
Optimal Delivery of Sponsored Search Advertisements
Subject to Budget Constraints

Zo-e Abrams
Yahoo!, Inc.

701 First Avenue
Sunnyvale, CA , USA

za@yahoo-inc.com

Ofer Mendelevitch
Yahoo!, Inc.

701 First Avenue
Sunnyvale, CA , USA

oferm@yahoo-inc.com

John A. Tomlin
Yahoo! Research
701 First Avenue

Sunnyvale, CA , USA
tomlin@yahoo-inc.com

ABSTRACT
We discuss an auction framework in which sponsored search
advertisements are delivered in response to queries. In prac-
tice, the presence of bidder budgets can have a significant
impact on the ad delivery process. We propose an approach
based on linear programming which takes bidder budgets
into account, and uses them in conjunction with forecasting
of query frequencies, and pricing and ranking schemes, to
optimize ad delivery. Simulations show significant improve-
ments in revenue and efficiency.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: Mathematical Soft-
ware—Algorithm design and analysis

General Terms
Algorithms, Performance

Keywords
column generation, sponsored search, budgets, advertising

1. INTRODUCTION
Search engine companies such as Yahoo!, Google, and

MSN, earn millions of dollars each day by auctioning off
advertisement slots. In addition to the bids, there are two
essential sets of parameters of the system that contribute to
this revenue—the distribution of query frequencies and the
advertiser budgets.

The query frequencies limit the number of times the search
engine can display its advertisers. Query frequencies are not
under the control of the advertisers or the search engine. It
is well known [17] that search engine query frequency dis-
tribution typically has a few queries with large volume (and
large revenue and efficiency), and a very large number of
queries with extremely low volume. Therefore, we overcome
most of the uncertainty in query volumes by selecting a rel-
atively small subset of queries whose near-term volumes are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’07, June 11–15, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-653-0/07/0006 ...$5.00.

easy to forecast, yet still constitute a large amount of the
overall revenue.

Advertisers or their agents, on the other hand, do have the
ability to control their budgets. An advertiser’s budget may
constrain the number of times their ads appear, even when
they have made a high bid on a query term. One might
ask why they would wish to do so. There are several possi-
ble reasons, among them: protection against click-fraud, an
over-all company advertising budget, and the desire to con-
trol the allocation of that budget between various media and
campaigns. Whatever the reason, the search engine must de-
termine which advertisers to display for which queries, given
these constraints.

Pricing and ranking are additional parameters of the sys-
tem that influence revenue. The VCG mechanism [19, 5,
10] can be applied, but in practice search engines predomi-
nantly use the generalized second price (GSP) auction (see
Edelman et al. [9] for more details). Advertisers are ranked
according to the product of the price they bid for receiving
a click, and a quality score. Each is charged a price per
click equal to the minimum they would have had to pay to
maintain their rank.

The problem we consider is how to allocate advertisers to
queries such that budget constraints are satisfied and eff-
ciency (or revenue) is maximized. This problem is posed as
a linear program that takes a global view, and coordinates
advertiser spend across the chosen time-period, such as the
next hour, or an entire day. With the combined knowledge of
forecast query volumes, advertiser budgets, advertiser bids
and the pricing and ranking algorithm, we formulate a com-
prehensive mathematical framework.

1.1 Related Work
Incorporating advertiser budgets into the marketplace de-

sign is recognized as crucial, and a growing amount of re-
search addresses this subject. Several recent papers have
considered the effect of budgeted advertisers specifically wi-
thin the context of internet keyword auctions (e.g. [3] and
[1]). The fields of on-line and approximation algorithms
have also approached the topic. The widely noted paper
by Mehta et al. [18] presents an online algorithm, with a
competitive ratio 1 − 1

ε
, when the volume and sequence of

queries is unknown. Mahdian et al. [13] extend this work by
considering a tradeoff depending on the level of accuracy in
volume predictions. We will return to this algorithm when
we discuss possible future work in section 6.

There has been a considerable amount of work done in
the related field of (one-off) multi-item combinatorial auc-

272

tions, leading to algorithms which are practical and efficient
in a wide variety of settings. (See Schrage[16] for a useful
survey). These algorithms typically employ linear or integer
programming (LP/IP), exploiting a very mature and effi-
cient group of technologies. Although the characteristics of
the sponsored search problem we consider make it difficult
to apply the known techniques directly—for instance the
frequently repeated nature of the auctions—the approach
is appealing. In particular the work of Dietrich and For-
rest [8], which uses column generation to determine the set
of winning bids, is suggestive.

1.2 Paper Outline
In the remainder of this paper we will first present a sim-

ple example which motivates the need for algorithms which
take advertiser budgets into account. We then present the
notation, assumptions and algorithmic framework necessary
for our approach. This is followed by a detailed description
of the algorithm, a description of the implementation, and
our preliminary computational results. Finally, we outline
some future areas of follow-up research.

2. MOTIVATING EXAMPLE
To illustrate how critical the proper consideration of ad-

vertiser budgets might be, and how poorly a greedy algo-
rithm might perform in the presence of these budgets, we
examine the following highly simplified example. Suppose
we have two queries q1, and q2. A single advertiser is dis-
played for each query, all advertisers have the same expected
clickthrough rate, and the relevant bids and budgets are
shown in Table 1.

Table 1: Bids and Budgets
Bidder Bid for q1 Bid for q2 Budget

b1 C1 + ε C1 C1

b2 C1 0 C1

b3 C1 − ε C1 − ε 2C1

As Table 2 shows, a straightforward application of GSP
that displays the highest bidder is not optimal from a rev-
enue perspective. To see this, let us assume that within the
budgets’ time intervals, q1 appears, followed by q2. Then
bidder b1 would pay the second bid price C1 (bid by bidder
b2) and exhaust his budget on query q1. When query q2

arrives only bidder b3 is now eligible, and will only pay the
reserve price, which we take to be ε. Now consider the al-
ternative allocation that shows b2 for q1, producing revenue
C1 − ε, then shows b1 for query q2, also producing revenue
C1 − ε for a total of 2C1 − 2ε, or nearly double the revenue
of the greedy allocation. Thus, a more global viewpoint,
one which takes into account the keywords throughout the
time period, and the budget situation for each advertiser,
can lead to increased revenues. When this simple example
is complicated many fold by thousands of queries, bidders
and budgets, the potential for inefficiency is obvious.

Table 2: Allocation Options
Allocation Shown for q1 Shown for q2 Total Revenue
Greedy b1 b3 C1 + ε
Optimal b2 b1 2C1 − 2ε

3. FINDING THE OPTIMAL ALLOCATION
- PROBLEM DEFINITION

Let the auction marketplace consist of a set of queriesQ =
{q1, q2, ..., qN} and bidders B = {b1, b2, ..., bM}. We usually
use simply the index i to denote query qi and the index j
to refer to bidder bj . The bidding state of the marketplace
at time t is defined by a (sparse) matrix A(t), where Aij(t)
is the bid amount that the j-th bidder’s is bidding on the
i-th query qi. We assume a static bidding state (A(t) = A)
over some time-slot. While realizing that in practice this
is not true due to bid management (either manually or by
software), simulations suggest the effects of these types of
changes are negligible. We will accommodate this dynamic
aspect by frequently resolving our model as the data evolves,
as is done in many other applications. It is also assumed
that bids do not change in response to the allocation rule
(i.e. this is not an equilibrium analysis). For each bidder
bj , we denote by dj the daily budget limit specified by the
bidder. dj is an account level limit, i.e., it represents a spend
limit across all queries for that account1. If a budget is not
specified, we refer to this bidder as an unbudgeted bidder
and set dj = ∞.

Given a time-slot of interest, let vi be a deterministic es-
timate of the number of times each query qi will appear
within that time slot. For each query, we define the bidding
landscape as an ordered set of bidder indices Li = {jp : jp ∈
B, p = 1, ..., Pi} , where the indices jp are sorted by some
ranking function, and Pi is the number of bidders in the
landscape for query qi.

In principle, we could now formulate an optimization model
in which the variables corresponded to the number of times
each available ad was shown with each query. However, such
a model would require complex constraints and auxiliary dis-
crete features to ensure the ordering required by the bidding
landscapes for each query. We quickly abandoned such an
approach in favor of a column-oriented approach which en-
forces the precedence explicitly. This modeling approach
has a considerable history, and was quite recently used in a
related model for item allocation in combinatorial auctions
(see [8]). The algorithm here is quite different, since the
payoffs are not deterministic and the auction is frequently
repeated, among other features, but the spirit is similar.

We now define the crucial concept of a slate of ads corre-
sponding to (and in fact a subset of) the bidding landscape.
These slates will correspond to the columns and variables of
the linear program (LP) we formulate below. Each bidding
landscape Li is mapped into a set of slates Lk

i , each being
a unique subset of Li which can be obtained by deleting
members of Li (while maintaining the ordering) and then
truncating (if necessary) to P k

i (at most P) members. More
formally, the k-th slate for ad i includes a unique subset
(of length P k

i) of the indices of Li , and is defined as
Lk

i = {jk
l : jk

l ∈ Li, l ≤ P k
i ≤ P} , where P is the max-

imum number of slots available for advertising on the page.
The indices in Lk

i are ordered as in Li (i.e., in order of rank-
ing). By convention, if there are less than P +1 members an
additional dummy member, bidding the reserve price, may
be added for the purpose of computing second-bid prices.

Two ranking (ordering) methods have been commonly
used. The first and older method, sometimes known as the

1We could also associate budgets with other entities such as
a campaign.

273

“Overture method” is bid-ranking, so that (by a slight abuse
of notation):

Ai1 ≥ . . . ≥ Aij ≥ . . . ≥ AiPi

This scheme has now been generally superseded by expected
revenue-ranking where the bidders on the term are ranked by
product of the bid value Aij and a quality score or clickability
value Qij which is assumed to incorporate the likelihood of
the ad being clicked on, based on relevance of the ad to the
query, among other factors. The bidders are thus ordered
so that:

Ai1Qi1 ≥ . . . ≥ AijQij ≥ . . . ≥ AiPiQiPi

Hence in any slate k for query i we expect the subset of ads
chosen to also satisfy:

Aijk
1
Qijk

1
≥ . . . ≥ Aijk

p
Qijk

p
≥ Aijk

p+1
Qijk

p+1
≥

Since the bids reflect the maximum amount that a bidder is
willing to pay for a click for this query, this implies that for
bidder jp to hold his position in the slate his price per click
(PPC), denoted PPCk

ijp
, should satisfy:

PPCk
ijp

≥ Ai,jk
p+1

·
Qi,jk

p+1

Qi,jk
p

(in practice we may add some small quantity to the right
hand side and treat this as an equation). Note that this
implies a modified second bid auction where the price per
click actually paid depends on the next bid, and the ratio of
clickabilities. Since setting all the Qij to 1 would result in
the same slate and PPC as if we had used bid ranking, we
shall ignore bid-ranking as a special case and consider only
revenue ranking.

Let us also introduce a click through rate (CTR) denoted
Ti,jk

p ,p for the rate at which the ad from bidder jk
p in position

p in slate k for query i is clicked on per showing of the slate.
These CTRs are estimated based on historical click data as
well as other factors, and will be used both in the algorithm
and the simulation described in Section 5.4.

Assuming independence of the CTRs, we can now express
the expected revenue-per-search (rps) in our model for this
slate and this query as the sum of the individual expected
revenues per click:

rik =

P k
i∑

p=1

Ai,jk
p+1

·
Qi,jk

p+1

Qi,jk
p

· Ti,jk
p ,p (1)

We now introduce the variables xik, which represent the
number of times slate Lk

i appears in the given time slot. The
expected total revenue for the time-slot, over all queries, is
therefore:

N∑
i=1

∑
k

rikxik (2)

We represent the total spend for each bidder j as

N∑
i=1

∑
k

cijkxik (3)

where:

cijk =

 Ai,jk
p+1

·
Q

i,jk
p+1

Q
i,jk

p

· Ti,jk
p ,p 0 < p ≤ P k

i ≤ P

0 otherwise
(4)

is the expected cost to bidder j of appearing (in position p)
in slate k for query i.

3.1 Linear Programming Formulation
We may now formally define the following linear program-

ming (LP) problem:
Indices

i = 1, ..., N The queries
j = 1, ..., M The bidders
k = 1, ..., Ki The slates (for query i)

Data

dj The total budget of bidder j
vi Expected number of occurrences of

keyword i
cijk Expected cost to bidder j if slate k

is shown for keyword i
rik Expected revenue from slate k

for keyword i

Variables

xik Number of times to show slate k for keyword i

Constraints

(Budget) ∑
i

∑
k

cijkxik ≤ dj ∀j (5)

(Inventory) ∑
k

xik ≤ vi ∀i (6)

Revenue Objective

Maximize
∑

i

∑
k rikxik

3.2 Alternate Objective Functions
While maximizing expected overall revenue is obviously

attractive from the auctioneer’s point of view, it may not
appear so attractive to the individual bidders. However the
LP approach can accommodate a variety of alternate ob-
jective functions. One possibility is to maximize expected
efficiency under the assumption that the bidders have ex-
pressed their true value for a click by the bids. While this
may not always be a valid assumption, it is reasonable to
view the bid as somewhat commensurate with a bidder’s
true value. This would correspond to an LP objective of:

Value Objective

Maximize
∑

i,k

∑
p Ai,jk

p
· Ti,jk

p ,p · xik.

Note that this objective has coefficients computed from
the first prices, not second prices.

Even more simply we may decide to optimize the number
of clicks obtained. This is accomplished by using an LP
objective:

Clicks Objective

Maximize
∑

i,k

∑
p Ti,jk

p ,p · xik.

For these particular two objectives, we could also reformu-
late the LP to have a polynomial number of variables and
constraints, versus using the more involved column gener-
ation approach. Regardless of how the solutions are com-

274

puted, it is obvious that other objectives could be formu-
lated. If we use the column generation approach, we might
take some composite weighted sum of the value, clicks, and
revenue objectives. In general the “Value Objective” has ad-
vantages when considering the problem from the perspective
of economics.

4. COLUMN GENERATION
It is clear that the number of potential columns in the

above LP could be very large indeed. For each query, the
number of possible slates is exponential in the number of
budgeted bidders on the query, and there are many queries.
It is therefore impractical to enumerate all the possible col-
umns corresponding to the variables xik. If there were no
binding budgets, then the optimal solution would be the
trivial one consisting only of the top P bidders from the
landscape (called a base slate) being shown for each query.
In fact we would expect, and experiment confirms, that for
many queries, the base slate will be the only one shown even
when there are active (binding) budget constraints, while
some others use multiple slates—usually not more than a
handful. The trick is to know which handful. The same
situation occurs in many other LP applications where each
column represents one of many possible complex activities.
Early examples included models where the column repre-
sented a path through a network or a cutting pattern for
cutting up stock sizes of material. These particular models
require that small auxiliary models be solved to generate rel-
evant columns—shortest path problems in the former case,
and a “knapsack” problem in the latter.

Using a conventional column-generation approach (see [8],
[12]), we do not attempt to generate every slate Lk

i a priori,
but to generate an initial subset (say the Li) and then gen-
erate columns as needed using the dual values of the linear
program. Considering to begin with the revenue maximizing
objective, let πj be the marginal value for bidder j’s budget,
i.e. the simplex multipliers[6] for the jth constraint (5) and
let γi be the marginal value for the ith keyword, i.e. the
simplex multipliers for the ith constraint (6), then a column
corresponding to slate Lk

i (and hence to variable xik) can be
profitably introduced into the model if:

rik −
∑

j∈Lk
i

cijkπj − γi > 0 (7)

For each keyword i we seek to maximize rik−
∑

j∈Lk
i

cijkπj

(or equivalently, minimize
∑

j∈Lk
i

cijkπj − rik) over all legal

slates Lk
i . If a slate is found such that (7) is satisfied, the

corresponding slate and its variable are introduced into the
problem. If no such slate exists (for any i) then an optimal
solution has been obtained.

Looking at the structure of the coefficients in (7), we see
that:

rik =

P k
i∑

p=1

Ti,jk
p ,p ·Ai,jk

p+1
·
Qi,jk

p+1

Qi,jk
p

(8)

and

cijk
p k = Ti,jkp ,p ·Ai,jk

p+1
·
Qi,jk

p+1

Qi,jk
p

(9)

so the subproblem is to maximize (for the given πj):

Fik(π) =

P k
i∑

p=1

Ti,jk
p p ·Ai,jk

p+1
·
Qi,jk

p+1

Qi,jk
p

· (1− πjk
p
) (10)

over all legal slates Lk
i . When the number of budgeted bid-

ders for a query is not too large this may be done by enumer-
ating all legal subsets of Lk

i , evaluating (10) on the fly, until
a Lk

i is found for which Fik > γi. The corresponding column
is then added to the problem. If no new column satisfying
this condition is found, the present solution is optimal. If
there are more than a few such legal subsets, we may need
to algorithmically generate columns (slates) which maximize
(10) and test whether they satisfy Fik > γi. If the maxi-
mizing slate does not satisfy this inequality we may pass on
to the next query, since no improving slate can be found for
the present set of πj values. If this is true for all queries,
then the current solution is optimal.

The overall algorithm proceeds by generating improving
sets of slates in this way, then re-solving the LP, until no
further improvement is possible, or some other heuristic ter-
mination criterion is met (such as percentage improvement
in the objective).

The actual algorithm used to generate improving slates
can be somewhat intricate, and is given in detail in a com-
panion paper[15]. It suffices to say here that the slate gen-
eration algorithm is a form of cardinality constrained knap-
sack problem[7], complicated by the ordering requirement
and the fact that only certain items can be omitted. The
algorithm given in [15] is an efficient form of dynamic pro-
gram, which given the dimensions of the problems we are
considering here (perhaps a dozen ads chosen from a few
dozen candidates) is fast enough to be solved many thou-
sands of times in the column generation process.

Column generation extends to the alternate objective func-
tions we have suggested. In particular, if the maximum value
objective is chosen, we see that the objective function coef-
ficients are: ∑

p

Ai,jk
p
· Ti,jk

p ,p (11)

which must replace rik in (7). The function we wish to
maximize in this case is then:

Fik(π) =

P k
i∑

p=1

Ti,jk
p p · (Ai,jk

p
−Ai,jk

p+1
·
Qi,jk

p+1

Qi,jk
p

· πjk
p
) (12)

Once again, algorithmic details are given in [15]. In much
the same way, we may generate columns for the maximum
clicks objective by replacing Ai,jk

p
by 1 in (12).

Even though we have said that complete enumeration of
the slates is impractical, it turns out to be advantageous in
practice to partially enumerate them. We can generate a
subset of slates for each query that include the base slate,
and a subset obtained by omitting a relatively small subset
of the highest ranked budgeted bidders. We do this because:

1. The most highly ranked bidders are the most likely to
spend heavily, and therefore to consume their budgets
most quickly.

2. A substantial initial set of slates will lead to a more re-
alistic set of initial πj values after solving the first LP,

275

giving the column generation algorithm values closer
to those of the full LP.

It turns out that we can usually obtain over 98% of the
true optimal value by enumerating several quite large sub-
sets, but this is wasteful, and much slower than using the
column generation algorithm, which achieves a true opti-
mum.

5. COMPUTATIONAL DETAILS
There are a number of practical details which must be

considered, and overcome, to use the algorithm we have de-
scribed in practice2. These include problem scope, solution
speed and frequency, and integration with the ad serving
architecture.

5.1 Query selection
Since there are tens of millions, perhaps hundreds of mil-

lions, of queries, we are necessarily limited to working with a
subset of them. Clearly, we wish to deal with a manageable
subset which captures a large part of the benefits we hope to
gain from our optimization algorithm. As we have already
remarked, this is aided by the typical distribution of query
volumes, where the head queries capture a disproportionate
share of the revenue from sponsored search. In confirmation
of this, we found that in one sample, the top 5000 queries
captured a significant fraction of the revenue. This indicates
that even a modest gain for the head queries can lead to a
significant overall gain.

5.2 Adjusted Bidder Budgets
This “cherry picking” can only be achieved at some cost.

While it is easy to segment the queries into the head and
the rest, it is not so obvious how to segment the bidders.
We must somehow isolate the bidders associated with these
chosen queries. Unbudgeted bidders present no problem,
but we must take into account the fact that some budgeted
bidders may have bid on queries in both the chosen head set,
and the remainder. We must therefore partition the budgets
of these bidders into two parts—that spent on our chosen
set of queries, and the rest. As a practical matter, this is
not too difficult; we may base the division on historical data.
However, this obviously introduces a measure of uncertainty
that we would wish to minimize.

Fortunately, this sort of problem has been considered be-
fore. Carrasco et al [4] consider the problem of subdividing
a query-bidder bipartite graph corresponding to a sponsored
search market into submarkets as sparsely connected as pos-
sible, which we may consider a generalization of our present
problem of isolating a lucrative head market. Using a vari-
ant of the algorithms in [4] we may hope to choose a set of
head queries minimally connected to the remainder. Having
done so, we may then compute adjusted budgets for the bud-
geted bidders which straddle the chosen/non-chosen query
set. While this a desirable property, it is not essential to our
approach.

5.3 Column Generation Implementation
Our prototype system is implemented in C++ to run

under Linux (or Cygwin) on an Intel-based work station.

2The results we report here are based on simulation only,
and the algorithm presented is not in operation on Yahoo!s
production ad system.

We use the open source COIN-OR library[11] and its LP
code Clp[14], which allows efficient implementation of the
column-generation framework and fast updating of the model
without the need for any external interface. The column
generation code itself—both the initial enumeration and sub-
sequent dynamic programming subproblem solution—are also
implemented in C++. This is economical and avoids com-
patibility problems, while at the same time allowing us,
through the COIN-OR interface, to easily use a commer-
cial LP code if we should ever find Clp inadequate for our
models. So far this has been far from the case. The models
on which we have carried out most of our experiments, using
real data on approximately 5,000 queries and about 50,000
bidders of whom about 60% are budgeted, are solved to opti-
mality in less than half a minute on a 32-bit Linux box with
a 2.8 GHz Xeon processor, and in less than 1 minute, even
when doubled in size. We therefore expect the algorithm to
scale well, even if we were to re-solve at short intervals of,
say, 15 minutes.

Note that the algorithm naturally produces results which
are suitable directly for serving with organic query results,
a task normally performed by the ad server. The ordered
slates of ads, and their serving frequencies in response to
queries, can be used to relieve the ad server of the need to
execute the auction process for our chosen set of queries.
Since we choose from the head queries, this can lead to a
significant reduction in workload at the ad server itself.

5.4 Simulation Methodology
In order to test our approach, we measured its perfor-

mance against a greedy baseline algorithm, which allocates
to a query all bidders who have any remaining budget.

For this evaluation we used a fixed set of 5000 queries
(see 5.1), and captured hourly (over an eleven-day period)
the bidders, bids and budgets for each of the queries in this
set. We used predictors of the click-through rates that use
historical click data for their prediction (the exact details of
these predictors is beyond the scope of this paper).

We used an impression predictor to predict vit, the num-
ber of times query i will appear at hour t of the day. To com-
pensate for the dynamics in impression volumes, we adapted
our algorithm as follows: we convert the variables xik to fre-
quencies fik = xik

vi
. Then, for each query instance we use a

coin-toss, weighted by the frequencies fik, to decide which
slate to show for this query.

For each algorithm we evaluate, we then perform the fol-
lowing steps, every hour:

1. Simulate the keyword auction mechanism for all queries
each hour in arbitrary order (the order will not mat-
ter) according to the algorithm chosen. For the greedy
algorithm the auction is performed with all candidates
that have any budget remaining, while for the LP
based algorithms, a coin is tossed to decide which slate
to show based on the frequencies fik.

2. Compute metrics such as revenue, efficiency, clicks and
PPC.

3. Check if any bidder has exceeded their adjusted daily
budget. If so, we reimburse those bidders the amount
they are owed and remove them from participating in
future auctions.

276

There are several inaccuracies in the simulation. First,
due to the hourly granularity, bidders who exceed their bud-
get in the middle of a given hour may cause illegitimate price
hikes for other bidders. Second, we assume at each show-
ing of the slate that we receive exactly the expected number
of clicks on each advertisement. In reality, there will be
some amount of variance and inevitable inaccuracies in the
click-through estimates. However, we believe that the above
inaccuracies are not significant to our results; furthermore,
the inaccuracies will have similar affects on both of the algo-
rithms, so in terms of measuring relative performance these
inaccuracies have little impact.

5.5 Results
Our simulation results are quite promising. Whether we

optimize for revenue or efficiency, in both cases our results
show a significant increase in both values. As we would an-
ticipate, we get better performance in efficiency when that is
the objective function, and similarly for revenue. However,
the revenue appears to be more volatile in response to the
objective function, with a percent increase that roughly dou-
bles, whereas the percent increase for efficiency sees roughly
a 30% increase. It is also interesting to note that the gains
in revenue and efficiency for each day of the simulation, as
seen in Figures 1 and 2, follow similar patterns, peaking and
dipping on the same days. This suggests that the ability to
maximize in either case is based on similar properties of the
problem. We see that revenue and efficiency are closely tied
together and that gains along one objective imply similar
gains along the other.

Figure 1: Gains When Efficiency is Maximized

Figure 2: Gains When Revenue is Maximized

Figure 3: Impact of the optimization on bidders

Figure 3 shows that the impact on advertisers is favorable,
but differs between budgeted and unbudgeted advertisers.
We see here an interesting distinction: budgeted bidders
get a steep increase in clicks with low prices, whereas the
unbudgeted advertisers receive little increase in overall clicks
and a slightly higher PPC (and value, although not graphed
here). Overall, the impact in both cases is positive: an
increase in clicks and a PPC that drops or slightly increases
but remains proportional to value per click is likely to have
a sustainable impact. We emphasize that our simulations do
not take into account that bidders might react by changing
their bids and reported budgets.

6. FUTURE WORK
We focus on queries at the head of the query distribution.

However, there is also a heavy tail in this distribution, and
many of these queries are not as easily forecasted as our
subset. As described in section 1.1, when query frequencies
cannot be forecasted with a high degree of certainty, previ-
ous research has proposed online algorithms with provable
worst case performance guarantees. This previous research
does not incorporate pricing and ranking into their solution.
However, there may be a way to extend the work in [13] to
use our LP as a subroutine. We are also exploring other
approaches when query frequencies are unknown, including
machine learning and stochastic programming.

We may also consider using parallel processing to scale
up the approach even further. In particular, instead of di-
viding queries into our chosen set and the rest, we may use
an algorithm such as that proposed in [4] to partition the
query-bidder graph into multiple submarkets, and apply the
budget adjustment method discussed in section 5.2 to par-
tition the affected budgets and allow parallel solution.

It is not clear at this point how advertisers might react
to our approach, and specifically how advertiser bids and
reported budgets might change. Although we optimize for
efficiency, this is the efficiency of the overall system, and
any individual user may receive a disproportionate amount
of benefit or detriment as a result of the optimization. Even
if we use a truthful pricing scheme, such as VCG [19, 5, 10] or
the laddered auction [2], optimizing over the overall system
results in a system that may not align player incentives. An
interesting area for future work is to extend our formulation
to account for individual advertiser incentives.

277

7. ACKNOWLEDGEMENTS
The authors wish to thank their colleagues Andrei Z.

Broder, Jan Pedersen, Michael Schwarz, Kevin Lang and
S. Sathiya Keerthi for many helpful discussions, and their
encouragement in the course of this research.

8. REFERENCES
[1] Z. Abrams. Revenue maximization when bidders have

budgets. In Proc. Symposium on Discrete Algorithms,
pages 1074–1082, 2006.

[2] G. Aggarwal, A. Goel, and R. Motwani. Truthful
auctions for pricing search keywords. In Proc. 7th
ACM conference on Electronic Commerce, pages 1–7,
2006.

[3] C. Borgs, J. Chayes, N. Immorlica, M. Mahdian, and
A. Saberi. Multi-unit auctions with
budget-constrained bidders. In Proc. 6th ACM
Conference on Electronic Commerce, pages 44–51,
2005.

[4] J. J. Carrasco, D. Fain, K. Lang, and L. Zhukov.
Clustering of bipartite advertiser-keyword graphs.
Workshop on Large Scale Clustering at IEEE
International Conference on Data Mining, 2003.

[5] E. Clarke. Multipart pricing of public goods. Public
Choice, 11:17-33, 1971.

[6] G. B. Dantzig. Linear Programming and Extensions.
Princeton University Press, Princeton, NJ, 1963.

[7] I. de Farias and G. Nemhauser. A polyhedral study of
the cardinality constrained knapsack problem.
Mathematical Programming (Ser. A), 96:439–467,
2003.

[8] B. Dietrich and J. J. Forrest. A column generation
approach for combinatorial auctions. Workshop on
Mathematics of the Internet: E-Auction and Markets
Institute for Mathematics and its Applications, 2001.

[9] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
advertising and the generalizaed second price auction:
Selling billions of dollars worth of keywords. Second
Workshop on Sponsored Search Auctions, Ann Arbor,
MI. June, 2006.

[10] T. Groves. Incentives in teams. Econometrica,
41:617-631, 1973.

[11] R. Lougee-Heimer, F. Barahona, B. L. Dietrich,
J. Fasano, J. J. Forrest, R. Harder, L. Ladanyi,
T. Pfender, T. Ralphs, M. Saltzman, and
K. Scheinberg. The COIN-OR initiative: accelerating
operations research progress through open-source
software. ORMS Today, 28(5), 2001.

[12] M. E. Lubbecke and J. Desrosiers. Selected topics in
column generation. Operations Research,
53(6):1006–1027, 2005.

[13] M. Mahdian, H. Nazerzadeh, and A. Saberi.
Allocating online advertisement space with unreliable
estimates. ACM Conference on Electronic Commerce,
2007.

[14] COIN-OR Foundation: http://www.coin-or.org+.

[15] S. Sathiya Keerthi and J. A. Tomlin. Constructing an
optimal slate of advertisements. Yahoo! Research
Report, 2006.

[16] L. Schrage. Solving multi-object auctions with LP/IP.
University of Chicago, Unpublished Manuscript, 2001.

[17] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[18] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani.
Adwords and the generalized bipartite matching
problem. In Proceedings of the Symposium on the
Foundations of Computer Science, pages 264–273,
2005.

[19] W. Vickrey. Counterspeculation, auctions, and
competitive sealed tenders. Journal of Finance,
16:8-37, 1961.

278

