process. Activity matches houseID (both have
nominal data-types), and materials-cost matches number-of-
rooms (both have quantitative data-types). Start-date and
end-date match with date-on-market and date-sold, since they
both have the same frame-of-reference (coordinate) and
belong to the same complex-type (interval type). This
matching process ensures that the domains in the library
data-graphic and the query are equal in number, and match

one-to-one, as Figure 8 illustrates.

Figure 8: Close data-matching process.

Unlike the relation matching strategy, which requires the
query and library data-graphic to contain the very same
relations, the close data-matching strategy only requires that
the domains have similar data characteristics and
interrelationships. Thus, this strategy is not a keyword
search, but rather is a search based on a similarity of
structure between data-sets.

Subset Data-Matching: The idea behind this strategy is
analogous to that of subset graphic-matching. Subset data-
matching is like close data-matching, except that instead of
requiring a bijective (i.e. one-to-one and onto) mapping
between domains in the query and the library data-graphic,
subset matching allows the library data-graphic to contain
more domains than the query, as long as every query domain
matches a domain in the data-graphic.

Overlap Data-Matching: As with graphic-matching, a
variant of the subset data-matching strategy was created that
sets upper and lower bounds around the number of query

Figure 7: A graphical query, and the grid of data-graphics retrieved by SageBook for that query using
a subset criterion.

domains that need to be matched, instead of using a strict
subset rule.

C. Browsing
If the SageBook library contains hundreds of data-graphics,
some queries may retrieve a large set of items. In such
cases, the cognitive load placed on users to browse through
the retrieved data-graphics would be significant. To support
browsing, we developed a scrollable, grid-like interface that
enables multiple data-graphics to be viewed at once (Figure
7). Our recent work has been on exploring ways to enhance
browsing efficiency by grouping similar data-graphics into a
stack in one cell of the grid. The number of data-graphics in
a stack is indicated by the length of a black bar at the top of
each cell. The expand operation can be used to distribute
members of any stack into a new grid. An interesting
challenge has been to develop effective grouping strategies
(i.e. similarity criteria) for organizing a large number of
data-graphics into a small number of meaningful stacks.
The formal representation of data-graphics provides a
framework for grouping strategies, as it did for graphic and
data queries.

Since SageBook's purpose is primarily to help users' get
design ideas, we defined four criteria that increased design
differences between stacks by grouping similar data-graphics
together. The method names reflect the aspect of the data-
graphics within a stack that can be different. Data-only
groups into a stack all those data-graphics that have the
same number and types of spaces, ordering of aligned
spaces, types and number of graphemes within each space
and properties of graphemes. Effectively, these are cases in
which the same design was saved for different data. The
spaces-order method groups together the same data-graphics
as the data-only method, but in addition, it includes data-
graphics that have identical designs except for the ordering
of aligned spaces. For example, data-graphics like the one in
Figure 4 would be stored in the same stack regardless of the
left-to-right ordering of the three spaces.

The two techniques mentioned group together data-graphics
that show the same design approaches. Other methods
differentiate design alternatives. The grapheme-property
method groups together data-graphics that meet the data-
only criterion, except that graphemes may use different
properties. For example, data-graphics like the one in
Figure 4 would be stored in the same stack regardless of the
properties of the circles that were used (e.g. color, shape,
size). The grapheme-number method groups data-graphics
that have the same types of graphemes, and uses the same
properties for each type, in each space. However, the
number of each grapheme type in a space may differ. For
example, this groups bar charts with one, two, or more bars
per axis element in the same stack or maps with points
containing a single label or multiple labels in the same
stack. Finally, other methods are possible that group
graphics based on styles of design (e.g. aligned charts,
clustered graphemes, networks, tables, etc.).

We are exploring the different possibilities of providing
these methods as individual options or combined
sequentially to form a hierarchical classification of graphics
within each stack. Our current implementation groups data-
graphics using a four-tier hierarchy, consisting of the data-
only (bottom), space-order, grapheme-property, and
grapheme-number (top) categorization methods. Expanding
a stack is equivalent to removing a constraint for that
particular stack so that members of the stack can be viewed
in greater detail. A stack can be expanded into a series of
stacks which can be further expanded until the bottom of the
hierarchy is reached.

REUSE AND ADAPTATION: HOW CAN A DATA-
GRAPHIC BE ADAPTED FOR NEW DATA AFTER
RETRIEVAL?
The existence of similarity search strategies opens up the
possibility that some of the data-graphics retrieved by
SageBook may not fully conform to what the user desires.
In such cases our system provides manual adaptation
capabilities through SageBrush and automatic adaptation
capabilities through SageBook.

The automatic-adaptation module does the mapping between
data-domains in the query to data-domains in the retrieved
data-graphic based on their characteristics. When there are
data-domains in the retrieved data-graphic that cannot be
mapped to domains in the query, the adaptation module will
discard graphical objects from the data-graphic as necessary.
When it is forced to do this, the adaptation module tries to
preserve spaces first, graphemes second and grapheme
properties last.

Figure 9 (Top) shows a data-query and an example data-
graphic that is retrieved by that query. This data-graphic
shows a supply-network with supply routes/paths (indicated
by the lines) and demand units (indicated by the marks). The
data-graphic was retrieved because it contains "paths" which
are defined by the geographic coordinates of their end-points.
This exactly matches with the data-domains start-location-
n/s start-location-e/w, end-location-n/s and end-location-e/w
in the query data.

Figure 9 (Bottom) shows the new data-graphic that is
generated from the query data after automatic adaptation has
been performed on the data-graphic in Figure 9 (Top). Note
that the marks in Figure 9 (Top) were discarded in Figure 9
(Bottom) because the old domains which it expressed
(geographic location of demand units and the quantity
required by those units) could not be mapped to any of the
new domains in the query (i.e. temperature and troop-
movement-size). This is because temperature and troop-
movement-size are properties of the "paths", whereas the
demand units are totally separate objects.

When there are additional data-domains in the query data that
cannot be mapped to the retrieved data-graphic, the
adaptation module leaves it to SAGE to add them into the
new data-graphic. In the example adaptation shown in
Figure 9, SAGE additionally encoded temperature by using
color and troop-movement-size by line thickness. In

general, we have developed and equipped SAGE with
knowledge-based design techniques that can complete partial
design specifications [8]. Partial specifications may be
constructed either by SageBook’s automatic adaptation
module or by the user. We have explained how Figure 9
(Bottom) can be constructed automatically through
SageBook; [7] shows how it can be constructed by the user
through SageBrush.

Troop Movement Size

Start Location N/S

Start Location E/W
End Location N/S
End Location E/W
Temperature

Figure 9: (Top) A data query and an example data-
graphic retrieved by that query. (Bottom) A new data-
graphic generated from the query data and the data-
graphic design after automatic adaptation.

SUMMARY AND FUTURE WORK
We have designed and implemented a content-based search
system, SageBook, which provides users with design
expertise by giving them access to a database of prior data-
graphics. Unlike prior image-retrieval systems, the goal of
SageBook is to provide content-based retrieval facilities in
the context of supporting data-graphic design. In order to
fulfill this goal:
• We have designed and developed a graphical direct-

manipulation interface (SageBrush) from which users
can specify requests to the system with ease. SageBrush
can also be used to manually adapt previous data-
graphics and to construct new ones.

• We have formalized a content description language in
order to characterize the graphical elements and data-
domains that are contained within a data-graphic as well
as the relationships among them. User requests are
translated into this vocabulary before they are passed on
to SageBook or SAGE so that they can be conveyed to
the system without ambiguity.

• We have implemented an automatic presentation
system, SAGE, which creates data-graphics specified by
users and automatically stores a description of the data
and graphical characteristics with each image. This
provides SageBook with a growing library of data-
graphics that has been automatically described when
they are first produced.

• We have provided strategies to search for data-graphics
based on their content (i.e. structure) and their
similarity to the user query.

• We have constructed manual and automatic adaptation
tools to aid users in the process of reusing retrieved
data-graphics for their new data.

Currently, we are running a series of user tests to see what
effect SageBook has on measures like ease of creating
designs and the quality and diversity of graphics that are
created. Another area of future work is validating the utility
of the match criteria, especially our assumptions of the
important criteria for judging similarity. Finally, we are
exploring ways to base search on the information-seeking
goals that the graphics are being designed to support rather
than just the data that is being visualized [8,9].

REFERENCES
1. Borgman, C.L., Belkin, N.J., Croft, W.B., Lesk,

M.E., and Landauer, T.K. Retrieval Systems for the
Information Seeker: Can the Role of the Intermediary
be Automated? CHI’88 Human Factors in Computing
Systems, ACM, April 1988, p.51-53.

2. Garber, S.R. and Grunes, M. B., The Art of Search: A
study of Art Directors. Proceedings CHI'92 Human
Factors in Computer Systems, ACM, May
1992,p.157-163.

3. Kato, T., Kurita, T., and Shimogaki, H., Multimedia
Interaction with Image Database Systems. SIGCHI
Bulletin 22, 1 (July, 1990), p. 52-54.

4. Mackinlay, J.D. Automating the Design of Graphical
Presentations of Relational Information. ACM
Transactions on Graphics, 5, 2 (Apr 1986),p.110-141.

5. Myers, B., Goldstein J., Goldberg, M.A. Creating
Charts by Demonstration. Proceedings CHI'94 Human
Factors in Computing Systems, ACM, April 1994,
p.106-111.

6. Nishiyama H., Kin, S., Yokoyama, T. and Matsushita
Y. An Image Retrieval System Considering Subjective
Perception. Proceedings CHI'94 Human Factors in
Computing Systems, ACM, April 1994, p.30-36.

7. Roth, S.F., Kolojejchick J., Mattis J., Chuah M.,
SageTools: An Intelligent Environment for Sketching,
Browsing, and Customizing Data-Graphics.
Proceedings CHI'95 Human Factors in Computing
Systems, ACM, May 1995.

8. Roth, S.F., Kolojejchick J., Mattis J., Goldstein J.,
Interactive Graphic Design Using Automatic
Presentation Knowledge. Proceedings CHI'94 Human
Factors in Computing Systems, ACM, April
1994,p.112-117.

9. Roth, S.F. and Mattis J. Data Characterization for
Intelligent Graphics Presentation. Proceedings
SIGCHI'90 Human Factors in Computing Systems,
Seattle, WA, ACM, April, 1990, p. 193-200.

10.Tou, F. N., Williams, M.D.Fikes R., Henderson, A., &
Malone, T. RABBIT:An Intelligent Database Assistant.
AAAI-82 Proceedings of the National Conference on
Artificial Intelligence, 1, August. 1980, p.314-318.

