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ABSTRACT
Therevelation principleis a cornerstone tool in mechanism design.
It states that one can restrict attention, without loss in the designer’s
objective, to mechanisms in which A) the agents report their types
completely in a single step up front, and B) the agents are moti-
vated to be truthful. We show that reasonable constraints on com-
putation and communication can invalidate the revelation principle.
Regarding A, we show that by moving to multi-step mechanisms,
one can reduce exponential communication and computation to
linear—thereby answering a recognized important open question
in mechanism design. Regarding B, we criticize the focus on truth-
ful mechanisms—a dogma that has, to our knowledge, never been
criticized before. First, we study settings where the optimal truth-
ful mechanism isNP -complete to execute for the center. In that
setting we show that by moving to insincere mechanisms, one can
shift the burden of having to solve theNP -complete problem from
the center to one of the agents. Second, we study a new oracle
model that captures the setting where utility values can be hard to
compute even when all the pertinent information is available—a
situation that occurs in many practical applications. In this model
we show that by moving to insincere mechanisms, one can shift the
burden of having to ask the oracle an exponential number of costly
queries from the center to one of the agents. In both cases the in-
sincere mechanism is equally good as the optimal truthful mecha-
nism in the presence of unlimited computation. More interestingly,
whereas being unable to carry out either difficult task would have
hurt the center in achieving his objective in the truthful setting, if
the agent is unable to carry out either difficult task, the value of the
center’s objectivestrictly improves.

1. INTRODUCTION
Systems, especially on the Internet, are increasingly being used

by multiple self-interested parties with different preferences. The
coordination of these agents is of key importance, but one cannot
assume that they will behave in a way that is desirable systemwide.
Rather, they will act in their own interest. Mechanism design, a
subfield of game theory, deals with designing the rules of the game
(aka. amechanism) so that a good systemwide outcome will be
achieved despite the fact that the agents act based on self-interest.

The revelation principleis a cornerstone tool in mechanism de-
sign. It states that one can restrict attention, without loss in the
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designer’s objective, to mechanisms in which A) the agents report
their types completely in a single step up front, and B) the agents
are motivated to be truthful. In settings where computation and
communication are free and unlimited, the argument for the reve-
lation principle is valid.

However, in this paper we show that reasonable constraints on
computation and communication can invalidate the revelation prin-
ciple. We separate the two prescriptions (A and B) of the revelation
principle, and show how each of them can fail. We address A in
Section 2, and B in Section 3.

The results of this paper consist of example settings with certain
properties that demonstrate the failure of the revelation principle.
We show that such instances already occur in very restricted set-
tings (for example, with only one type-reporting agent), suggesting
that the problems with the revelation principle discussed in this pa-
per occur even in the most basic of mechanism design problems.1

1.1 Mechanism design: Definitions
In the framework of mechanism design, there is acenterto whom

the agents reveal information. The center makes sure that the rules
of the game (e.g. rules of an auction) are followed, and in the end
imposes an outcome based on how the agents played the game. We
now define the setting formally.

DEFINITION 1. A preference aggregation settingconsists of a
set of outcomesO,2 a set of agentsA with |A| = N , and for each
agent: A set oftypesΘi; A probability distributionpi overΘi; A
utility functionui : Θi ×O → <. 3

Though this follows standard game theory notation [21], the fact
that agents have both utility functions and types is perhaps con-
fusing. The types encode the various possible preferences that
agents may turn out to have, and the agents’ types are not known
by the center. The utility functions are common knowledge, but the

1This is not to say that all instances of the mechanism design prob-
lem have exactly the properties of the instances presented in this
paper–the instances presented here are extreme cases, so that the
issue at hand is demonstrated in the most clear fashion. Neverthe-
less, we believe that these issues will occur at least to some extent
in many mechanism design problems.
2Sometimes, it is possible for the agents to make side payments. If
so, each outcome includes a specification of how much each agent
pays or receives. The results of this paper do not rely on side pay-
ments.
3The revelation principle, discussed shortly, also applies in more
general settings, such as when the types are correlated, as well as
when the agents observe different signals and each agent’s utility
depends on the others’ signals too. However, all of our results go
through even in the simple setting defined above (aka. the indepen-
dent private types model).



agent’s type is a parameter in the agent’s utility function. So, the
utility of agenti is ui(θi, o), whereo ∈ O is the outcome andθi is
the agent’s type.4

The mechanism designernow has the choice between various
game forms with consequences. This choice will decide which ac-
tions are available to the agents in the game, and how their actions
map to an outcome.

DEFINITION 2. A strategic game form with consequencescon-
sists of a set of actionsAi for each agent, and an outcome function
o : A1 ×A2 × . . .×AN → O.5 Of particular interest aredirect-
revelation games, where for each agenti,Ai = Θi.

Once the game is chosen, each agent will adopt astrategy.

DEFINITION 3. A strategyfor agenti is a functionsi : Θi →
Ai.6

A solution conceptindicates which vectors of strategies are strate-
gically stable. We discuss the two most common solution con-
cepts: implementation indominant strategies, and implementa-
tion in Bayes-Nash equilibrium. We use the following standard
notation. We write (for example)a−i for the vector of all play-
ers’ actions besidesi’s; and we write (for example)(a, a−i) for
(a1, . . . , ai−1, a, ai+1, . . . , aN ). We also use the notationEθ←p[]
to indicate that the expectation is taken over the probability distri-
butionp for θ. That is,θ is drawn fromp.

DEFINITION 4. The vector of strategies(s1, . . . , sN ) is adom-
inant strategy equilibriumif for every agenti, for every typeθi ∈
Θi, every alternative actionai ∈ Ai, and every action vector
a−i ∈ A−i of the other agents, we haveui(θi, o(si(θi), a−i)) ≥
ui(θi, o(ai, a−i)). In this case, we say that the game form (or the
mechanism)implements the social choice rulec : Θ1×Θ2× . . .×
ΘN → O given byc(θ1, . . . , θN ) = o(s1(θ1), . . . , sN (θN )) in
dominant strategies.

Thus, in dominant strategy equilibrium, the action prescribed by
one’s strategy is optimal regardless of what the other agents do. If
it is optimal only given the other agents’ strategies, and given that
one does not know the other agents’ types, we have aBayes-Nash
equilibrium.

DEFINITION 5. The vector of strategies(s1, . . . , sN ) is aBayes-
Nash equilibriumif for every agenti, for every typeθi ∈ Θi, and
every alternative actionai ∈ Ai, we have
Eθ−i←p−i [ui(θi, o(si(θi), s−i(θ−i)))] ≥
Eθ−i←p−i [ui(θi, o(ai, s−i(θ−i)))]. In this case, we say that the
game form (or the mechanism) implements the social choice rule
c : Θ1 × Θ2 × . . . × ΘN → O given byc(θ1, . . . , θN ) =
o(s1(θ1), . . . , sN (θN )) in Bayes-Nash equilibrium.

4This (generally accepted) representation is fully general in the fol-
lowing sense: given any family of utility functions (that only take
an outcome as input), we let every utility function correspond to
a type. Then, we construct a single new utility function that takes
both a type an an outcome as input, and returns the value of the
original utility function corresponding to that type, on that out-
come. Also, because neither representation is more concise, our
results do not depend on which representation we use.
5If the functiono instead produces aprobability distributionover
outcomes, we say the mechanism israndomized. In this paper we
only discuss deterministic mechanisms.
6If an agent randomizes over strategies, he is said to use amixed
strategy. We present our subsequent definitions in terms of pure
strategies, but they are easily generalized to mixed strategies.

Given the preference aggregation setting, the space of possible
game forms, and the desired solution concept, the mechanism de-
signer attempts to choose the game form so as to maximize the
expected value of someobjective. The most studied objective is
social welfare, which is simply

∑N
i=1 ui(θi, o).

1.2 The revelation principle
The revelation principle states that in designing mechanisms, we

only need to consider direct-revelation games, where each agent
reports his type directly (completely and in a single step up front).
Additionally, we only need to consider those games in which ev-
ery agent reveals his typetruthfully in equilibrium. Roughly, the
argument is as follows. We show that given any mechanism, we
can construct a truthful direct-revelation mechanism whose perfor-
mance is identical. Given a mechanism, we can build an interface
layer between the agents and this mechanism. The agents input
(some report of) their types into the interface layer; subsequently,
the interface layer inputs the actionsthat the agents would have
strategically playedif their types were as declared, into the original
mechanism, and the resulting outcome is the outcome of the new
mechanism. Since the interface layer acts “strategically on each
agent’s best behalf”, there is never an incentive to report falsely to
the interface layer. Hence, the actions played by the interface layer
are the actions that would have been played without the interface
layer, so the results are exactly as they would have been with the
original mechanism. We now state the revelation principle formally
for both of the solution concepts under discussion.

REVELATION PRINCIPLE, VERSION 1 (KNOWN). Suppose
there is a strategic game form that implements a social choice rule
c : Θ1 × Θ2 × . . . × ΘN → O in dominant strategies. Then
there exists a direct-revelation game with outcome functiono that
implementsc in dominant strategies, where the dominant strategies
equilibrium through which it is implemented is truthful. That is, for
anyi andθi ∈ Θi, si(θi) = θi, which is a dominant strategy, and
o(θ1, . . . , θN ) = c(θ1, . . . , θN ).

REVELATION PRINCIPLE, VERSION 2 (KNOWN). Suppose
there is a strategic game form that implements a social choice rule
c : Θ1 × Θ2 × . . . × ΘN → O in Bayes-Nash equilibrium. Then
there exists a direct-revelation game with outcome functiono that
implementsc in Bayes-Nash equilibrium, where the Bayes-Nash
equilibrium through which it is implemented is truthful. That is, for
anyi andθi ∈ Θi, si(θi) = θi, where these strategies constitute a
Bayes-Nash equilibrium, ando(θ1, . . . , θN ) = c(θ1, . . . , θN ).

We are now ready to begin our computational critique of the rev-
elation principle.

2. SINGLE-STEP VS. MULTI-STEP MECH-
ANISMS

The revelation principle suggests that the designer can, without
loss, restrict attention to mechanisms where each agent reveals his
preferences completely in a single step.7 However, complete rev-
elation of preferences is problematic in many applications in prac-
tice, due to several reasons.
7This assumption has also been criticized on the basis that a
broader class of social choice functions is implementable insub-
game perfect equilibrium[34], which is a more sophisticated type
of equilibrium that takes into account the sequential structure of
the game. In this paper, we focus on simpler notions of equilib-
rium that do not concern themselves with the sequential structure
of the game. It is for these notions of equilibrium that the revela-
tion principle holds (assuming free and unlimited computation and
communication).



First, the agents may not know their preferencesa priori, but
rather may have to spend effort in determining their preferences,
for instance by computing or by gathering additional information.
One important setting where this occurs in practice is an auction
where a bidder needs to solve his own planning problem (what he
would do with the items if he would win them in the auction) in
order to determine his valuation for the items that are being auc-
tioned [30,41,46,47]. One real-world application where this occurs
is reverse auctions for trucking services (e.g., [46]). In that setting,
there is a buyer who wants to have a set of items (delivery tasks)
handled. Each bidder (a trucking company) can bid on any combi-
nations of tasks. Each bid states how cheaply the bidder is willing
to handle that combination of tasks. If the auction is conducted
usingVickrey-Clarke-Groves (VCG)pricing (aka. thegeneralized
Vickrey auction), and the bidders have quasilinear utility functions,
then each bidder is motivated to bid his true cost of handling the
combination of tasks [7,23,52]. However, evaluating one’s cost of
handling a combination of tasks involves solving anNP -hard ve-
hicle routing and scheduling problem (and furthermore, the number
of combinations of tasks to consider is exponential in the number
of tasks).

Second, communicating complete preferences may waste band-
width and is impossible in many practical cases. For example, in a
combinatorial auction, a bidder may need to bid on every bundle of
goods to express his preferences, and the number of bundles to bid
on is exponential in the number of goods for sale.

Third, complete preference revelation is undesirable from a pri-
vacy perspective. It would be more desirable to only have the
agents reveal those parts of their preferences that are relevant for
choosing the outcome.8

To address these problems, it makes sense—unlike the revelation
principle would suggest—to shift to using multi-step mechanisms
where the agents reveal their preferences incrementally, only on an
as-needed basis. There are several different types of mechanism for
accomplishing this, such as

• incremental anytime mechanisms that have some feasible out-
come ready at every step of the mechanism.Quantity tatonnement
for (resource/task) allocation problems is an example of this. There,
at each iteration, the center imposes a candidate allocation on the
agents, and each agent responds with how much he would pay (or
would have to be paid) for his allotment in the allocation [34]. This
is closely related to iterative (resource/task) reallocation among
agents (e.g., [1,46]).
• price tatonnementmechanisms like ascending (or descending)

auctions. In these types of mechanism, the center, at every iteration,
posts a price vector (prices on items or combinations of items) to
each bidder, and each bidder states which combination (potentially
the empty combination) the bidder prefers at that price vector [2,6,
20, 35, 40, 43, 44, 51, 53]. The mechanism terminates in a solution
where the bidders’ demands, together, are feasible.
• explicit preference elicitation. In these mechanisms, the center

explicitly queries the agents about specific aspects of their pref-
erences in light of what the center has learned about the agents’
preferences so far. This has been applied to combinatorial auc-
tions [9–11], and in practice only a vanishingly small fraction of the
bidders’ valuation information needs to be revealed before the op-
timal allocation can be determined for certain [24].9 This approach

8In some settings, the privacy issue can be mitigated by other tech-
niques as well, such as secure function evaluation.
9This is despite the fact that in the worst case, to determine an
(even approximately) optimal allocation in a combinatorial auction
requires exponential communication [39].

has also been applied to preference elicitation in voting [15].

In multi-stage mechanisms, the agents may get signals about
each others’ actions so far, so the agents may be able to condition
their actions on these signals. This potentially introduces additional
opportunitiues for strategic manipulation of the mechanism by the
agents [15]. However, if the mechanism is social welfare max-
imizing (assuming truthful revelation) and VCG pricing is used,
then revealing one’s preferences (the part of the preferences that the
mechanism asks about) truthfully is anex postequilibrium [9].10 11

While it is known that multi-step mechanisms can save reve-
lation compared to single-step mechanisms, it has not been clear
whether these savings can be drastic. For one, Christos Papadim-
itriou recently (at the DIMACS Fall 2001 workshop on Computa-
tional Issues in Game Theory and Mechanism Design) posed the
question of whether multi-step mechanisms can yield anexponen-
tial reduction in communication/computation.12 The following the-
orem shows that this is the case even in very simple settings. This
clearly demonstrates the impracticality of the single-step mecha-
nisms advocated by the revelation principle.

THEOREM 1. There exist preference aggregation settings (even
when the objective is social welfare maximization, there are only 2
agents, and the agents’ types are private and drawn independently),
where

• each optimal single-step mechanism requires the communi-
cation of an exponential number of bits (and thus exponential
computation by the center to receive these bits) for every type
vector, and

• there exists a multi-step (2-step) mechanism that implements
the same social choice rule, requires only a linear number of
bits to be communicated, and uses only a linear amount of
computation at the center.

This holds both for dominant strategy implementation and for Bayes-
Nash implementation.

PROOF. Consider a setting where the outcome is a string ofn+1
bits, so|O| = 2n+1. Let there be 2 agents. Agent 1’s typeθ1 is a
string ofn bits, so|Θ1| = 2n. The utility of agent 1 isu1(θ1, o) =
2 if the firstn bits of the outcomeo agree withθ1, and0 otherwise.
Agent 2’s typeθ2 is a mapping from the set of alln-bit strings to
a bit, that isθ2 : {0, 1}n → {0, 1}. Defineprefixn(s) to be
the string of the firstn bits of bit strings, and definelast(s) to
be the last bit ofs. The utility of agent 2 isu2(θ2, o) = 1 if
θ2(prefixn(o)) = last(o), and0 otherwise. The interpretation
is that agent 2’s type defines how agent 2 wants the last bit of the

10Ex postequilibrium is a game-theoretic solution concept that is
strictly stronger than Nash equilibrium and strictly weaker than
dominant strategy implementation. In short, a strategy profile is
in ex postequilibrium if it is a Nash equilibriumfor any prior.
The claim that we have anex postequilibrium here relies on the
fact that in the direct-revelation VCG mechanism, truthful revela-
tion is a dominant strategy, that is, an optimal strategy no matter
what types the other agents reveal. So, if in the equilibrium of the
multi-step mechanism the other agents’ strategies are such that they
always report the same type no matter what one does, then truth-
ful revelation is one’s optimal strategy. This holds for every agent.
Therefore truthful revelation is in equilibrium (for any prior).

11In some games of this type, there may be additional equilibria.
12In the theory of communication complexity (in a non-game-
theoretic setting), it has already been shown that an exponential
communication gap can exist between the best single-step and the
best multi-step communication protocol [27].



outcome set based on how the firstn bits of the outcome are set.
As usual, the utility functions are known by the center as well, but
the types are privately known by the agents.

Let the mechanism’s objective be the maximization of social
welfare, i.e.,

∑
i∈{1,2} ui(θi, o). The unique optimal direct-

revelation mechanism for this game elicitsθ1 (that is,n bits) from
agent 1 andθ2 (that is,2n bits) from agent 2, and chooses the out-
come(θ1, θ2(θ1)). The outcome always maximizes social welfare.

It is easy to see that in this mechanism, each agent’s dominant
strategy is to reveal his type truthfully. Agent 1 unilaterally deter-
mines all of the aspects of the outcome that he cares about (that
is, the firstn bits of the outcome), so his dominant strategy is to
revealθ1 truthfully. Agent 2 cannot affect the firstn bits in any
way, and unilaterally determines the last bit of the outcome (condi-
tional on what agent 1 does), so his dominant strategy is to reveal
θ2 truthfully.

Now, any single-step mechanism that is guaranteed to find the
social welfare maximizing outcome will have to elicit this much
information (θ1 and θ2), in the following sense. If the mecha-
nism cannot distinguish whether agent 1’s type isθ1 or θ′1, then
the mechanism does not know how to set the firstn bits of the
outcome. On the other hand, suppose the mechanism cannot dis-
tinguish whether agent 2’s type isθ2 or θ′2. If θ2 6= θ′2, then there
exists ann-bit stringσ such thatθ2(σ) 6= θ′2(σ), and if it happens
thatθ1 = σ, then the mechanism does not know how to set the last
bit of the outcome.

Now, consider a 2-step mechanism. In the first step the mecha-
nism elicitsθ1 (i.e.,n bits). In the second step, the mechanism elic-
its θ2(θ1) (i.e., 1 bit). The outcome again is(θ1, θ2(θ1)). For the
same reasons as in the single-step mechanism, each agent’s dom-
inant strategy is to reveal his type truthfully. So, this multi-step
mechanism implements the same social choice rule as the single-
step mechanism, but only elicits a linear number of bits (n+ 1) in-
stead of the exponential number required by the single-step mech-
anism (n+ 2n).

3. TRUTHFUL VS. INSINCERE MECHA-
NISMS

The fact that multi-step mechanisms have computational and com-
munication advantages over single-step mechanisms has been ob-
served before and explored to a certain extent already, as discussed
above. However, the revelation principle has another question-
able facet: it states that restricting attention to truthful mechanisms
comes at no loss. In this section we show that, interestingly, under
limited computational resources, this restrictiondoesincur a loss.

3.1 Computational complexity in truthful vs.
insincere mechanisms

In many real-world mechanism design settings, the center faces
an intractable optimization problem in trying to execute the mech-
anism. For example, the problem of determining the winners of a
combinatorial auction isNP -complete [45] and inapproximable [48].
Recently there has been a surge of research in developing faster
algorithms for optimally executing mechanisms, e.g., winner de-
termination algorithms for combinatorial auctions (e.g., [22,32,36,
45, 48, 49]). There has also been considerable recent work (called
algorithmic mechanism design) on designing mechanisms that 1)
can be executed with polynomial effort, 2) yield an outcome that
is provably within a bound from optimal, and 3) where the agents
have incentive to act truthfully (see, e.g., [33, 37, 38]). A third in-
teresting avenue of research in this area isautomated mechanism
design, where the mechanism is generated automatically (i.e.,de-

signedcomputationally) for the setting at hand [14]. Each of these
three strands of research follows the revelation principle’s prescrip-
tion that attention should be restricted to truthful mechanisms.

In this subsection, we question the focus on truthful mechanisms
when the setting requires the solution of computationally hard prob-
lems. In particular, we show that there are settings where by aban-
doning truthful mechanisms, we can shift a computationally hard
problem from the center to one of the agents. Additionally, whereas
not being able to cope with the issue of computational hardness
would have hurt the center in achieving his objective, if the agent is
unable to cope with it, this actually helps the designer in achieving
his objective.13

We first observe that dominant strategy implementation and Bayes-
Nash implementation differ only on what agents can be expected to
know about each others’ types and actions. An interesting special
case is games where only one agent needs to choose an action. In
this case, the acting agent always knows everything there is to know
about the other agent’s actions (namely, nothing). So, both solution
concepts coincide here. We prove the remaining two theorems for
this types of game, so the results hold both for dominant strategy
implementation and Bayes-Nash implementation.

THEOREM 2. Suppose that the center is trying to maximize so-
cial welfare, and neither payments nor randomization is allowed.
Then, even with only two agents (one of whom does not even re-
port a type, so dominant strategy implementation and Bayes-Nash
implementation coincide), there exists a family of preference aggre-
gation settings such that:

• the execution of any optimal truthful mechanism isNP -complete
for the center, and

• there exists an insincere mechanism which 1) requires the
center to carry out only polynomial computation, and 2) makes
finding any beneficial insincere revelationNP -complete for
the type-reporting agent. Additionally, if the type-reporting
agent manages to find a beneficial insincere revelation, or
no beneficial insincere revelation exists, the social welfare of
the outcome is identical to the social welfare that would be
produced by any optimal truthful mechanism. Finally, if the
type-reporting agent does not manage to find a beneficial in-
sincere revelation where one exists, the social welfare of the
outcome isstrictly greaterthan the social welfare that would
be produced by any optimal truthful mechanism.

Put in perspective, the mechanism designer would reap two ben-
efits from using the second, insincere mechanism rather than a
truthful mechanism:

1. Doing so shifts the computational hardness from the center
to the agent. This can also be seen as a statement about how
the social welfare that can be obtained by truthful mecha-
nisms compares to the social welfare that can be obtained
by insincere mechanisms, as follows. If it is computation-
ally infeasible to execute the optimal truthful mechanism, the
designer might resort to another truthful mechanism which
merely approximates the social welfare obtained by the op-
timal truthful mechanism (this is exactly the approach taken
in algorithmic mechanism design).

2. If the agent cannot consistently solve instances of anNP -
complete problem, then, even if the agent is trying to act

13The idea that manipulation in nontruthful mechanisms may not
(always) occur because it is too hard computationally has already
been studied in the voting literature [3,4,12,13,16].



strategically, using the second mechanism improves social
welfare in some cases (and never decreases it).

Hence, (by the second argument) the insincere mechanism—which
is computationally feasible to execute—outperforms the optimal
truthful mechanism, which (by the first argument) in turn outper-
forms any computationally feasible truthful mechanism.

We now present the proof.

PROOF. We present the family of settings in “story form” to im-
prove readability; the presentation is easily transcribed into formal
notation. The head of an organization has to decide on a team of
k employees to send on a project.n employees are available. In
deciding on a team, the head of organization is trying to aggre-
gate the preferences of two parties: the job manager of the project
(who is already known), and the head of recruiting. (Note that, in
this example, we are not interested in the preferences of the em-
ployees who may actually be sent on the project.) Some of the
employees are “old friends”; this relationship can be represented in
a graph, where the vertices represent the employees, and an edge is
drawn between two vertices if the employees they represent are old
friends. (This graph is common knowledge.) The only interest that
the head of recruiting has in the selection of the team is that she
would like at least two members of the team to be old friends, be-
cause this will make for a nice story in the next recruiting brochure.
She gets a utility of2 if there is a pair of old friends in the team,
and a utility of0 otherwise. (This is common knowledge, so the
head of recruiting need not report a type.) The job manager, on the
other hand, prefers it if there are no old friends in the team, be-
cause he feels that this will lead to an unprofessional atmosphere.
He gets a utility of0 if there is a pair of old friends in the team,
and a utility of 1 otherwise. Again, this is common knowledge.
However, the job manager may also have detailed knowledge about
which team of employees would collectively have a skill set appro-
priate for the project. If this is the case, and this exact team of
employees is selected to go on the project (whether this team has
old friends in it or not), the job manager gets an additional utility
of 3. Whether the job manager believes a particular team is ideal,
and if so, which team it is, is not common knowledge. Hence, this
information needs to be reported by the job manager; and thus, the
job manager has a type set of size

(
n
k

)
+ 1 (one type for each pos-

sible team, indicating that the job manager believes that this team
is ideal for the project, and one additional type indicating that the
job manager does not believe any particular team is ideal). Let the
probability distribution over this type set be uniform. Now let us
consider the problem of creating a mechanism for such a setting
that uses neither payments nor randomization.

First, we claim that all optimaltruthful mechanisms are of the
following form.

• If the job manager reports a type corresponding to a particu-
lar team, then choose this exact team;

• If the job manager reports the type indicating that he does
not believe that any particular team is ideal, then 1) if a team
without any old friends exists (corresponding to an indepen-
dent set of sizek in the graph), choose such a team; or 2)
if no such team exists, choose any team (it does not matter
which).

It is straightforward to verify that mechanisms of this form act in
the job manager’s best interest, i.e., they always choose one of
the outcomes that are optimal for the job manager given his type.
Hence, the job manager never has any incentive to misreport his
type, so these mechanisms are truthful. All that remains to show is

that all other truthful mechanisms have strictly less expected social
welfare than these. We first observe that the only case in which
we get less than the optimal social welfare with the mechanisms
of the given form is when the job manager has the type that cor-
responds to no team, and an independent set of sizek exists. In
this case, the mechanisms of the given form choose an indepen-
dent set as the team, leading to a social welfare of1; whereas a
social welfare of2 could have been obtained by choosing a team
with friends in it. It follows that the expected social welfare that
we get from one of the mechanisms in the given form is at most

1

(nk)+1
below the maximal expected social welfare that we could

have obtained if the agents did not play strategically. Now con-
sider an alternative truthful mechanism that, for some team, does
not choose this team when the job manager reports the type corre-
sponding to that team. In this case, this mechanism can obtain a
social welfare of at most2, whereas the optimal social welfare in
this case is at least4. It follows that the expected social welfare
we get from this mechanism is at least2

(nk)+1
below the maximal

expected social welfare that we could have obtained if the agents
did not play strategically. Hence, all optimal truthful mechanisms
always choose the team corresponding to the type that the job man-
ager reports, when the type corresponds to a team. But then, if an
independent set in the friendship graph exists, an optimal truthful
mechanism must choose such an independent set in the case where
the job manager reports the type corresponding to no team: because
if it does not, then when the job manager has this type, he would
benefit from misreporting his type as a type corresponding to the
independent set—and the mechanism would no longer be truthful.
Thus, we have established that all optimal truthful mechanisms are
of the given form. We observe that executing such a mechanism
requires solving anNP -complete problem, because we have to
construct an independent set if it exists.

Now consider the following mechanism:

• If the job manager reports a type corresponding to a particu-
lar team, then choose this exact team;

• If the job manager reports the no-team type, then choose
some team with at least a pair of friends.

We observe that this mechanism is computationally easy to execute.
Also, this mechanism is not truthful if there is an independent set,
because in this case, if the job manager has the type corresponding
to no team, the job manager would be better off reporting the type
corresponding to the independent set. However, there are no other
beneficial insincere revelations. Thus, it is straightforward to verify
that if the job manager always reports the type that is strategically
optimal for him, the outcome of this mechanism is always identical
to that of one of the optimal truthful mechanisms. Of course, in
order for the job manager to always report the type that is strategi-
cally optimal for him, he needs to construct an independent set (if
possible) when he has the type corresponding to no team. Because
this problem isNP-complete, it is reasonable to suspect that the
job manager will not always be able to construct such a set even
when it exists. If the job manager indeed fails to construct an inde-
pendent set in this case, the outcome will be a team with at least a
pair of friends. This outcome actually has a social welfare of2, as
opposed to the social welfare of1 that would have been obtained
if the job manager had managed to construct an independent set.
Hence the social welfare is strictly greater than in the case where
the job manager has unlimited computational power; and hence it
is also a greater than it would have been with an optimal truthful
mechanism.



3.2 Valuation complexity in truthful vs. insin-
cere mechanisms

In this subsection, we question the focus on truthful mechanisms
when determining valuations is hard. We focus on the following
abstract model of this. Suppose that there is a commonly accessible
oraclewhich, when supplied with an agent, that agent’s type, and
an outcome, returns a utility value for that agent. This oracle is the
only available means for determining agents’ utilities for outcomes.
Depending on the supplied type, the query may be costless, or carry
a constant (computational) cost.14

We first provide two settings where this model is realistic.
Example 1. Suppose we are trying to allocate delivery tasks to

various shipping companies. In this case, a shipping company’s
type (private information) consists of the resources available to this
company. An outcome consists of an allocation of the delivery
tasks to the companies. Even when we know both the company’s
type and the outcome selected by the center, in order to compute
the company’s cost for this allocation, we need to compute the op-
timal delivery schedule for the company given its type. This may
or may not be difficult depending on the resources available to the
company. For instance, if the company only has ground-based ve-
hicles available, this may require solving a computationally hard
routing problem, which is to be solved by some software package
(an “oracle”). Running this software package may be expensive.
On the other hand, the company may have a helicopter available to
it whose flight time between any two locations is negligible, and
the only cost it incurs is a constant cost per takeoff. In this case,
the cost to the company of an allocation of tasks to it is simply pro-
portional to the number of tasks in the allocation, which is trivial to
compute. Hence there is no cost to this computation.

Example 2. Suppose we are trying to sell a piece of art. In
this case, a bidder’s private information may include whether she
is an art trader, or an art collector. In the former case, to determine
her valuation for an outcome (which indicates whether she won the
piece of art or not), she needs to query an (expensive) expert about
the authenticity of the painting. In the latter case, she simply has
an intrinsic valuation for the piece of art, so that there is no cost to
her in evaluating how much the piece of art would be worth to her.

We now show that there are settings where by abandoning truth-
ful mechanisms, one can transfer the burden of having to make an
exponential number of costly oracle queries from the center to the
agent. Additionally, whereas not being able to cope with having to
make exponentially many costly queries would have hurt the center
in achieving his objective, if the agent is unable to cope with it, this
helpsthe designer in achieving his objective.

THEOREM 3. Suppose that the center is trying to maximize so-
cial welfare, and neither payments nor randomization is allowed.
Then, even with only two agents (one of whom does not even re-
port a type, so dominant strategy implementation and Bayes-Nash
implementation coincide), there exists a family of preference aggre-
gation settings such that:

• the execution of any optimal truthful mechanism requires the
center to make (on average) exponentially many costly queries
to the oracle for some type reports, and

14Mechanism design with a cost of information acquisition (or
equivalently, computation) to determine one’s valuation has been
studied before [5, 8, 17–19, 25, 28–31, 47]. However, we do not as-
sume that there is a method for equating the cost of a query with a
cost in utility units; rather, we merely assume that an exponential
query (computational) cost is unmanageable, as is typical in the
computer science literature.

• there exists an insincere mechanism 1) which does not re-
quire the center to make any costly queries, and 2) where the
agent needs to make (on average) exponentially many costly
queries to the oracle to find a beneficial insincere revelation.
Additionally, if the type-reporting agent manages to find a
beneficial insincere revelation, or no beneficial insincere rev-
elation exists, the social welfare of the outcome is identical
to the social welfare that would be produced by any optimal
truthful mechanism. Finally, if the type-reporting agent does
not manage to find a beneficial insincere revelation where
one exists, the social welfare of the outcome isstrictly greater
than the social welfare that would be produced by any opti-
mal truthful mechanism.

PROOF. Let the outcome space beX ∪ {d}, where|X| = 22n.
(Heren is the length of a natural representation for the problem.)15

The type-reporting agent (agent1) has the following type setΘ.
For eachx ∈ X, there is a typeθx which occurs with probabil-
ity 1
|X|+1

. Any query to the oracle involving a typeθx is costless.
The utility function, to be obtained with these queries, is as fol-
lows: u1(θx, x) = 4; u1(θx, y) = 0 for all y 6= x. Additionally,
for each subsetY ⊆ X, there is a typeθY which occurs with
probability 1

|X|+1
( 1

2n
)|Y |( 2n−1

2n
)|X|−|Y |. (That is, with probabil-

ity 1
|X|+1

one of these typesθY occurs, and given this, any given

x is in Y with probability 1
2n

, independently.) Any query to the
oracle involving a typeθY has a nonzero query cost associated with
it.16 The utility function, to be obtained with these queries, is as
follows: u1(θY , x) = 1 for all x ∈ Y ; u1(θY , x) = −1 for all
x /∈ Y,∈ X; u1(θY , d) = 0. It is crucial to not be misled by the
notation into thinking that the setY is immediately obvious when
observing that somebody’s type isθY . Rather, the setY can only
be determined by asking a costly query to the oracle with the type
θY for eachx ∈ X. For instance, as in the shipping company’s
example, the type can be thought of as a set of resources, which
implies which outcomes are favorable and which are not—but only
through costly (oracle) computation. However, we do allow for im-
mediate distinguishing between types of the formθx and those of
the formθY —this would require only a single query anyway.

Agent 2, who does not report a type, has the following utility
function: u2(x) = 0 for all x ∈ X; u2(d) = 2. Now consider
creating a mechanism for such a setting that uses neither payments
nor randomization.

First, we claim that all optimaltruthful mechanisms are of the
following form.

• If agent1 reports a typeθx, then choose outcomex.

• If agent1 reports a typeθY , then choose some outcomex ∈
Y (unlessY is the empty set, in which case, choosed.)

It is straightforward to verify that mechanisms of this form act in
agent 1’s best interest, i.e., they always choose one of the outcomes
that are optimal for agent 1 given his type. Hence, agent 1 never
has any incentive to misreport his type, so these mechanisms are
truthful. All that remains to show is that all other truthful mecha-
nisms have strictly less expected social welfare than these. We first

15For instance, a combinatorial auction withn items and4 bidders
has4n = 22n possible outcomes.

16We note that there is no comparison between this query cost and
the utilities given by the utility functions; we are not assuming that
agents have any way of trading query cost and utility off against
each other.



observe that the only case in which we get less than the optimal so-
cial welfare with the mechanisms of the given form is when agent
1 has a typeθY (with Y 6= {}). In this case, the mechanisms of the
given form choose somex ∈ Y , leading to a social welfare of1;
whereas a social welfare of2 could have been obtained by choos-
ing d instead. Because such types occur with probability less than

1
|X|+1

, it follows that the expected social welfare that we get from

one of the mechanisms in the given form is at most1|X|+1
below

the maximal expected social welfare that we could have obtained
if the agents did not play strategically. Now consider an alternative
truthful mechanism that for some typeθx does not choose outcome
x. In this case, this mechanism can obtain a social welfare of at
most2, whereas the optimal social welfare in this case is4. Be-
cause this type occurs with probability 1

|X|+1
, it follows that the

expected social welfare we get from the alternative mechanism is
at least 2

|X|+1
below the maximal expected social welfare that we

could have obtained if the agents did not play strategically. Hence,
all optimal truthful mechanisms always choose outcomex when
the reported type is someθx. But then, if agent1 reports a type
θY (with Y 6= {}), an optimal truthful mechanism must choose
somex ∈ Y ; because if it does not, agent1 is better off report-
ing θx for somex ∈ Y instead of truthfully reportingθY —and the
mechanism would no longer be truthful. Finally, any optimal truth-
ful mechanism must choosed for the typeθ{}, because this gives
maximal social welfare in this case, and has no negative strategic
effects. Thus, we have established that all optimal truthful mech-
anisms are of the given form. We observe that for theθY types,
executing such a mechanism requires on average an exponential
number of (costly) queries: the only way to find somex ∈ Y is by
asking queries to the oracle. Because, given that the type is some
θY , eachx is in the setY with probability 1

2n
(independently), the

expected number of queries necessary to find anx ∈ Y is expo-
nential.

Now consider the following mechanism:

• If agent1 reports a typeθx, then choose outcomex.

• If agent1 reports a typeθY , then choose outcomed.

We observe that executing this mechanism does not require any
costly queries at all, because queries with a typeθx are costless,
and we do not need to distinguish between the differentθY at all.
The mechanism is not truthful, because if agent1’s type is someθY
(with Y 6= {}), then it is better off reporting someθx with x ∈ Y ,
to effect this outcomex. However, there are no other beneficial
insincere revelations. Thus, it is straightforward to verify that if
agent1 always reports the type that is strategically optimal for it,
the outcome of this mechanism is always identical to that of one of
the optimal truthful mechanisms. Of course, in order for agent1 to
always report the type that is strategically optimal for it, in the cases
where it has a typeθY , it needs to ask (on average) an exponential
number of queries to find somex ∈ Y , so that it can report the
correspondingθx. (Additionally, it may not be trivial to actually
construct the typeθx from x. If this is so, it only strengthens this
argument. However, it is possible to argue that is should be cheap
to find thisθx because queries involving aθx are costless.) It is
reaonable to suspect that agent1 will not always be able or willing
to ask this many queries. If agent1 indeed does not manage to find
somex ∈ Y , the best it can do is reportθY , leading to outcome
d. This outcome actually has a social welfare of2, as opposed to
the social welfare of1 that would have been obtained if agent1 had
managed to find somex ∈ Y . Hence the social welfare is strictly
greater than in the case where agent1 manages to play strategically

optimallly; and hence it is also a greater than it would have been
with an optimal truthful mechanism.

4. CONCLUSIONS AND FUTURE
RESEARCH

The revelation principleis a cornerstone tool in mechanism de-
sign. It states that one can restrict attention, without loss in the
designer’s objective, to mechanisms in which A) the agents report
their types completely in a single step up front, and B) the agents
are motivated to be truthful. In settings where computation and
communication are free and unlimited, the argument for the reve-
lation principle is valid.

However, in this paper we showed that reasonable constraints
on computation and communication can invalidate the revelation
principle. We cleanly separated the two prescriptions (A and B) of
the revelation principle, and showed how each of them can fail.

Regarding A, we layed out the arguments that have been made
in favor of moving to multi-step mechanisms, and presented dif-
ferent important families of multi-step mechanisms in a unified
context. We then formally showed that by moving to multi-step
mechanisms, one can reduce exponential communication and com-
putation to linear—thereby answering a recognized important open
question in mechanism design.

Regarding B, we criticized the focus on truthful mechanisms—a
dogma that has, to our knowledge, never been criticized before.17

First, we studied settings where the optimal truthful mechanism is
NP -complete to execute for the center. We showed that by mov-
ing to insincere mechanisms, one can shift the burden of having
to solve theNP -complete problem from the center to one of the
agents. Second, we studied a new oracle model that captures the
setting where utility values can be hard to compute even when all
the pertinent information is available—a situation that occurs in
many practical applications. In this model we showed that by mov-
ing to insincere mechanisms, one can shift the burden of having
to ask the oracle an exponential number of costly queries from the
center to one of the agents. In both cases the insincere mechanism
is equally good as the optimal truthful mechanism in the presence
of unlimited computation. More interestingly, whereas being un-
able to carry out either difficult task would have hurt the center in
achieving his objective in the truthful setting (because the center
would have had to opt for a suboptimal mechanism instead), if the
agent is unable to carry out either difficult task, the value of the
center’s objectivestrictly improves.

In summary, our results suggest that there is a potentially fruitful
new avenue of research on the boundary of mechanism design and
computer science, where one removes the restriction to single-step
mechanisms or to truthful mechanisms, or both. We have shown
that in some settings, this approach can not onlyreducecomputa-
tion and communication, but can alsousesuch complexities to the
mechanism designer’s advantage.

17Nontruthful mechanisms have been discussed in the literature be-
fore, but the motivation for doing so was either that other con-
straints made truthfulness theoretically impossible for the setting
at hand (for example, in general voting settings, or in exchanges
where budget balance is a hard constraint [42, 50]), or that (effi-
cient) truthful mechanisms were computationally infeasible [26].
All of this work aimed to produce mechanisms that were “close”
to truthful. The approach we suggest here, where (significant) non-
truthfulness may be desired even when a truthful mechanism is pos-
sible and perhaps even computationally feasible, is, to our knowl-
edge, new.
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