
Applying Online Search Techniques to Continuous-StateReinforcement LearningScott Davies� Andrew Y. Ngy Andrew Moore�� School of Computer ScienceCarnegie-Mellon UniversityPittsburgh, PA 15213 y Arti�cial Intelligence LabMassachusetts Institute of TechnologyCambridge, MA 02139AbstractIn this paper, we describe methods for e�ciently com-puting better solutions to control problems in contin-uous state spaces. We provide algorithms that exploitonline search to boost the power of very approximatevalue functions discovered by traditional reinforcementlearning techniques. We examine local searches, wherethe agent performs a �nite-depth lookahead search, andglobal searches, where the agent performs a search fora trajectory all the way from the current state to a goalstate.The key to the success of the local methods lies in tak-ing a value function, which gives a rough solution tothe hard problem of �nding good trajectories from ev-ery single state, and combining that with online search,which then gives an accurate solution to the easierproblem of �nding a good trajectory speci�cally fromthe current state.The key to the success of the global methods lies inusing aggressive state-space search techniques such asuniform-cost search and A�, tamed into a tractableform by exploiting neighborhood relations and trajec-tory constraints that arise from continuous-space dy-namic control. IntroductionA common approach to Reinforcement Learning in-volves approximating the value function, and then ex-ecuting the greedy policy with respect to the learnedvalue function.However, particularly in high-dimensional continuousstate spaces, it can often be computationally expensiveto �t a highly accurate value function, even when ouragent is given a perfect model of the world. This prob-lem is even worse when the agent is learning a modelof the world and is repeatedly updating its dynamicprogramming solution online. What's to be done?In this paper, we investigate the idea that rather thanexecuting greedy policies with respect to approximatedvalue functions in continuous-state domains, we can useonline search techniques to �nd better trajectories. Werestrict our attention to deterministic domains. TheCopyright c1998, American Association for Arti�cial Intel-ligence (www.aaai.org). All rights reserved.

paper consists of a progression of improvements to con-ventional action-selection from value functions, alongthe way using techniques from value function approx-imation (Davies, 1997), real-time search (Korf, 1990),constrained trajectories (Burghes and Graham 1980),and robot motion planning (Latombe 1991, Boyan etal. 1995, Boone 1997). All of the algorithms performsearch online to �nd a good trajectory from some cur-rent state. Briey, the progression is as follows:� LS: Local Search. Takes a forward-dynamicsmodeland an approximate value function, and performs alimited-depth lookahead search of possible trajecto-ries from the current state before suggesting an ac-tion.� CLS: Constrained Local Search. Does a similarjob as LS, but considers only trajectories in which theaction is changed infrequently. This results in sub-stantial computational savings that allow it to searchmuch deeper or faster.� UGS: Uninformed Global Search. For least-cost-to-goal problems, takes a forward-dynamicsmodel and plans an approximately-least-cost pathfrom the current state all the way to the goal, usingLS or CLS along with a neighborhood-based prun-ing technique to permit tractable searches even whenthey cover large areas of the continuous state space.� IGS: Informed Global Search. Does a similar jobas UGS, but uses an approximate value function toguide the search in a manner very similar to A� (Nils-son 1971), thereby vastly reducing the search timeand (somewhat surprisingly) often dramatically im-proving the solution quality as well.� LLS: Learning Local Search. Learns a forward-dynamics model, and uses it to generate approximatevalue functions for the LS and CLS approaches.� LGS: Learning Global Search. Learns a forward-dynamics model, and uses it to generate approximatevalue functions for the LS and CLS approaches.In this paper, the approximate value functions areobtained by k-dimensional simplex interpolation com-bined with value iteration (Davies 1997), but the ap-proaches are applicable for accelerating any model-



based reinforcement learning algorithm that producesapproximate value functions, such as an LQR solutionto a linearized problem or a neural net value functioncomputed with TD.With such searches, we perform online computationthat is directed towards �nding a good trajectory fromthe current state; this is in contrast to, say, o�ine learn-ing of a value function, which tries to solve the muchharder problem of learning a good policy for every pointin the state space. However, the global search algo-rithms go beyond shallow lookahead methods and in-stead use a pruned \bush" of search trajectories to �ndcontinuous trajectories all the way to the goal.We apply these search techniques to severalcontinuous-state problems, and demonstrate that theyoften dramatically improve the quality of solutions atrelatively little computational expense.mountain-parking: An example of acontinuous-space dynamic control taskFigure 1 depicts a car (idealized as a frictionless puck)on a very steep hill. The car can accelerate forward orbackward with a limited maximum thrust. The goal isto park the car in a space near the top of the hill (that is,occupy the space while having a near-zero velocity). Be-cause of gravity, there is a region near the center of thehill at which the maximum forward thrust is not strongenough to accelerate up the slope. This is depicted onthe two-dimensional diagram in Figure 2. Thus if thegoal is at the top of the slope, a strategy that proceededby greedily choosing actions to thrust towards the goalwould get stuck. Figure 3 shows a sample minimum-time path for one possible initial state. This task, al-though trivial to solve by dynamic programming on avery �ne grid, will be used as an illustration during theexposition because its state space can be drawn as atwo-dimensional diagram. In the Experiments sectionwe will see empirical results for problems that wouldbe intractably expensive for dynamic programming ona �ne grid. LS: Local SearchGiven a value function, agents typically execute agreedy policy using a one-step lookahead search, pos-sibly using a learned model for the lookahead. Thecomputational cost per step of this is O(jAj) where Ais the set of actions. This can be thought of as per-forming a depth 1 search for the 1-step trajectory Tthat gives the highest RT + V (sT ), where RT is thereinforcement, sT is the state (possibly according to alearned world model) reached upon executing T , and is the discount factor. A natural extension is then toperform a search of depth d, to �nd the trajectory thatmaximizesRT+dV (sT ), where discounting is incorpo-rated in the natural way into RT . The computationalexpense is O(djAjd).During execution, the LS algorithm iteratively �ndsthe best trajectory T of length d with the search algo-

Goal:
park
hereFigure 1: A car acted on by gravity and lim-ited forward/backward thrust. The car mustpark in the goal area as quickly as possible.
Goal

-1 0 1

Position

-2

0

2

V
el

oc
it

y

Figure 2: The state transition function fora car constantly thrusting to the right withmaximum thrust. A point on the diagramrepresents a state of the car. Horizontal po-sition denotes the physical car position. Ver-tical diagram position denote the car's veloc-ity.



GoalStart

-1 0 1

Position

-2

0

2

V
el

oc
it

y

Figure 3: A minimum-time path for the caron the hill. The optimal value function isshown by dots. The shorter the time to goal,the larger the black dot.rithm above, executes the �rst action on that trajectory,and then does a new search from the resulting state. IfB is the \parallel backup operator" (Bertsekas 1995)so that BV (s) = maxa2AR(s; a) + V (�(s; a)), thenexecuting the full jAjd search is formally equivalent toexecuting the greedy policy with respect to the valuefunction Bd�1V . Noting that, under mild regularityassumptions, as k ! 1, BkV becomes the optimalvalue function, we can generally expect Bd�1V to bea better value function than V . For example, in dis-counted problems, if the largest absolute error in V is", the largest absolute error in Bd�1V is d�1".This approach, a form of receding horizon control,has most famously been applied to minimax game play-ing programs (Russell and Norvig 1995) and has alsobeen used in single-agent systems on discrete domains(e.g. (Korf 1990)). In game-playing scenarios it has alsobeen used in conjunction with automatically learnedvalue functions, such as in Samuel's celebrated check-ers program (Samuel 1959) and Tesauro's backgammonplayer (Tesauro and Galperin, 1997).CLS: Constrained Local SearchTo make deeper searches computationally cheaper, wemight consider only a subset of all possible trajectoriesof depth d. Especially for dynamic control, often an op-timal trajectory repeatedly selects and then holds a cer-tain action for some time, such as suggested by (Boone1997). Therefore, a natural subset of the jAjd possi-ble trajectories are trajectories that switch their actionsrarely. When we constrain the number of switches be-tween actions to be s, the time for such a search isthen O(d �ds� jAjs+1)|considerably cheaper than a fullsearch if s� d. We also suggest that s is easily chosenfor a particular domain by an expert, by asking how

Figure 4: Constrained Local Search (CLS)example: a twenty-step search with at mostone switch in actionsoften action switches can reasonably be expected in anoptimal trajectory, and then picking s accordingly toallow an appropriate number of switches in a trajec-tory of length d. Figure 4 shows CLS performed in themountain-parking task using d = 20 and s = 1.Since LS is the same as CLS with the maximum-number-of-switches parameter s set to d � 1, we mayuse \LS" or \local search" to refer generically to bothCLS and LS at certain points throughout the rest ofthe paper.UGS: Uninformed Global SearchLocal searches (LS and CLS) are not the only way tomore e�ectively use an approximated value function.Here, we describe global search for solving least-cost-to-goal problems in continuous state spaces with non-negative costs. We assume the set of goal states isknown.Why not continue growing a search tree until it �ndsa goal state? The answer is clear|the combinatorialexplosion would be devastating. In order to deal withthis problem, we borrow a technique from robot motionplanning (Latombe 1991). We �rst divide the statespace up into a �ne uniform grid. A sparse representa-tion is used so that only grid cells that are visited takeup memory1.A local search procedure (LS or CLS) is then used to�nd paths from one grid element to another. Multipletrajectories entering the same grid element are pruned,keeping only the least-cost trajectory into that grid el-ement (breaking ties arbitrarily). The point at whichthis least-cost trajectory �rst enters a grid element isused as the grid element's \representative state," and1This has a avor not dissimilar to the hashed sparsecoarse encodings of (Sutton 1996).



Figure 5: Uninformed Global Search (UGS)example. Velocity on x-axis, car position ony axis. Large black dot is starting state; thesmall dots are grid elements' \representativestates."acts as the starting point for the local search. The ra-tionale for the pruning is an assumed similarity amongpoints in the same grid element. In this manner, the al-gorithm attempts to builds a complete trajectory to thegoal using the learned or provided world model. Whenthe planner �nds a trajectory to the goal, it is executedin its entirety.The overall procedure is essentially a lowest-cost-�rstsearch over a graph structure in which the graph nodescorrespond to grid elements, and in which the edges be-tween graph nodes correspond to trajectories betweengrid elements as found by the CLS procedure. A graphshowing such a search for the mountain-parking do-main is depicted in Figure 5.IGS: Informed Global SearchWe can modifyUninformedGlobal Search (UGS) by us-ing an approximated value function to guide the searchexpansions in the style of A� search (Nilsson 1971),as written out in detail below. The search proceedsfrom the most promising-looking states �rst, where the\promise" of a state is the cost to get to the state (alongpreviously searched trajectories) plus the remaining-cost-to-go as estimated with the value function. Withthe perfect value function, this causes the search to tra-verse exactly the optimal path to the goal; with onlyan approximation to the value function, it can still dra-matically reduce the fraction of the state space that issearched.As in UGS, the grid is represented sparsely. No-tice also that like LS and CLS, we are performing on-line computation in the sense that we are performing asearch only when we know the \current state," and to�nd a trajectory speci�cally from the current state; this

is in contrast to o�ine computation for �nding a valuefunction, which tries to solve the much more di�cultproblem of �nding a good trajectory to the goal fromevery single point in the state space.Written out in full, the search algorithm is:1. Suppose g(s0) is the grid element containing the currentstate s0. Set g(s0)'s \representative state" to be s0, andadd g(s0) to a priority queue P with priority V (s0), whereV is an approximated value function.2. Until a goal state has been found, or P is empty:� Remove a grid element g from the top of P . Supposes is g's \representative state."� Starting from s, perform LS or CLS as described inthe Local Search section, except search trajectories arepruned once they reach a state in a di�erent grid el-ement g0. If g0 has not been visited before, add g0to P with a priority p(g0) = RT (s0; : : : ; s0)+jT jV (s0),where RT is the reward accumulated along the recordedtrajectory T from s0 to s0, and set g0's \representativestate" to s0. Similarly, if g0 has been visited before, butp(g0) � RT (s0; : : : ; s0)+jT jV (s0), then update p(g0) tothe latter quantity and set g0's \representative state"to s0. Either way, if g0's \representative state" was setto s0, record the sequence of actions required to getfrom s to s0, and set s0's predecessor to s.3. If a goal state has been found, execute the trajectory.Otherwise, the search has failed, because our grid wastoo coarse, our state transition model inaccurate, or theproblem insoluble.The above procedure is very similar to a standardA� search, with two important di�erences. First, theheuristic function used here is an automatically gen-erated approximate value function rather than a hand-coded heuristic. This has the advantage of being a moreautonomous approach requiring relatively little hand-encoding of domain-speci�c knowledge. On the otherhand, it also typically means that the heuristic func-tion used here may sometimes overestimate the costrequired to get from some points to the goal, whichcan sometimes lead to suboptimal solutions { that is,the approximated value function is not necessarily anoptimistic or admissible heuristic (Russell and Norvig1995). However, within the context of the search pro-cedure used above, inadmissible but relatively accuratevalue functions can lead to much better solutions thanthose found with optimistic but inaccurate heuristics.(Note that UGS is essentially IGS with an optimisticbut inaccurate heuristic \value function" of 0 every-where.) This is due to the second important di�erencebetween our search procedure above and a standardA� search in a discrete-state domain: IGS uses the ap-proximated value function not only to decide what gridelement to search from next, but also from what par-ticular point in that grid element it will search for localtrajectories to neighboring grid elements.The above algorithm is also similar in spirit to al-gorithms presented in (Atkeson, 1994). Atkeson's al-gorithms also found continuous trajectories from startstates to goals. The search for such trajectories was



Figure 6: Informed Global Search (IGS)example on mountain-parking, with acrudely approximated value function.performed either within the context of a regular grid(as in the algorithm above) or a pair of constant-costcontours gradually grown out from the start and goalstates. Our algorithms di�er from Atkeson's in thatour algorithm works with a small set of discrete actionsand can handle some discontinuities in the dynamics,whereas Atkeson's algorithm requires smooth dynam-ics (continuous �rst and second derivatives) with con-tinuous actions. Unlike Atkeson's work, our algorithmdoes not yet locally optimize the trajectories found byour search algorithms. However, also unlike Atkeson'swork, we �rst compute a crude but quick approximationto the value function (except in the case of uninformedglobal search), and using this approximate value func-tion speeds up the search considerably.An example of IGS on the mountain-parking do-main is shown in Figure 6. The value function was ap-proximated with a simplex-based interpolation (Davies1997) on a coarse 7 by 7 grid, with all other parametersthe same as in Figure 5. Much less of state space issearched than by UGS.In Figure 7, the value function was approximatedmore accurately with a simplex-based interpolation ona 21 by 21 grid. With this accurate a value function,the search goes straight down a near-optimal path tothe goal. Naturally, in such a situation the search isactually unnecessary, since merely greedily followingthe approximated value function would have producedthe same solution. However, when we move to higher-dimensional problems, such as problems examined inthe next section, high-resolution approximated valuefunctions become prohibitively expensive to calculate,and IGS can be a very cost-e�ective way of improvingperformance.

Figure 7: Informed Global Search (IGS) ex-ample on mountain-parking, with a moreaccurately approximated value function.ExperimentsWe tested our algorithms on the following domains2:� mountain-parking (2 dimensional): As describedin the Introduction. This is slightly more di�cultthan the normal mountain-car problem, as we requirea velocity near 0 at the top of the hill (Moore andAtkeson 1995). State consists of x-position and ve-locity. Actions are accelerate forward or backward.� acrobot (4 dimensional): An acrobot is a two-linkplanar robot acting in the vertical plane under gravitywith only one weak actuator at its elbow joint. Thegoal is to raise the hand at least one link's heightabove the shoulder (Sutton 1997). State consists ofjoint angles and angular velocities at the shoulder andelbow. Actions are positive or negative torque.� move-cart-pole (4 dimensional): A cart-and-polesystem (Barto et al. 1983) starting with the pole up-right is to be moved some distance to a goal state,keeping the pole upright (harder than the stabiliza-tion problem). It terminates with a huge penalty(�106) if the pole falls over. State consists of thecart position and velocity, and the pole angle andangular velocity. Actions are accelerate left or right.� slider (4 dimensional): Like a two-dimensionalmountain car, where a \slider" has to reach a goal re-gion in a two-dimensional terrain. The terrain's con-tours are shown in Figure 8. State is two-dimensionalposition and two-dimensional velocity. Actions areacceleration in the NE, NW, SW, or SE directions.All four are undiscounted tasks. move-cart-pole'scost on each step is quadratic in distance to goal. The2C code for all 4 domains (implemented with numeri-cal integration and smooth dynamics) will shortly be madeavailable on the Web.



d 1 2 3 4 5 6 7 8 9 10cost 49994 42696 31666 14386 10339 27766 11679 8037 9268 10169time 0.66 0.64 1.24 1.02 1.13 2.07 3.32 3.84 7.30 15.50Table 1: Local search (LS) on move-cart-poled 1 2 3 4 6 8 12 16 24cost 187 180 188 161 140 133 133 134 112time 0.02 0.05 0.10 0.16 0.36 0.70 2.08 4.62 12.44Table 2: Constrained Local search (CLS) on mountain-parking
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

surface

Contours from 0.05 to 1 in increments of 0.05

Key: 0.05 0.25 0.4 0.55 0.7 0.85

0.429

0.373

0.419

0.227

0.422

0.287

0.419

0.287

0.463

Figure 8: slider's terrain. Goal at upperleft.other three domains cost a constant �1 per step. Allresults are averages of 1000 trials with a start statechosen uniformly at random in the state space, withthe exception of the move-cart-pole, in which onlythe pole's initial distance from its goal con�guration isvaried.For now, we consider only the case where we are givena model of the world, and leave the model-learning caseto the next section. In this case, the value functionsused during search (except by the Uniformed GlobalSearch) are calculated using the simplex-interpolationalgorithm described in (Davies 1997); once generated,they need not be updated during the search process.Local SearchHere, we look at the e�ects of di�erent parameter set-tings for Local Search. We �rst consider move-cart-pole. Empirically, good trajectories in this domain\switch" actions very often; therefore, we chose notto assume much \action-holding," and set s = d � 1.The approximate value function was found using a four-dimension simplex-interpolation grid with quantization134, which is about the �nest resolution simplex-gridthat we could reasonably a�ord to use. (Calculating

the approximate value function even with this seem-ingly low resolution can take minutes of CPU time andmost of the system's memory.) See Table 1; as we in-crease the depth of the search from 1 (greedy policywith respect to V ) up to 10 (greedy policy with respectto B9V ), we see that performance is signi�cantly im-proved, but with CPU time per trial (on a 100MHz HPC300 9000, given in seconds) increasing exponentially.The next experiment we consider here is mountain-parking on a coarse (72) grid. Empirically, entire tra-jectories (of > 100 steps) to the goal can often be exe-cuted with 2 or 3 action switches, and the optimal tra-jectory to the goal from the bottom of the hill at restrequires only about 3 switches. Thus, for the depthof searches we performed, we very conservatively choses = 2. In Table 2, our experimental results again showsolution quality signi�cantly increased by Local Search,but with running times growing much more slowly withd than before.Comparative ExperimentsTable 3 summarizes our experimental results3. cost isaverage cost per trial, time is average CPU seconds pertrial, and #LS is the average number of local searchesperformed by the global search algorithms (which indi-cates the amount of state space considered).Trends we draw attention to are: Local Search consis-tently beat No Search, but at the cost of increased com-putational time. Informed Global Search (IGS) signi�-cantly beats No Search; and it also searches much lessof state space than Uninformed Global Search (UGS),resulting in correspondingly faster running times. Infact, because the solutions found by IGS are often ofmuch shorter length than when using no search at all,the computational time per trial is sometimes essen-tially the same for IGS and No Search, while the qual-ity of the solution found by IGS is many times better| for example, a factor of 4 in the slider domain. (Itperforms a factor of 10 better in the move-cart-pole3The parameters for the 4 domains were, in or-der: value function simplex interpolation grid resolution:72; 134; 134; 134; Local Search: d = 6; s = 2; d = 5; s =4; d = 5; s = 4; d = 10; s = 1; Global Search Grid resolu-tion: 502; 504; 504; 204; Local search within Global search:d = 20; s = 1 for all 4.



No Search Local Search Uninformed Global Informed Globalcost time cost time cost #LS time cost #LS timemountain-parking 187 0.02 140 0.36 FAIL { { 151 259 0.14acrobot 454 0.10 305 1.2 407 14250 5.8 198 914 0.47move-cart-pole 49993 0.66 10339 1.13 3164 7605 3.45 5073 1072 0.64slider 212 1.9 197 51.72 104 23690 94 54 533 2.0Table 3: Summary of comparative experimental resultsdomain, but that is largely a function of the particu-lar penalty associated with the pole falling over.) Alsonote that because of the sparse representation of GlobalSearch grids, we can comfortably use grid resolutions ashigh as 504 without running out of memory.While relatively simple, mountain-parking demon-strates interesting phenomena. Despite the use of a 502grid for the global search, UGS often surprisingly failsto �nd a path to the goal, where IGS, despite searchingmuch less of the state space, succeeds. This is becauseIGS uses a value function to guide its pruning of multi-ple trajectories entering the same grid cell, and there-fore makes better selection of \representative states" forgrid elements. This also helps explain IGS �nding bet-ter solutions than UGS on 2 of the 3 four-dimensionaldomains.When the Global Search grid resolution is increasedto 1002 for mountain-parking, both UGS and IGSconsistently succeed. But, UGS (mean cost 109) now�nds better solutions than IGS (mean cost 138). The�ner search grid causes good selection of representa-tive states to be less important; meanwhile, inaccu-racies in the value function guiding Informed GlobalSearch causes it to miss certain good trajectories. Thisis a phenomenon that often occurs in A�-like searcheswhen one's heuristic evaluation function is not strictlyoptimistic (Russell and Norvig 1995). This is not aproblem for UGS, which is e�ectively using the max-imally optimistic \constant 0" evaluation function. Itis interesting to note that in the move-cart-pole do-main, in which UGS found better solutions than IGS,the step size was large enough and the dynamics nonlin-ear enough that single steps often crossed multiple gridelements, and each grid element was typically reachedno more than once during the search. Thus, this wasa case in which IGS's ability to discriminate betweengood and bad states within the same grid element wasnot relevant.LLS and LGS: Learning a Model OnlineOccasionally, the state transition function is not knownbut rather must be learned online. This does not pre-clude the use of online search techniques; as a toy exam-ple, Figure 9 shows cumulative reward learning curvesfor mountain-parking. For each action, a kd-treeimplementation of 1-nearest-neighbor (Friedman et al.1977) is used to learn the state transitions, and to en-courage exploration, states su�ciently far from pointsstored in both trees are optimistically assumed to be

-12000

-10000

-8000

-6000

-4000

-2000

0

0 5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e 

R
ew

ar
d

Trial

"noSearchLearningCurve"
"localSearchLearningCurve"

"globalSearchLearningCurve"

Figure 9: Cumulative reward curves onmountain-parking with model learning.(Shallow gradients are good.)zero-cost absorbing states. A 7-by-7 simplex interpola-tion grid used for the value function approximator is up-dated online with the changing state transition model.Without search, the learner eventually attains an aver-age cost per trial of about 212; with Learning GlobalSearch (LGS) (search grid resolution 502), it quickly(after about 5 trials) achieves an average cost of 155;with Learning Local Search (LLS) (d = 20; s = 1), itachieves an average cost of 127 (also after about 5 tri-als).As before, when the planner �nds a trajectory to thegoal, it is executed in its entirety in an open-loop fash-ion. But in the case where we are learning a modelof the world, it is possible to successfully plan a con-tinuous trajectory using the learned world model, butfor the agent to fail to reach the goal when it tries tofollow the planned trajectory. In this case, failure tofollow the successfully planned trajectory can directlybe attributed to inaccuracies in the agent's model; andin executing the path anyway, the agent will naturallyreach the area where the actual trajectory diverges fromthe predicted/planned trajectory and thereby improveits model of the world in that area.However, several interesting issues do arise whenthe state transition function is being approximated on-line. Inaccuracies in the model may cause the GlobalSearches to fail in cases where more accurate mod-els would have let them �nd paths to the goal. Op-timistic exploration policies can be used to help thesystem gather enough data to reduce these inaccura-cies, but in even moderately high-dimensional spaces



such exploration would become very expensive. Fur-thermore, trajectories supposedly found during searchwill certainly not be followed exactly by an open-loopcontroller; adaptive closed-loop controllers may help al-leviate this problem to some extent. Finally, using themodels to predict state transitions should be compu-tationally cheap, since we will be using them to up-date the approximated value function with the changingmodel, as well as to perform searches.Future ResearchHow well will these techniques extend to non-deterministic systems? They may work for problemsin which certain regularity assumptions are reasonable,but more sophisticated state transition function ap-proximators may be required when learning a modelonline.How useful is Local Search in comparison with build-ing a local linear controller for trajectories? Duringexecution some combination of the two may be best.Local Search also plays an important role in the innerloop of global search; it is unclear how local linear con-trol could do the same.The experiments presented here are low-dimensional.It is encouraging that informed search permits us tosurvive 504 grids, but to properly thwart the curse ofdimensionality we can conclude that1. Informed Global Search (IGS) is often much moretractable than Uninformed Global Search (UGS),even with relatively crudely approximated value func-tions.2. However, more accurate (yet computationallytractable) value function approximators may beneeded than the simplex-grid-based approximatorsused here.3. Variable resolution methods (e.g. extensionsto (Moore and Atkeson 1995)) would probably beneeded for the Global Search's state-space partitionsrather than the uniform grids used here.The algorithms tested in this paper calculated theapproximate value functions used by their search proce-dures independently of any particular trajectories thatwere subsequently searched or executed. However, itmight be better to use points along such trajectories tofurther update the value function in order to concen-trate computational time and value function approxi-mator accuracy on the most relevant parts of the statespace. The resulting algorithm would be reminiscent ofKorf's RTA� (Korf 1990) and Barto's RTDP (Barto etal. 1995).The trajectories found by the algorithms describedin this paper use a small discrete set of actions, and donot always switch between these actions in a completelylocally optimal manner. In domains where the actionspace is actually continuous, it would be useful to use alocal trajectory optimization routine such as that usedin (Atkeson, 1994) in order to �ne-tune the discoveredtrajectories.

Lastly, algorithms to learn reasonably accurate yetconsistently \optimistic" (Russell and Norvig 1995)value functions might be helpful for Informed GlobalSearch. ReferencesAtkeson, C. G. 1989. Using Local Models to Control Move-ment. In Proceedings of Neural Information ProcessingSystems Conference.Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1994. Real-time Learning and Control using Asynchronous DynamicProgramming. AI Journal, to appear (also published asUMass Amherst Technical Report 91-57 in 1991).Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983.Neuronlike Adaptive elements that that can learn di�cultControl Problems. IEEE Trans. on Systems Man and Cy-bernetics 13(5):835{846.Bertsekas, D. P. 1995. Dynamic Programming and optimalcontrol, volume 1. Athena Scienti�c.Boone, G. 1997. Minimum-Time Control of the Acrobot.In International Conference on Robotics and Automation.Boyan, J. A.; Moore, A. W.; and Sutton, R. S., eds. 1995.Proceedings of the Workshop on Value Function Approx-imation. Machine Learning Conference: CMU-CS-95-206.Web: http://www.cs.cmu.edu/~reinf/ml95/.Burghes, D., and Graham, A. 1980. Introduction to ControlTheory including Optimal Control. Ellis Horwood.Davies, S. 1997. Multidimensional Triangulation and In-terpolation for Reinforcement Learning. In Neural Infor-mation Processing Systems 9, 1996. Morgan Kaufmann.Friedman, J. H.; Bentley, J. L.; and Finkel, R. A. 1977.An Algorithm for Finding Best Matches in LogarithmicExpected Time. ACM Trans. on Mathematical Software3(3):209{226.Korf, R. E. 1990. Real-Time Heuristic Search. Arti�calIntelligence 42.Latombe, J. 1991. Robot Motion Planning. Kluwer.Moore, A. W., and Atkeson, C. G. 1995. The Parti-gameAlgorithm for Variable Resolution Reinforcement Learningin Multidimensional State-spaces. Machine Learning 21.Nilsson, N. J. 1971. Problem-solving Methods in Arti�cialIntelligence. McGraw Hill.Russell, S., and Norvig, P. 1995. Arti�cial Intelligence AModern Approach. Prentice Hall.Samuel, A. L. 1959. Some Studies in Machine Learningusing the Game of Checkers. IBM Journal on Researchand Development 3. Reprinted in E. A. Feigenbaum and J.Feldman, editors, Computers and Thought, McGraw-Hill,1963.Sutton, R. S. 1996. Generalization in Reinforcement Learn-ing: Successful Examples Using Sparse Coarse Coding. InTouretzky, D.; Mozer, M.; and Hasselmo, M., eds., NeuralInformation Processing Systems 8.Tesauro, G., and Galperin, G. R. 1997. On-line PolicyImprovement using Monte-Carlo Search. In Mozer, M. C.;Jordan, M. I.; and Petsche, T., eds., Advances in NeuralInformation Processing Systems 9. Morgan Kaufmann.


