
In M. Meybury (ed.), Intelligent Multimedia Information Retrieval. AAAI/MIT, 1997, 83-111.

Sketching, Searching, and Customizing Visualizations: a
Content-based Approach to Design Retrieval

Mei C. Chuah, Steven F. Roth, Stephan Kerpedjiev

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA, 15213, USA

Tel: +1-412-268-2145

E-mail: {mei+, steven.roth, kerpedjiev}@cs.cmu.edu

http://www.cs.cmu.edu/~sage

ABSTRACT

We present new techniques for retrieval of data-graphics and a system, SageBook, that

employs these techniques to facilitate the process of visualization design. Design is an

important activity in many different disciplines, including engineering, science, and business,

but current systems provide little support for non-expert users to design new graphics for use

in data analysis. SageBook’s approach is to provide expertise through the retrieval and reuse

of previously successful designs. The design task places new demands on retrieval technology

because it requires not only a good search engine but also effective tools to pose queries,

browse results, and adapt previous designs for reuse. Despite our focus on data-graphic

design, the concepts presented can be transferred to other design activities.

1. INTRODUCTION

This chapter will discuss retrieval as it relates to the problem of graphic design, an important

activity in many disciplines and tasks. Graphics are used by analysts in many domains to

analyze trends, detect patterns and anomalies, and answer focused questions. Data analyses

are also performed by statisticians to identify relationships or detect problem areas. These

activities are classified as exploratory data analysis (Tukey 1977). In addition to analysis,

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 2

graphics are useful for succinctly and clearly communicating information to others in

presentations. Whether for analysis or presentation the success of these tasks depends on the

ability of people to design effective graphics of their data quickly.

In the area of visualization design, the last decade saw significant progress in developing

intelligent tools that help users construct data-graphics (e.g. Mackinley 1986; Roth and

Mattis 1990; Casner 1991). A common feature of these systems is their ability to generate

graphics that integrate multidimensional data. Most commercial applications, including

popular spreadsheet systems, produce only simple graphics that tend to isolate data attributes

in separate charts. In contrast, these intelligent systems integrate multiple attributes into one

graphic using a variety of composition techniques: multiparameter graphical objects, space

alignment, and grapheme clustering.

Another major problem that has been addressed only recently in the SAGE research is

providing users with an interface that helps them design custom visualizations (Roth et al.

1994). This research stresses the need for a combination of user-controlled interactive design

tools and automatic design mechanisms. Their assumption is that design is inherently a dual

process of constructing or assembling graphic elements into composites in a bottom-up

fashion, as well as a process of considering previous examples that might be relevant to

current needs. Thus, these processes suggest complementary tools for specifying graphics

constructively and browsing previously created graphics to reapply them.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 3

Raw data
Internal
Structure

Internal
Structure

Query

New
Graphic

Conversion
Result
Objects

User

Query refinement

Adaptation

Storage Retrieval

Matching

Selected
graphic

Browsing

Library

Figure 1: The retrieval and reuse process for designs

To support these processes, two tools were created. SageBrush is a tool with which users

sketch their design ideas; the intelligent design engine of SAGE then converts this sketch into

a data-graphic. Moreover, the sketch may be incomplete, in which case SAGE attempts to

complete the graphics by selecting and composing additional graphical elements and

properties. Although the interactive graphic design techniques supported by SageBrush are

useful when people know the graphic they wish to create, it is still necessary to provide them

with alternative graphics when they are unsure how to visualize data and need to browse

through design alternatives. To provide this type of design support, we developed another

tool called SageBook. It is closely integrated within the SAGE system and provides retrieval

capabilities that help users extract relevant visualization designs and adapt them to their

needs. The major processes occurring in SageBook are shown in Figure 1.

Central in the retrieval and reuse process shown in Figure 1 is a library (store) of

visualization designs. This storage infrastructure is expressive in such a way that it

accommodates important design elements and supports easy conversion of existing designs

into its internal storage language. In Figure 1, the rectangles labeled "internal structure"

represent designs or queries in the internal language. Users can query the stored designs

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 4

based on their current tasks and data. Query interfaces help users communicate to the system

the types of designs that are desired. Therefore, the interface should closely match the users’

mental model of design elements in the intended domain. Before matching a query with

library entries, the system converts that query to the system’s internal storage language in a

way similar to the conversion of the original designs.

The internal description of the query is then used to retrieve library entries. There are two

types of retrieval algorithms based on exact and similarity matching. Exact matching returns

designs that fulfill all the criteria specified in the query, while similarity matches are less

stringent and may return designs that contain enough, but not all, of the query elements. In

design, one important use of graphic libraries is for getting new ideas from past successes.

Since exact matching would severely limit the number and types of designs retrieved, it is

critical to be able to retrieve designs based on some similarity measure. Similarity matching,

however, can result in a large number of hits, especially when the library is well-populated.

In order to effectively process the search results, users need tools that can help them organize

the retrieved graphics. For example, users should be able to quickly browse through the

retrieved graphics, collect them across multiple search sessions, and group them according to

their importance, the data stored, or the graphical elements used. Finally, after selecting some

designs from the library, users need to adapt these objects for current use. This might involve

integration, addition and deletion of elements, altering the attributes used, or even

completely redesigning the graphic.

In summary, there are five components of the retrieval and reuse process: query, storage,

search, browse, and adaptation. These components are all important to understanding the

difficulties involved in supporting the retrieval and reuse process in the design domain:

Need for integration with other activities. The retrieval activity is usually not performed in

isolation. In design domains, users retrieve information to get ideas or for integration into

new designs. These tasks require not only the retrieval of objects but also the manipulation of

those objects. To be a useful appliance for a designer, the retrieval process must occur

seamlessly coupled with other tools. They need to be able to search libraries in the midst of

other activities and make use of retrieved artifacts in their design workspaces. This includes

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 5

tasks of querying, retrieving, browsing, and integrating. Most current retrieval systems only

provide support for a very narrow part of these processes.

Designs are complex artifacts. Users' expectations from a retrieval system vary with the

domains and tasks of interest. As it has been pointed out in (Griffioen, this volume), the

retrieval process is domain-dependent because users need to search based on semantic

content or embedded information. Hence, in order to effectively support the retrieval of

designs, it is crucial to identify and represent the critical elements of a design within the

system. Because designs are usually complex, it is difficult to capture all the properties of

interest to the users.

Support for non-expert users. Most retrieval systems assume a certain level of user expertise

and provide little support for users who are not experts or have little computer experience. In

the case of data-graphic design, many of the users are analysts, planners and decision makers

who lack design knowledge. In addition, design tasks often require a fair amount of computer

experience because users need to manipulate the objects retrieved. To solve these problems,

intelligent support should be provided in the form of design assistance or critiquing.

The communication problem. It is often difficult for users to convey their intentions to the

system. This is especially true when specifying spatial or temporal structure. In order to

improve the usability of retrieval systems, users must be able to communicate easily with the

system, and support should be provided for articulating and refining queries and for

understanding search results. Support should also be provided to allow smooth transitions

between the different activities associated with the retrieval and reuse process in design.

In this paper we present a content-based1 retrieval system, SageBook, that addresses all of the

above issues in the domain of data-graphic design. Although our work focuses on data-

graphic retrieval, the concepts and techniques developed, as well as the tasks supported, can

be generalized and applied to other design domains. SageBook provides the following

functionalities to support graphic design:

1By the content of data-graphics, we mean their graphical properties (graphical objects, properties and relations),
how they encode data attributes (i.e. their mapping to data) and the abstract characteristics of data relevant to design.
We are not refering to the meaning or interpretation of the data values contained in graphics.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 6

Visual and context sensitive workspace for retrieving data: SageBook provides a visual

workspace for storing and managing sets of data. Each data set incorporated within a graphic

becomes a first-class object, retrievable based on cues relevant to users, such as visual

appearance and data characteristics. Once retrieved, these objects can be browsed or

interactively organized into groups.

A library of visualizations: When users are unsure about how to design a data-graphic, they

can use SageBook as a library of examples, both for ways to visualize their data and to learn

the design capabilities of the system. SageBook can be searched or browsed for prior data-

graphics that have particular data or graphical characteristics. For example, one can retrieve

all charts that have networks embedded in them to see how the lines and nodes can be

embellished with additional graphical objects.

A tool for rapidly considering alternative graphic designs: Data-graphics can be created

through a constructive process of selecting and arranging graphical elements (Roth et al.

1994). However, even when users are skillful graphic designers or use an automatic

presentation system (e.g., APT (Mackinley 1986), SAGE (Roth et al. 1994), or BOZ (Casner

1991)), it can be very time consuming to generate many different data graphics that express

the same data set in order to choose the most effective one. Even expert designers often need

ideas when working with new data sets, perhaps ideas accumulated as a result of other users'

successful attempts to visualize similar data. SageBook can quickly display a large number of

browsable graphics, all related to a user's data set. Of course, this assumes that a portfolio of

graphics has been accumulated over a sufficiently large range of data-types and graphic styles

to provide a variety.

A tool for customization of prior designs: After a set of data-graphics is retrieved, users may

request that one of them be used to create an analogous graphic for their new data (i.e., reuse

the design of the graphic for a new data set). Users may also modify the designs from

retrieved graphics. Thus even though a prior graphic design may not exactly match a user's

goals, the parts of the design that do can be reused; those parts that do not match can be

removed or altered. SageBook allows users to combine graphic design elements from several

previously created data-graphics.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 7

Current data-graphic design tools, particularly those provided with spreadsheets, do not

support design retrieval. As a result, previous designs can only be retrieved by memorizing

file names or exhaustively looking through all the data-graphic files. SageBook addresses this

issue by providing users with support for storing data-graphics, formulating queries,

retrieving, browsing and adapting data-graphics to suit current tasks. In the following

sections, we will discuss how each of the five sub-tasks in the design retrieval process are

supported by SageBook.

2. QUERY INTERFACE

Users must be able to easily communicate their search requests to the system. Effective query

interfaces will have a direct mapping from the user’s model of the objects to be retrieved to

the query expressions in the interface model. Current query interfaces can be divided into

five categories: command language, direct manipulation, keyword, query by example, and

sketch.

To use a command language (Chang, Lee and Dow 1992; Rabitti and Savino 1992), users are

required to learn the primitives and the syntax of the query language. Such languages are

usually robust but difficult to learn and use.

Direct manipulation queries are created by manipulating widgets, menus, and objects. These

interfaces are easy to learn but are less robust than command languages. This is because users

can only make queries that have already been predefined. There is not much opportunity for

formulating the complex queries that are possible with a command query language. Recently,

Papantonakis and King (1995) developed Gql, a visual language whose expressive power is

comparable to that of SQL. They also reported that a small-scale experiment had shown time

decrease for formulating queries compared to text input. However, this type of language still

requires that users develop a complete mental model of a language of the complexity of SQL,

which increases learning time. An alternative approach (Young and Shneiderman 1993)

exploits the metaphor of water flowing through filters for creating Boolean queries. An

experiment has shown that there is a significant difference in the total number of correct

queries favoring the Filter/Flow approach to text only SQL interfaces.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 8

Keyword queries have long been used in retrieval systems. Keywords have the advantage that

they require no learning time. Users simply enter a sequence of words and the system does

the matching based on those words. However, keywords suffer from not being able to convey

more complex relationships (e.g. spatial relationships among objects). In addition there may

be mismatches between user-generated keywords and system keywords (Borgman et al.

1988). Many current systems complement image analysis with keyword matching to increase

precision and recall (Kato 1992; Smith and Chang, this volume).

Query by example (Kato 1992; Holt and Hartwick 1994) is a powerful query method. It has

very low learning time because users simply have to select an example object that represents

what is required and submit it as the query. Employing this method, users can convey

complex queries because the example object submitted is capable of representing as much

semantic and syntactic information as any other object in the database. However, this method

may be problematic when users cannot find an example image that is a good representation

of what is desired. In such cases, users may have to look exhaustively through the library to

find a suitable example. For this reason, this method is typically used in query refinement.

Sketch queries are most common for retrieving images. There are two types of sketch queries:

free-hand sketch (Holt and Hartwick 1994; Nishiyama 1994) and object manipulation sketch. In

free-hand sketching, users freely draw the query using a mouse, pen or other input device.

There is no limitation on the set of permissible object types. The sketch is then analyzed, and

important features are extracted (e.g., spatial relationships and shapes) and used for

matching. Even though users may freely sketch many different types of objects, the system

will only be able to understand the forms that are representable within its internal language.

In object manipulation sketching interfaces, users construct sketches from available primitive

objects, usually arranged in palettes. Although this method seems to be more limiting than

free-hand, the fact that it does not need image analysis makes it much more efficient. In

addition, users are guaranteed that all elements in the sketch will be fully understood by the

system and that there won't be any error in interpretation. Object manipulation sketch

interfaces are usually appropriate for systems that address focused domains.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 9

2.1 SageBook Query Interface

SageBook allows users to query the system based on graphical properties and/or data

properties of the stored images. Users form queries through an object manipulation interface

called SageBrush (Figure 1). It provides a palette of spaces and graphemes as well as a view of

the data, from which users create sketches of graphical elements or select subsets of data

attributes. Sketches are constructed by simple drag-and-drop operations. For example, to

create the sketch in Figure 1, the user dragged a chart space from the top palette to the

working area, dragged a line, a mark, and a text grapheme from the left palette to the area

inside the chart, and “opened” the line grapheme by clicking on it, so that all graphical

properties pertinent to lines get visualized as icons (in the case of lines, four positional

properties, color and line thickness are relevant). The user might have further specified this

sketch by dragging data attributes to these property icons. Any data attribute mapped to a

graphical property gets interpreted as a directive for encoding that attribute by that property.

In this case, the average temperature data attribute has been assigned to the color of the line.

The sketch and the set of attributes at the bottom represent a query, which SageBook matches

with the entries in the design library, returning the graphics that fulfill the graphical and/or

data constraints specified by the user. Query interface details are provided in (Chuah et al.

1995).

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 10

Fig. 2. SageBrush: The SageBook query interface. The space and grapheme palettes are located at

the top and to the left of the interface, the data area is at the bottom, and the sketch is constructed in

the middle of the interface.

Unlike command language queries, users do not need to know a complex vocabulary for

describing content. Instead of learning the terms that the system uses internally to refer to

axes, map spaces, interval bars, gauges, indented text, etc., SageBrush enables users to select

and arrange spaces (e.g., charts and tables), the objects contained within those spaces (e.g.,

marks and bars), and the objects' properties (e.g., color, size, shape and position). Likewise,

users do not have to learn the terms for describing the characteristics of data, such as scale of

measurement (nominal, ordinal, and quantitative), or the relationships among data attributes

(functional dependency, interval, and 2D coordinate). Instead, they just select some or all the

attributes listed in the SageBrush data area. In addition to serving as a query interface,

SageBrush can also be used to construct data-graphics and to manually adapt retrieved data-

graphics. Because of SageBrush's multiple functionality, any data-graphic that can be

constructed can also be queried.

SageBook uses object manipulation sketching because it supports a focused domain, in which

all the primitive objects can be identified and made available to the user. An object

manipulation sketching interface is more accurate, simpler and requires less processing. In

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 11

addition to the object manipulation interface, SageBook supports query by example. Users

can query the graphic library either by giving a graphic example, a data example, or both.

Since we are complementing this method with a sketching interface, users can just sketch

what they want when no examples are available.

Once a query has been formed and submitted, it is translated into a language (design-

directives) that is understood by the system components. When users select a data set or

construct a graphical query, the system extracts the characteristics of each selected data

attribute and graphical element and then reformulates the query in terms of underlying data

and graphical properties.

SageBook does require data objects to be characterized when the data is first created. This

characterization must be provided by database creators (e.g., in the form of relation schemes),

by analysis modules that examine data values, or by modules that acquire this information

from users interactively. However, once data is characterized and stored, users need not be

aware of the characteristics or the language that is used to describe them.

3. STORAGE

The storage of objects has two main components: storage vocabulary and method of

translation. Storage vocabulary refers to how objects are represented and determines which

criteria can be used for matching. In principle, graphics could be stored in raw format (e.g., a

bitmap, a video sequence, raw text) or in a formal language. The advantage of using a

language is that less storage space is required and the search is more efficient. In addition,

language representations have richer expressiveness and explicitly show relationships and

structures that are implicit in images. Finally, language representations are easier for the

system to manipulate. Typically, the disadvantages of using formal representations are that

information may be lost in the translation from raw format to formal language and that the

translation may introduce errors. The types of languages used in current systems include:

low-level object attributes (Row and Frew, this volume; Pentland, Picard and Sclaroff 1994),

entity-attribute-relation language (Hibler et al. 1992), and object-oriented language

(Griffioen, Yavatkar and Adams, this volume; Halin and Mouaddib 1992).

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 12

Method of translation refers to how the raw formats are translated into the internal language

of the system. Objects that are stored in raw form do not need a method of translation.

Current methods include: object analysis, spatial and temporal parsing, model descriptions,

and manual translation. Object analysis involves generating object properties and structure

by using low level processing routines. For example, histogram distributions and

segmentation fall under this category. Object analysis techniques (Row and Frew, this

volume; Pentland, Picard and Sclaroff 1994) are general (i.e., domain independent) but are

not able to produce higher level semantic content such as object relationships and other

embedded information. Temporal and spatial parsing (Lakin 1986) retrieve object structure

and relationships by using the location and temporal occurrence of those objects. Such

techniques produce more structure and semantics than the previous method but require

domain knowledge. Model descriptions refer to systems that have access to the full object

descriptions. This information is usually not available unless the search objects were created

electronically as well-defined models. Some examples include computer modeled scenes and

CAD models. Finally, manual translation requires a person to annotate the search objects

with relevant descriptions. This method is general and can produce complex semantic

information; however, it requires a significant amount of human effort and may be

inconsistent. Automatic indexing, when possible, is preferable to manual methods because

the object library can be easily populated, maintained and organized for efficient search.

Yet another element of storage is its organization, which is extremely important for very large

document bases. A poor organization may make the search time prohibitively high.

Frequently used instruments for storage organization are indexing, hashing, and clustering.

Indexing ensures direct access to the objects that have a given value specified in the query.

Hashing organizes the documents according to the values of a hash function which may

combine the values of different attributes. Clustering puts similar objects in continuous areas.

Depending on the type of objects and methods of retrieval, one method of organization may

be preferable to others. SageBook uses hashing and indexing techniques.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 13

3.1 SageBook Storage Vocabulary

SageBook uses an expressive object-oriented vocabulary for describing the graphical and data

relationships contained in data-graphics so they can be searched by content. The objects

represented in the language are reflected in the query interface. This enables SageBook to

translate user requests accurately and unambiguously (i.e. without vocabulary mismatches).

Preliminary user tests show that users can construct queries with very little learning time,

which indicates that the query interface and the vocabulary model correspond well with the

user expectations.

A common data and graphic representation is used by all the modules of our system. This

vocabulary is capable of expressing the syntax and semantics of data-graphic designs, and

characterizing the data contained within them. It is able to express the spatial relationships

among graphical objects, the characteristics and relationships among data-attributes. Most

other retrieval systems do not provide such a detailed and expressive internal language.

3.1.1 Data Representation

The data characterization language expresses scales of measurement (nominal, quantitative,

ordinal), structural relationships among data (e.g., between the endpoints of ranges and

between the two attributes of a geographic 2D coordinate), and dependencies among

attributes (e.g., whether each person has one or more birthdates, residences, children). We

describe some examples in Section 4.2.2. A detailed description of the data characterization

used in SageBook can be found in (Roth and Mattis 1990).

3.1.2 Graphic Representation

The internal representation describes each data-graphic as a design-specification, which

contains one or more related spaces. Spaces can be related by being aligned, either vertically

or horizontally. Spaces can only be aligned when the data types represented by the common

axis are consistent. For example, cost-of-labor and cost-of-materials are two consistent

attributes because both express dollar amounts. However, person-weight and person-height are

not consistent attributes because weight is expressed in pounds while height is expressed in

inches. In Figure 3, which shows a data-graphic from Napoleon’s 1812 march on Russia, the

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 14

spaces are vertically aligned by the common data type date. The x-positions of the lines and

marks in the upper chart and the bars in the lower chart all encode dates and therefore can be

portrayed with a common axis.

Figure 3: A two-space SAGE graphic

Each space represents groupings of graphical elements that are positioned according to a

single layout discipline. There are many types of layout disciplines; map, chart, table, and

network are the most common ones. The graphical elements contained within a space are

graphemes. Examples of graphemes are marks, bars, text, lines, and gauges. Each grapheme

uses different properties to encode data. Some of these attributes may be used to encode

attributes, to distinguish different relations shown in the same space, or to convey a relation

to another grapheme. For example, the data graphic in Figure 3 presents spatial, temporal

and quantitative data. The positions of the labels are relative to the positions of the marks,

which encode the east-west-location and date-of-battle attributes. Graphical attributes not

encoding attributes or relations have default values (e.g., the size and the shape of the

marks).

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 15

Figure 4 expresses the data-graphic in Figure 3 in terms of its constituents. The data-graphic

contains two vertically aligned spaces, both of whose layout discipline is chart. Within the

first space there are three sets of graphemes : a line, mark and label. The line position, the

mark position, and the text lettering all encode data values, while the text position is relative

to the position of the mark. The second space contains a set of bar graphemes using x-

position, length and color to encode data.

ABcd

ABcd

ABcd

Chart

Chart

Line

Mark

Text

Vertical
bar

x1, x2, y1, y2, color, width

x, y, color, shape, size

lettering , x, y, color

x, y, color, length

Graphic Spaces Disciplines Graphemes Properties

Figure 4: Constituents of the data-graphics in Figure 3 (the graphical properties that encode data

attributes or are relative to others are printed in bold)

Thus, the content description language specifies classes of objects, the spatial relations among

spaces and among graphemes, the graphical properties of objects, and the way they are

assigned to data.

3.2 SageBook Method of Translation

The data-graphic descriptions used by SageBook get generated when the data-graphics are

first created by SAGE, an automatic presentation system (Roth and Mattis 1991). When a

SAGE data-graphic is saved, a description of it is stored in conjunction with an image reduced

in size for rapid viewing (a large image is generated as requested from the description). This

description is later used by SageBook during the search process. Because the same description

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 16

is used to generate the data-graphic, the stored representation contains at least as much

information as the graphic. This is not true in other retrieval systems where the stored

representation contains only a small subset of the object information and inconsistencies may

exist between the stored representation and the object itself. The disadvantage of SageBook,

however, is that only graphics created by the SAGE system can be stored. It is possible that,

by using spatial parsing techniques (Lakin 1986) and domain knowledge, we can analyze

general data-graphics and encode them into our language. Information on the graphical

elements (e.g. spatial relationships) can be derived from visual processing, and other

information such as data properties and relationships can be obtained from the database.

Note that this is not a big change to the current system as it only affects the conversion

methods from raw images to the system internal structure (cf. Figure 1), which is a small part

of the system.

4. SEARCH

Search is the process of matching stored objects with user queries. There are three main

issues in search: the match criteria, the type of search and similarity model, and finally,

matching objects that have multiple types of data. The match criteria used in search depend

on the storage vocabulary (presented in the previous section). Depending on the

expressiveness of that language, the match can be simply based on keywords or might instead

match object structure, relationships, and attributes. The richness of vocabulary in SageBook

allows the matching algorithm to not only retrieve objects based on their properties but also

on object structure and relationships among objects.

There are two classes of search - exact search and similarity search. Exact search will return

only those objects that exactly match all of the constraints specified in the query whereas

similarity search will return a set of objects that meet some similarity metric but may not

conform to all the specifications of the query. Garber and Grunes (1992) showed that

similarity matching is important and useful. The problem with it however is coming up with

a good metric for judging similarity. How different attributes of the stored objects should be

weighed in the similarity algorithm is based on a user's perception of which attributes,

relationships and elements are more important. Current methods for determining similarity

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 17

include neural networks, case-based reasoning and other uses of domain knowledge. Both

neural nets and case-based reasoning require users to train the system on a set of examples.

In fact Row and Frew (this volume) show that even though results are promising, they are

still inaccurate and require a significant amount of training. In SageBook, the different

similarity matching algorithms are based on specific knowledge of graphic design.

Another issue in search algorithms is how to deal with objects that contain data of different

types. For example, in video there is an image stream, a text stream, and an audio stream. To

effectively search for such objects, we need to not only process each data type individually

but also combine their results. Combining the results from processing each data type

improves search accuracy and enables users to convey constraints based on more than one

type of data. Mirialdo and Dubois (this volume) presented a method for combining results of

various data types through the use of agents. Similarly, in SageBook, support is provided for

users to search based on either graphical elements or data content.

4.1 SageBook Match Criteria

The search strategies in SageBook are based on the structural properties of the graphical and

data elements in a data-graphic. The storage vocabulary, enables matching on semantic

content and relationships among objects. SageBook's match criteria recognize positional

relationships (including clusters, alignment and containment), graphical properties (e.g.

color, shape, size), and data mappings (i.e. the assignment of graphical properties to data

attributes). The search algorithm is able to make fine distinctions in graphics, for example the

differences between Figures 5 and 6. Figure 5 shows a data-graphic of project-management

data. The interval bars indicate the time spans of activities of different types. Their y-position

and color properties encode the work-type and status attributes, respectively. Associated with

each bar is a circle whose size encodes the cost of the operation. Note that circle positions do

not encode any data attributes. Figure 6 shows house sale data. It also contains interval bars

which show the selling-price/asking-price range for house sales, and a set of circles whose x-

positions indicate the agency-estimate attribute. The color of the bars encodes the house

neighborhood. Note that the interval bars and the marks in Figure 6, unlike in Figure 5, are

not attached to each other positionally. Therefore, it is necessary for search techniques to be

sensitive to the subtle difference in the relation between the circle and bars in the two figures.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 18

Figure 5: A data-graphic using interval bars and a mark associated with each bar

Figure 6: A data-graphic using interval bars and marks whose x-positions encode a data attribute

4.2 SageBook Exact and Similarity Search

SageBook provides matching based on both graphical elements and data attributes. There are

several alternative match strategies which provide different degrees of relaxation on the

search criteria based on the degree of overlap between the library data-graphic and the user

query. Each retrieves a different number of data-graphics depending on its degree of

relaxation.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 19

A typical reason for relaxation is to find compromises if no entries match the query exactly.

Additionally, similarity-based relaxation finds items that are equally desirable but would

otherwise not match because of insignificant feature differences. Most importantly,

supporting data-graphic design suggests an additional function of relaxation: giving users

ideas for how to integrate additional graphical elements and properties with partial designs

they have created. The latter answers questions like: “How can additional graphemes be added

to the space I've created and integrated with the graphemes I've already included?”; “How

have previous data-graphics used additional properties of these objects?”; and “How can

other spaces or graphemes be substituted for the ones I've selected to express the same data?”

Enabling users to answer questions like these motivated the choice of match criteria that

evolved in SageBook. Finally, our choice of criteria reflected the fact that it was easy for users

(or the system) to remove extra spaces, graphemes and properties when the design is adapted

for new data. In the future, we intend to extend the model by taking user tasks into account

and providing matches based on task specifications.

4.2.1 Graphical Matching

Close Graphical Matching. This strategy searches for pictures that have the same number of

spaces as the query. Figure 7 shows a graphical query and the data-graphics returned for that

query. For rhetorical purposes, we have drawn a black border around the seven data graphics

that are retrieved by the close matching process. All these data-graphics only contain one

space because the query only has one space.

For a space in the query to match a space in a library data-graphic, the layout disciplines of

both spaces must be identical. However, the library data-graphic space may have more

graphemes in it as long as the ones specified in the query match graphemes in the library

data-graphic space. For two graphemes to match, they must be of the same class (i.e. bars,

lines, marks) as well as use the same properties (i.e. color, shape, size, width) to encode data.

In Figure 7, all the data-graphics returned by this search strategy have a space of type chart,

consistent with the query. Furthermore, all the charts in the resulting data-graphics contain

graphemes of type horizontal interval bar. Note also that only the positional properties of the

bar were specified in the query. If additional properties were specified, these must also be

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 20

present in the retrieved data-graphic. The retrieved data-graphics may contain grapheme

properties not contained in the query.

Figure 7: A graphical query and the data-graphics returned by SageBook for that query

Subset Graphical Matching. Subset graphical matching is more inclusive than close

graphical matching. In subset matching the data-graphics may have more spaces and

graphemes than the query as long as all the spaces in the query match some unique space in

the library data-graphic. The data-graphics shown in the grid in Figure 7 are returned by

subset graphical matching. The matches returned are sorted according to their degree of

similarity to the query, based on the match criteria. For example, in Figure 7 all one-space

matches are shown first, followed by the two-space matches and so on.

The subset matching idea is similar to the process of a library search. First, the user enters a

query, and a super-set of data-graphics is returned. Each data-graphic in the set contains all

the elements specified in the query and may contain more. To narrow down the choices

presented by subset matching, the user may have to add some additional constraints to the

query. Alternatively, the user may browse through the data-graphics and pick one based on

other criteria. Even though the data-graphic retrieved by subset matching may contain more

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 21

spaces than the user desires, the unwanted spaces can easily be edited out of the data-graphic

by using SageBrush.

Overlap Graphical matching. Subset matching may sometimes exclude data-graphics that

are useful but fall slightly short of meeting the match criteria (which requires each space of

the query to match with at least one space in the library data-graphic). Thus, in addition to a

strict subset search, we implemented a match strategy that sets upper and lower bounds

around the number of spaces in the query that must match a space in the library data-graphic.

The lower and upper bounds are set to be a percentage decrement and increment of the total

number of spaces in the query.

4.2.2 Data Matching

Data-Relation matching. Relation matching retrieves all previously saved data-graphics that

have all of the desired relations specified in the query. By relation we are referring to the

name of the relation scheme in relational database terms. This matching strategy is useful for

retrieving sets of daily or weekly data from the same database and redisplaying them

consistently. This also suggests an additional use for data-graphic retrieval - searching for

information (rather than just graphic displays) stored in graphic media. For example, the

house-sales relation might be used to construct many displays over time.

Close Data Matching. This strategy enables users to find graphics that contain data that have

similar characteristics to their current working set. Given a list of attributes and their

properties, the close data matching algorithm tries to find a mapping from attributes in the

query to attributes in prior data-graphics. For an attribute in the query to match an attribute

in a library data-graphic, the two attributes must have the same data-type (nominal, ordinal,

quantitative) and frame of reference (quantitative/valuation, coordinate), as well as

participate in the same kinds of functional-dependencies and complex types. Figure 8 shows

an example of this data-matching process. In Figure 8, Activity matched HouseID because

both are nominal data-types and both are functionally independent. Materials-cost matched

Number-of-Rooms because both are quantitative data-types and are the same frame of

reference (quantitative/valuation). Start-Date and End-Date match Date-on-Market and Date-

Sold because they are the same frame-of-reference (Coordinate) and belong to the same

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 22

complex-type (Interval Type). The close data match process must also ensure that the

number of attributes in the query and the library data-graphic are the same and that every

attribute in the query matches some unique attribute in the library data-graphic. In Figure 8,

the query and library data-graphic satisfy both of these criteria.

Figure 8: Close data matching process

Unlike the relation matching strategy which requires the query and the library data-graphic

to contain identical relation names, the close data matching strategy only requires that the

attributes have similar data characteristics. Thus, this search strategy is not a keyword search

but a search based on the similarity of characteristics and relationships of the data.

Subset Data Matching. The idea behind subset data matching is very similar to that of

subset graphical matching. Subset matching is like close data matching, except that instead of

requiring a bijective (i.e. one-to-one and onto) mapping of attributes between the query and

the saved data-graphics, subset matching allows the saved data-graphics to have more

attributes than the query as long as each attribute in the query has similar characteristics with

some attribute in the data-graphic.

Data-overlap matching: As with graphical matching, a variant of the data-subset matching

strategy was created that sets upper and lower bounds around the number of data-attributes

that must match instead of a strict subset rule.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 23

4.2.3 Manual Search

Users may also manually search through the library. This is necessary in the cases where the

user is uncertain how to form a query or unsure what to look for. Manual search is also

useful when the user is unfamiliar with the contents of the library and wants to quickly get an

idea of what data-graphics are available.

SageBook provides two different library browsing facilities that support manual search. First,

users may organize and browse data-graphics through a folder system. This facility allows

users to easily navigate through directories and view data-graphic files in the same grid used

for visualizing the results of a search (Fig. 7). In addition to supporting manual search, this

file navigation interface is also useful when a user knows the exact location or filename of the

data-graphic of interest. The file navigation interface provided is similar to those seen on

Macintosh interfaces.

The second facility provided to support manual search is a book tour. The tour facility in

SageBook includes all of the library data-graphics in a book-like structure. The book consists

of chapters, sections, and subsections, which serve to provide a hierarchical categorization to

the data-graphics. More detail is provided in the next section on browsing.

5. BROWSING

If the library contains many objects, some queries may retrieve a large set of items. In such

cases, the cognitive load placed on the user to browse through the retrieved objects would be

significant. In order to deal with large retrieval sets, it is necessary for the system to provide

tools to help users browse search results quickly and effectively. Browsing is also useful in

those cases where the user simply wants to navigate through the library. Such cases arise

when the user is unsure of the kinds of graphics contained in a library, when the user is

unable to formulate a query, or when the user simply wants to go through many alternatives

to get ideas. Despite its importance, browsing is rarely supported in retrieval systems. Many

systems provide a sorted list of objects to the user, making it difficult for users to identify

categories or to determine general features and distributions of the result set.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 24

Some browsing methods include sorted lists, visualization of results (Pu and Lalanne, this

volume) and structuring the results, for example, through the use of hierarchies and piles

(Chuah et al. 1995; Ballay 1994). The sorted list has no structure apart from being ordered

according to match scores. This technique is useful when the user is only interested in

individual results and not on overall properties of the result set. One big disadvantage is that

when match scores are uniformly high or low for a large set of graphics, the sorted list does

not provide any useful structure within that set.

Another browsing method involves 2D or 3D visualization of results. This method is very

useful for seeing overall distributions of the results and detecting groups that are significantly

different. A problem with this method however is that it is not always clear which attributes

of the retrieved objects should be viewed or how to compute a numeric score based on

similarity. Finally, browsing can be facilitated by organizing the search results in hierarchical

or other structures. Pu and Lalanne (this volume) indicated that categorization is a useful

method for supporting browsing. As in the previous case, however, this technique suffers

from the uncertainty of what are good attributes to use as the organizing structures.

5.1 SageBook Browsing

To support browsing, we developed a scrollable, grid-like interface that enables multiple data-

graphics to be viewed at once (Figure 7). Our recent work has explored ways to enhance

browsing efficiency by grouping similar data-graphics into a stack in one cell of the grid.

Thus the retrieval in Fig. 7 can be compressed to three stacks as shown in Fig. 9. The number

of data-graphics in a stack is indicated by the length of a black bar at the top of each cell. For

example, the first stack in Fig. 9 clearly contains more graphics than the others. The expand

operation can be used to distribute members of any stack into a new grid. An interesting

challenge has been to develop effective grouping strategies (i.e. similarity criteria) for

organizing a large number of data-graphics into a small number of meaningful stacks. The

formal representation of data-graphics provides a framework for regrouping strategies, as it

did for graphic and data queries.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 25

Figure 9: A grid of stacks

We are experimenting with three levels of granularity for grouping graphics: fine design, rough

design, and dominant design. Since SageBook's purpose is primarily to help users get design

ideas, these levels are intended to increase the design differences between stacks by grouping

similar data-graphics together. Fine design includes together those data-graphics that have the

same number and types of spaces, number and types of graphemes within each space and

properties of graphemes. Effectively, these are cases in which the same design was saved for

different data. Viewing the same design with multiple data sets can often bring out striking

differences in how effective it is for different contexts.

The rough design method differentiates data-graphics based on the space types and grapheme

types, and not on the properties of those graphemes. This method I similar to the fine-design

criteria except that graphemes may use different properties and the number of each grapheme

type in a space may differ. For example, data-graphics like the ones in Figures 5 and 6 would

be stored in the same stack regardless of the properties of the graphemes that were used (e.g.

circle size). In addition, this also groups bar charts with one, two or more bars per axis

element in the same stack or maps with points containing a single label or multiple labels in

the same stack. The intent of this type of grouping is to group together graphics that share

basic design elements that differ mainly in the number and properties of graphemes they

contain. For example, bar charts containing a single bar per independent variable would be

included with charts containing two or more bars. Charts that contain bars with

superimposed circles would be differentiated from charts that have bars with text labels

because they emphasize different design relationships.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 26

Finally the dominant design method further relaxes the constraints on the data-graphics that

go into the same pile. It requires that the data-graphics that are grouped into one pile have

the same spaces and each space has the same dominant grapheme. The dominant grapheme is

the most salient grapheme in a particular space. For example, lines or bars are dominant

when they are combined with marks. This technique was developed when it was discovered

that users frequently searched for use of particular graphemes and had biases as to which

graphemes were primary or secondary.

We have found that these methods significantly lower the number of data-graphic piles that

are shown to the user at any one time. For example, the retrieval of 15 graphics for the

horizontal interval bar query (9 of them are shown on the grid in Fig. 7) was compressed to 3

dominant grapheme stacks (Fig. 9). The degree of reduction will depend greatly on the

nature of the library. Libraries created by individuals who store many examples of the same

graphic will show much different savings from libraries specifically constructed to maximize

differences among graphics to provide many design alternatives.

Another metaphor for browsing is that of a book. Search results are organized into a book

organized into chapters, subchapters and sections based on a classification scheme. Users can

browse this book at any level, including individual graphics. Part of the browsing hierarchy is

shown in Figure 10. At the first level, data-graphics are divided according to the space

disciplines they contain, namely charts, maps, tables, etc. In a study conducted by Lohse

(Lohse et al. 1994), these were the main categorizations picked by the users. The next level in

the hierarchy separates out data-graphics by grapheme class within the same space type. This

is the next most salient feature. Data-graphics that have multiple grapheme classes will be

present in multiple piles, enabling people to access them from different perspectives. Finally,

we classify the data-graphics according to the properties used. Note that, as before, if a data-

graphic is using two different properties, it will be classified under two different sections in

the hierarchy.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 27

SageBook

Charts Maps Networks Tables

Mark-chart Line-chart

Color-mark-chart Size-mark-chart

Mark-chart

Color-mark-table Size-mark-table

Text table

...

......... ...

...

Figure 10: The book organization

The browsing interface also provides a workspace where collections of data-graphics can be

stored and manipulated by users. This can be achieved by dragging individual or piles of

data-graphics into the workspace. Within the workspace, users may organize their retrievals

into new piles by merging, differentiating, and intersecting sets of graphics designs.

6. ADAPTATION

The most important assumption of SageBook is that graphics are retrieved to support design.

Therefore, while the quality of the retrieved set is important, what is equally important is

how easily an element of this set can be modified to create the desired design. Relatedly, the

use of similarity search strategies opens up the possibility that some of the graphics retrieved

may not fully conform to what the user desires. In addition, users may sometimes need to

edit the results to combine multiple retrieved objects. To support these tasks, retrieval

systems that support design need to provide tools that facilitate adaptation of retrieved

objects. Most systems do not support adaptation, and the few that support it usually only

provide manual editing capabilities. The adaptation process, however, may sometimes be

complex and inexperienced users or designers may have trouble articulating desired effects.

SageBook provides users with automatic adaptation as well as manual editing capabilities.

The automatic adaptation facility alters prior designs to suit current data and design

preferences.

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 28

6.1 SageBook Adaptation Support

To support adaptation, our system provides manual adaptation capabilities with SageBrush

and automatic adaptation capabilities through SageBook. The automatic adaptation module

maps data-attributes in the query to data-attributes in the retrieved data-graphic based on

their similar data characteristics. This mapping process can produce two types of

inconsistency: (1) The retrieved data-graphic has more graphical elements than necessary to

express the data-attributes in the query. This can result from a subset query that retrieved a

graphic portraying more data attributes than were in the query. (2) The graphical elements in

the retrieved graphic do not express some of the data-attributes in the query. This can happen

when an overlap query retrieves a graphic that does not satisfy all the query attributes. It is

possible for both inconsistencies to occur simultaneously.

In the first case, the adaptation module will discard extra graphical elements in the retrieved

data-graphic. The module first discards any extra properties of graphemes (e.g. discarding the

use of color or size). If discarding these properties results in a grapheme that would have no

properties mapped to data, then the grapheme itself is discarded. Finally, if a space contains

no remaining graphemes, it is discarded as well. The progressive removal of unnecessary

graphical elements preserves the most salient features for possible use. During adaptation, we

assume that the user would want to change the retrieved design as little as possible when

there are still data attributes to be expressed. Because a space is a very salient design feature,

it will be very noticeable to the user when the adaptation module deletes a space from the

design. Similarly, removing graphemes is more salient than not using some of their

properties. In the second case, when there are data attributes that are not expressible by the

graphic, SAGE will search for an additional design to express them.

Figure 11 shows a data query for attributes of house sales and an example retrieved graphic

that shows attributes of construction project activities. The graphic was retrieved because the

start- and end-date interval in the graphic matches the asking-price/selling-price range in the

query, the activity-name attribute matches the house attribute. However, the activity status

attribute, expressed by the color of the bar, does not match the agency estimate attribute (the

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 29

latter is a quantity: dollar amount, while the former is a set of four nominal values). Since the

search criterion was overlap, the graphic was retrieved even though these two do not match.

Figure: 11. A data query and an example data-graphic returned by that query

To adapt Figure 11, the color property is first discarded because it does not match any data.

Then, the adaptation module sends the query data and partially completed graphic to SAGE

to search for an additional design element to complete it. Figure 12 shows the new data-

graphic.

Figure 12: A new data graphic generated from the query and the data-graphic design in Fig. 11 after

automatic adaptation

SAGE encoded agency-estimate by using the x-position of a new mark grapheme. Position is

an effective property for representing attributes and is preferred over size, shape, color, text

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 30

lettering, etc. However, the positional properties of the bars are already used, so SAGE added

a new grapheme to the chart space. In this case, the additional attribute was a dollar-amount

and could be expressed relative to the same x-axis as the other dollar-amounts. Otherwise,

SAGE would have to choose between adding another chart aligned to the right of this one or

using text labels on the bars to express the agency estimate. In general, SAGE can generate

multiple alternatives from which a user can choose. We have encoded a knowledge base of

design techniques within SAGE that can complete partial design specifications or create

graphics when no specifications are provided (Roth et al. 1994).

7. EVALUATION

Common evaluation measures such as precision and recall have been used to indicate the

performance of a retrieval system. Generally, performance is affected by three classes of errors

depending on which part of the system they are produced (cf. Fig. 1): interface errors (that

affect query construction and adaptation), translation errors (i.e. from query to internal

representation), and retrieval errors (that occur in search and match steps).

Interface errors are user-system communication problems that might occur when users are

unable to accurately convey their queries or adapt retrieved objects for their current goals

using the SageBrush interface. In principle, these errors may occur as the result of poor

editing tools. As a result of iterative interface improvements based on preliminary user tests

interface errors have been reduced to insignificant levels. The main remaining weakness is

the potential for users to specify complex spatial relationships among graphemes that are not

yet accurately interpreted by the system (e.g. the arrangement of several text labels around a

bar in a chart). Problems like these indicate incompleteness in the representation language

and greater flexibility in the interface than is supported by the representation. It can be solved

by extending the language or constraining the interface. Related problems can occur in

manual adaptation.

Translation errors occur during the conversion of raw objects and queries into the system's

internal representation. They usually occur when the internal structure is very high level

because complex embedded semantic information has to be derived. For example, translation

errors are especially problematic for image retrieval systems where high-level semantic

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 31

information embedded in the image needs to be extracted accurately (Griffioen, Yavatkar and

Adams, this volume).

SageBook does not have translation errors because the query interface is tightly coupled with

the internal representation. SageBook has access to the model descriptions of the data-

graphics as generated by SAGE during graphics creation. These storage descriptions contain

at least as much information as the data-graphic itself; therefore, there are no inconsistencies

between the generated data-graphic and their stored descriptions.

Retrieval errors fall into two categories: structural errors and relevance errors. Structural

errors occur when the match criteria does not coincide well with user expectations. Since the

user’s model is usually at a high semantic level, these errors tend to occur when the internal

representation is at a very low level. For example, if the representation contained image

properties such as object outlines, then objects that users perceive as structurally identical

might not be correctly matched due to orientation and scale differences. Pentland, Picard and

Sclaroff (1994) described such matching errors. SageBook has few structural errors because of

closeness of the query language to the system representation.

The other type of retrieval errors are relevance errors. The concept of relevance reflects the

degree of utility of the retrieved objects for users and the tasks they perform. For example, if

a user can easily adapt a visualization from the library to his or her data, then we can assume

that that visualization has been relevant to that user. However, since designs are so task

oriented, just creating a new visualization from an old design may not be sufficient for

judging design relevance: the new visualization might be appropriate for some tasks and not

others (e.g. viewing correlations vs. making comparisons between pairs of values).

Conversely, a library design may not be directly adaptable to a new visualization but it may

contain just one element that is valuable for the user. By using this element, one might be

able to solve a difficult design problem. In the latter case, even though the user would discard

a major part of the original design, it still should be considered relevant. These characteristics

of designs make the evaluation of our retrieval and automatic adaptation techniques difficult

and perhaps suggests that traditional information retrieval evaluation methods may be

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 32

insufficient. New research must create an evaluation procedure for judging the relevance of

designs that is based on:

• a method of assigning a degree of relevance based on measures of the ease and

completeness of the supported design task (including feedback from users on the value of

the retrieval set for the tasks);

• well populated libraries collected from naturally occurring samples;

• a corpus of naturally occurring data analysis tasks to be performed with the search task.

8. CONCLUSION & FUTURE WORK

We have presented querying, storing, searching, browsing, and adaptation techniques

pertaining to the retrieval and reuse of graphic designs. We also describe an implemented

system, SageBook, that employs these techniques. The following types of retrieval

components are essential for this domain:

• a common vocabulary for representing data-graphics designs;

• an object manipulation querying interface (like SageBrush);

• graphic- and data-matching strategies that support different levels of similarity between

queries and designs;

• a visual interface for presenting the results of the retrieval and flexible browsing at

different levels of aggregation;

• automatic and manual adaptation of retrieved designs for new data.

Preliminary experience with SageBook suggests that these features ensure very few interface,

translation and structural errors. Positive evaluation of relevance errors depends both on

methods for assessing tasks, as well as encoding task properties in the query and search

process (i.e. enabling users to express the tasks they wish to perform with retrieved graphics).

Future work includes performing comprehensive user testing and incorporating SageBook as

a design support tool within an extensive information exploration environment called Visage

(Roth et al. 1996).

Sketching, Searching, and Customizing Visualizations: a Content-based Approach to Design Retrieval • 33

9. ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of Mark Derthick, John

Kolojejchick and Joseph Mattis to the research, implementation and preparation of this

paper. This work was supported by DARPA and Army Research Lab.

