
Database-Centric Programming for
Wide-Area Sensor Systems

Shimin Chen† Phillip B. Gibbons‡ Suman Nath†‡

†Carnegie Mellon University ‡Intel Research Pittsburgh
{chensm,sknath}@cs.cmu.edu phillip.b.gibbons@intel.com

Abstract

A wide-area sensor system is a complex, dynamic, resource-rich cloud of Internet-connected sensing devices.
In this paper, we proposeX-Tree Programming, a novel database-centric programming model for wide-area sensor
systems designed to achieve the seemingly conflicting goals of expressiveness, ease of programming, and efficient
distributed execution. To demonstrate the effectiveness of X-Tree Programming in achieving these goals, we have
incorporated the model into IrisNet, a shared infrastructure for wide-area sensing, and developed three widely
different applications, including a distributed infrastructure monitor running on 473 machines worldwide.

I. I NTRODUCTION

A wide-area sensor system [3, 13, 14] is a complex, dynamic, resource-rich cloud of Internet-connected
sensing devices. These devices are capable of collecting high bit-rate data from powerful sensors such as
cameras, microphones, infrared detectors, RFID tags, and vibration sensors, and performing collaborative
computation on the data. A sensor system can be programmed to provide usefulsensing servicesthat
combine tens to millions of live sensor feeds, as well as traditional data sources. An example of such
a service is a Person Finder, which uses cameras or smart badges to track people and supports queries
for a person’s current location. A desirable approach to developing such a service is programming the
collection of sensors as a whole, rather than writing software to drive individual devices. This provides
a high level abstraction over the underlying complex system, thus facilitating the development of new
sensing services.

Recent studies [6, 10, 15, 16, 28] have shown that declarative programming through a query language
provides an effective abstraction for accessing, filtering, and processing sensor data. While their query
interface is valuable, we argue that these programming models are too restrictive for wide-area sensing.
Specifically, their focus is on standard database operations (SQL queries using aggregates such assum
and average), and not the more general functionality that wide-area sensing services require. Thus, it is
cumbersome, if not impossible, to implement many important aggregation and filtering operators required
by wide-area sensing services (such as complex image processing operators—see Section III for further
examples) using these models.

In this paper, we present a novel database-centric approach to easily programming a large collection of
sensing devices. The general idea is to augment the valuable declarative interface of traditional database-
centric solutions with the ability to perform more general purpose computations. Application developers
can write code for accessing, filtering, and processing sensor data, define on-demand (snapshot) and
continuous (long-running) states derived from sensor data, and seamlessly combine their code and derived
states with a standard database interface. Developers can concentrate on the implementation of core
application functionalities without worrying about the physical locations of data, network communications,
and basic database operations. Unlike many wireless sensor networks [6, 10, 15, 16, 28] that use a flat
relational database model and the SQL query language, we instead use the XML hierarchical database
model. Our experience in building wide-area sensing services shows that it is natural to organize the data
hierarchically based on geographic/political boundaries (at least at higher levels of the hierarchy), because
each sensor device takes readings from a particular physical location and queries tend to be scoped by
such boundaries [11]. A hierarchy also provides a natural way to name the sensors and to efficiently
aggregate sensor readings [10]. Moreover, we envision that sensing services will need a heterogeneous

and evolving set of data types, aggregate fields, etc. that are best captured using a more flexible data
model, such as XML.

We call our programming modelX-Tree Programming(or X-Treein short) because of its visual analogy
to an Xmas tree: The tree represents the data hierarchy of the wide-area sensor system, and the Xmas tree
ornaments and lights represent derived states and application-specific codes that are executed in different
parts of the hierarchy. In X-Tree, sensor data of a sensing service is stored in a single XML document
which is fragmented and distributed over a potentially large number of machines. Xpath (a standard query
language for XML) is used to access the document as a single queriable unit. With X-Tree, user-provided
codes and derived states can be seamlessly incorporated into Xpath queries.

Our X-Tree solution addresses the challenge of finding a sweet spot among three important, yet often
conflicting, design goals: expressiveness, ease of programming, and efficient distributed execution. As
we will show in Section III, achieving these three goals in the same design is very difficult. X-Tree’s
novelty comes from achieving a practical balance between these design goals. X-Tree is more expressive
than traditional database-centric models—it allows developers to incorporate code into queries, in order
to perform complex sensor feed filtering and processing. X-Tree is easier to use than a general purpose
distributed programming model—developers benefit from the declarative query interface and need to write
code only for new application-specific functionalities. X-Tree hides the underlying distributed nature of
the sensor data. Finally, X-Tree enables an efficient distributed execution of user-defined code near the
sources of sensor data. In this way, it exploits concurrency in the distributed system and saves network
bandwidth by transferring only processed results over the network.

In summary, there are three main contributions of this paper. First, we propose X-Tree Programming, a
novel database-centric programming model for wide-area sensor systems, which simultaneously achieves
expressiveness, ease of programming, and efficient distributed execution. Second, we present several impor-
tant optimizations within the context of supporting X-Tree that reduce the computation and communication
overheads of sensing services. Our caching technique, for example, provably achieves a total network cost
no worse than twice the cost incurred by an optimal algorithm with perfect knowledge of the future. Third,
we have implemented X-Tree within IrisNet [3, 10, 11], a shared infrastructure for wide-area sensing we
developed previously. We demonstrate the effectiveness of our solution through both controlled experiments
and real-world applications on IrisNet, including a publicly available distributed infrastructure monitor
application that runs on 473 machines worldwide. A rich collection of application-specific tasks were
implemented quickly and execute efficiently, highlighting the expressibility, ease of programming, and
efficient distributed execution that X-Tree provides.

The rest of the paper is organized as follows. Section II discusses related work. Section III examines
three application examples, describes the challenges and overviews our solution. After Section IV provides
background information, Section V illustrates the programming interface, Section VI describes our system
support for distributed execution, and Section VII discusses several optimizations. Our experimental
evaluation is in Section VIII. Finally, Section IX discusses additional issues and Section X concludes
the paper.

II. RELATED WORK

Sensor network programming. A number of programming models have been proposed to program
resource-constrained wireless sensor networks. The database-centric programming models (e.g., TinyDB [15,
16], Cougar [6, 28]) provide a declarative interface with a standard query processing language, but the
resource constraints of the target domain have forced these models to be simple and efficient, at the
cost of generality (e.g., TinyDB’s SQL is a subset of standard SQL). In contrast, X-Tree supports a
general query processing language with arbitrary aggregation functions. The functional programming
models (e.g., programming with abstract regions [19, 27]) are tailored to supporting useful primitives
that arise naturally in the context of wireless sensor network communication and deployment models. For
example, theabstract regionprimitive captures the details of low-level radio communication and addressing
within the sensor network. However, the requirements of a programming model for wide-area sensing are

�����������
�����������
���������
���������

�����������
�����������
���������
���������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�

�
������

��������������������

�
�

�
�

�
�

�
�

��������������������

��������������������

A

AB

CD

A,B

C,D B

D

A,B,D

Fig. 1. Merging images in CoastCam

university

campus

room
floor

building

Fig. 2. Logical hierarchy of a person finder service

different—generality of the model is more important than providing efficient wireless communication
primitives. Moreover, it is more natural to address wide-area sensors through logical hierarchy rather
than physical regions. X-Tree is tailored to achieve these requirements. Proposals for programming with
economic models (e.g., market-based micro-programming’s pricing [18]) are orthogonal to our model.
We believe that X-Tree can be used with such economic models, especially within a shared infrastructure
(e.g., IrisNet [3, 11]) where multiple competing services can run concurrently.

Active Networking. X-Tree shares the same general goal with active networking [24] of dynamically
programming devices within the Internet. Moreover, some of the design decisions X-Tree makes (e.g.,
using a Java Virtual Machine) are similar to those used by several active networking systems. However,
X-Tree differs from these systems in two important ways. First, X-Tree takes a database-centric view.
Second, it presents the whole system as a single queriable unit and hides from the user the physical
distribution of both the sensor data and the user-defined code operating on that data.

Distributed Databases.Compared to the existing distributed XML query processing techniques [10,
23] that only support standard XML queries, X-Tree’s query processing component is more general
in that it supports user-defined operations. Moreover, X-Tree leverages the accessor function approach
for executing numeric aggregation functions [5, 15]. However, X-Tree presents a more general model,
supporting a richer set of application tasks. Furthermore, X-Tree’s stored query construct (defined in
Section V) has a similar spirit as the proposal for database fields to contain a collection of query commands
in relational environments [22]. While the original proposal aims to support clean definitions of objects
with unpredictable composition in a centralized environment, X-Tree aims (1) to support application-
specific states, and (2) to enable developers in a dynamic distributed environment to guide the distribution
of application code to machines without knowing what data resides on what machine.

III. E XAMPLE APPLICATIONS, CHALLENGES, AND OUR SOLUTION

This section describes a number of wide-area sensing services (we use the termsserviceand appli-
cation interchangeably) that we aim to enable. We also highlight the desirable properties of an enabling
programming model, challenges in achieving them, and our solution.

A. Applications

Oceanographic Image Stitching.The oceanographers of the Argus project [1, 12] have deployed a
collection of cameras along various coastlines, with each camera taking periodic snapshots of the near-
shore ocean surface. The cameras at a coastline can have overlapping views, and the oceanographers
would like to combine the snapshots from individual cameras to produce a single panoramic image. If
the same physical region is visible from multiple cameras, the resulting panoramic image should have the
corresponding pixels from the snapshot having the highest resolution of that particular region. This requires
complex image processing algorithms, details of which are omitted here for brevity (please see [12] for
details). At a high level, it requires projecting source images into overhead views and then merging them
into a single overhead view by taking the highest resolution pixel at every coordinate position from
multiple images.

Instead of first collecting snapshots from all the cameras and then generating the panoramic image in a
central server, a scalable approach is to combine the snapshots “in-network”, as they are sent toward the
central server. Figure 1 illustrates one step of this process, where the composite images on the left are

merged to form the composite image on the right. This in-network approach enables concurrently running
CPU-intensive image processing tasks across many machines, significantly improving system throughput.

Person Finder. A person finder application keeps track of the people in a campus-like environment
(e.g., a university campus) and supports queries for the current location of a person. The application uses
sensors like cameras, microphones, smart-badges, etc. along with sophisticated software (e.g., for face or
voice recognition) to detect the current location of a person.

For scalability, it is important that the sensor data is stored near their sources (i.e., stored by location)
and is retrieved only on-demand. One way to implement this application is to maintain a distributed
database of all the people currently at each location. A query for some person would then perform a brute
force search of the entire database; such a query would suffer from slow response time and high network
overhead. A far more efficient implementation would organize the distributed database as a location
hierarchy (Figure 2) and prune searches by using approximate knowledge of people’s current locations.
Such pruning can be implemented by maintaining a Bloom filter (similar to [20]) at every intermediate
node of the hierarchy, representing the people currently within that part of the location hierarchy.

Infrastructure Monitor. A distributed infrastructure monitor [2] usessoftware sensors[21] to collect
useful statistics (e.g., CPU load, available network bandwidth) on the infrastructure’s host machines and
communication network, and supports queries on that data. One way to scale such an application to a large
number of hosts is to hierarchically organize the data. Figure 3 shows part of the hierarchy used by IrisLog,
an infrastructure monitoring service deployed on 473 hosts in PlanetLab [4]. Infrastructure administrators
would like to use such an application to support advanced database operations like continuous queries
and distributed triggers. Moreover, they would like to dynamically extend the application by incorporating
new sensors, new sensor feed processing, and new aggregation functions, as needs arise.

B. Design Goals and Challenges

A programming model suitable for all the above applications should have the following properties.
First, it should havesufficient expressive powerso that application code can use arbitrary sensor data
and perform a rich set of combinations and computations on that data. For example, applications may
perform complex tasks (e.g., image stitching) on complex data types (e.g., images), and/or combine
application-specific states (e.g., Bloom filter) with standard database queries. Second, the model should
supportefficient distributed execution of application code, executing a piece of computation close to
the source of the relevant data items. This exploits concurrency in the distributed environment, and saves
network bandwidth because intermediate results (e.g., the location of a person) tend to be much smaller
than raw inputs (e.g., images of the person). Finally, the model should beeasy to use, minimizing the effort
of application developers. Ideally, a developer needs to write code only for the core application functions.
For example, suppose she wants to periodically collect a histogram of the resource usage of different
system components, but the infrastructure monitor currently does not support computing histograms. In
such a case, it is desirable that she needs to write only the histogram computing function, which can be
easily incorporated within the existing monitor.

While achieving any one of the above goals is easy, it is challenging to achieve all three in a single
design. For example, one way to provide sufficient expressive power is to enable collecting all relevant
data items in order to perform centralized processing, and using application code to maintain states (e.g.,
Bloom filters) outside of the database. However, this approach not only disables distributed execution, but
it requires developers to integrateoutsidestates into query processing—a difficult task. To understand the
difficulty, consider the Bloom filters in the person finder application. To employ pruning of unnecessary
searches, application developers would have to write code to break a search query into three steps: selecting
the roots of the hierarchy subtrees for which Bloom filters are stored using the database, checking the
search key against the Bloom filters outside of the database, and then recursively searching any qualified
subtrees using the database. This simply overburdens the developers.

Similarly, consider the goal of efficient distributed execution. Distributed execution of numeric aggre-
gation functions (mainly SQL aggregates) has been studied in the literature [5, 15]. The approach is

<PlanetLab>
<Country id="USA">

<Region id="East">
<Site id="CMU">

<Host id="CMU2">
<User id="user1" memUsage="20MB" cpuUsage="5340sec"/>

</Site>
</Region>

</Country>
</PlanetLab>

... ...
... ...

... ...</Host>

France ChinaUSA

West MiddleEast

MIT HarvardCMU

CMU1 CMU3CMU2

user1 user3user2

PlanetLab

Country

Region

Site

Host

User

Tree Representation:

Fig. 3. An XML document representing IrisLog’s logical hierarchy

to implement an aggregation function as a set of accessor functions and to automatically distribute the
accessor functions. However, it is not clear how to distribute application code for a large variety of possible
application tasks that may access and combine arbitrary data items and application-specific states. One
may argue that application developers should implement all aspects of the distributed execution of their
code. However, this approach requires developers to track the physical locations of stored sensor data and
manage network communications, thus violating the goal of ease of programming.

C. Our Solution

We observe that although there are a large variety of possible application tasks, many tasks perform
similar kinds of computations. For example, a common type of computation is to combine a list of sensor
feedings of the same nature (e.g., numeric values or images) to generate a single result (e.g., a histogram
or a panoramic image). Other common computation types include (1) computing multiple aggregates from
the same set of data sources, and (2) performing group-by before aggregate computations (e.g., computing
the total bandwidth consumed by each application on a shared infrastructure). Therefore, our strategy is
to treat common computation types and other specific application tasks differently, and provide a higher
level of automation for the former.

As mentioned in Section I, X-Tree employs the XML hierarchical database model to organize data in
a logical hierarchy, and the Xpath query language for querying the distributed XML database. To enable
user-defined computation with XML and Xpath, it provides two components. First, astored function
component provides a simple Java programming interface and extends the Xpath function call syntax for
implementing and invoking application code. Our implementation of X-Tree (denoted the X-Tree system)
automatically distributes the execution of this application code, for the common types of computations.
Second, astored querycomponent allows application developers to define derived states and associate
Xpath queries with XML elements that invoke their code. In this way, developers can guide the distribution
of their code in the logical hierarchy of an XML document, while the X-Tree system hides the details
of physical locations of sensor data and network communications. Note that the physical locations of the
sensor data can change over time (e.g., for the underlying system’s load balancing, caching, etc.). Our
implementation of X-Tree works regardless of these dynamics and hides them from developers.

IV. BACKGROUND: XML D ATA MODEL AND DISTRIBUTED QUERY PROCESSING INIRISNET

An XML document defines a tree: XML elements (tag-pairs) are tree nodes, and their nested structures
specify parent-child relationships in the tree. Every XML element has zero or more attributes, which are
name-value pairs. Figure 3 illustrates the XML document representing the logical hierarchy in IrisLog.
The root node of the tree is PlanetLab. It has multiple country elements as child nodes, which in turn are
parents of multiple region elements, and so on. The leaf nodes represent user instances on every machine.

We can use Xpath path expressions to select XML elements and attributes. In Xpath, “/” denotes a
parent-child relationship, and “//” an ancestor-descendant relationship. “@” denotes an attribute name
instead of an XML element name. For example,/PlanetLab/Country[@id="USA"] selects the
USA subtree.//User[@id="Bob"]/@memUsage returns Bob’s memory usage on every machine
that he is using, as a list of string values. In order to compute the total memory usage of Bob, we
can use the Xpath built-in function “sum”:sum(//User[@id="Bob"]/@memUsage) . However, the

init
compute
final

developers
implement

Application

init init init init init

compute compute

String mySF_init ()TYPE val, String[] args

String mySF_compute (String[]midVals, String[] args)

String mySF_final (String midVal, String[] args)

(c) Full picture(b) Developers implement three methods for the stored function

myClass:mySF (Input_XPATH, arg0, arg1, . . .)

User query invoking a stored function

compute

final

arg0, arg1: args[]
query result is

finaloutput from

execution of the three methods to relevant hosts
X−Tree system automatically distributes the

myClass:mySF (Input_XPATH, arg0, arg1)

 number of arguments may be required by the stored function as parameters.)
(a) User query interface to invoke a stored function. (Input_XPATH query selects the set of values to perform computation. Variable

class myClass {

// perform computation on a set of intermediate values, merging

}

// convert a value of the XPATH output into an intermediate format.

// them into a single intermediate value.

// generate the final query result from an intermediate value.

Input_XPATH: val in init

// if Input_XPATH selects attributes, then is TYPE String
TYPE Node// if Input_XPATH selects nodes, then is

Fig. 4. Stored function programming interface

handful of built-in functions hardly satisfy all application needs, and the original centralized execution
mode suggested in the Xpath standard is not efficient for wide-area sensor systems.

IrisNet [3, 10, 11] supports distributed execution of Xpath queries, excluding functions. Sensor data of
a service is conceptually organized into a single XML document, which is distributed across a number of
host machines, with each host holding some fragment of the overall document. Sensing devices, which
may also be hosts of XML fragments, process/filter sensor feedings to extract desired data, and send
update queries to hosts that own the data. Each fragment contains specially marked dummy elements,
called boundary elements, which indicate that the true element (and typically its descendant elements)
reside on a different host. IrisNet requires an XML element to have an ID attribute unique among its
siblings. Therefore, an element can be uniquely identified by the sequence of ID attributes along the path
from itself to the document root. This sequence is registered as a DNS domain entry, for routing queries.

To process an XML query, IrisNet extracts the longest query prefix with ID attribute values specified
and constructs an ID sequence. Then, it performs a DNS lookup and sends the query to the host containing
the element specified by the prefix; this host is called thefirst-stop host. The query is evaluated against
the host’s local fragment, taking into account boundary elements. In particular, if evaluating the query
requires visiting an elementx corresponding to a boundary element, then a subquery is formed and sent
to a host storingx. Each host receiving a subquery performs the same local query evaluation process, and
returns the results back to the first-stop host. When all the subquery results have been incorporated into
the host’s answer, this answer is returned.

In the following, we describe X-Tree Programming within the context of IrisNet. However, we point
out that our solution is applicable in any XML-based database-centric approach that supports in-network
query processing.

V. X-T REE PROGRAMMING

In this section, we describe the two components of X-Tree Programming, stored functions and stored
queries, for efficiently supporting application-specific functionalities in wide-area sensor systems.

A. Stored Functions

The stored function component incorporates application-specific code. Its programming interface is
shown in Figure 4. A stored function can be invoked the same way as a built-in function in a user query,
as shown in Figure 4(a). The colon separated function name specifies the Java class and the method major
name of the application code. The semantics is that theInput XPATH expression selects a list of values
from the XML document, the values are passed to the stored function as inputs, and the function output
is the result of the invocation. The stored function can require optional arguments, which are typically
constant parameters, but can be any Xpath expressions returning a single string value.

String (histogram_init String val, String[] args)

String histogram_compute (String[] midVals, String[] args)

String (Stringhistogram_final midVal, String[] args)

class myClass { // args[] specifies the histogram bucket boundaries.

// generate the query result from the final intermediate histogram.
}

myClass:histogram (Input_XPATH, "bucket boundary 0", "bucket boundary 1", ...) // A set of numeric values is selected to compute the histogram.

// determine the bucket B for a selected value, create an intermediate histogram with B’s count set to 1 and all other counts set to 0.

// merge multiple intermediate histograms given by midVals[] by summing up the counts of corresponding buckets.

Fig. 5. Implementation of a histogram aggregate

As shown in Figure 4(b), application developers implement three Java methods for a stored function:
init, compute, andfinal, which enable the decomposition of the stored function computation into a series
of calls to the three methods. For each output value of theInput XPATH expression, theinit method is
called to generate an intermediate value. Intermediate values are merged by thecomputemethod until
a single intermediate value is left, which is then converted to the query result by thefinal method. The
args array contains the values of the arguments in the query. As shown in Figure 4(c), our X-Tree system
automatically performs this decomposition and distributes the execution of the methods to relevant hosts
where the data is located.1

Stored functions directly support the ability to perform computation on a single list of values selected
by an Xpath attribute query. Examples are numeric aggregation functions, such as sum, histogram, and
variance, and more complex functions, such as stitching a set of camera images into a panoramic image.
Figure 5 illustrates the implementation of a histogram aggregate. Here, theInput XPATH query is an
attribute selection query and therefore theinit method uses String as the type of its first parameter.
However, since arbitrary data structures can be encoded asString’s, the interface is able to handle complex
inputs, such as images.

Compared to previous approaches for decomposing numeric aggregation functions [5, 15], our approach
not only supports string values as inputs, but also allows a list of XML nodes to be selected (Node as
input type). The latter enables efficient support for several common computation types, such as computing
multiple aggregates from the same set of data sources, and performing group-by operations. These
advanced features will be described in Section VII.

B. Stored Queries

Stored queries allow application developers to associate derived states with XML elements in a logical
hierarchy. These derived states can be either maintained automatically by our system or computed on
demand when used in queries. As shown in Figure 6(a), application developers define a stored query by
inserting a stored query sub-node into an XML element. The stored query has a name unique within the
XML element. The query string can be any Xpath query. In particular, the query string can be a stored
function invocation, and therefore developers can associate application code with logical XML elements.

Figure 6(b) shows how to invoke an on-demand stored query. For each foo element, our system retrieves
the stored query string. Then it executes the specified query within the context of the subtree rooted at
the parent XML element.

For a continuous stored query, several additional attributes need to be specified, as shown in Figure 6(a).
The query can be either in the polling mode or in the triggered mode. When the query is in the polling
mode, our system runs the query periodically regardless of whether or not there is a data update relevant
to the query. When the query is in the triggered mode, our system only recomputes the query result when
a relevant XML attribute is updated. As shown in Figure 6(c), the result of a continuous query is stored
as a computed attribute in the database, whose name is the same as the stored query name. A computed
attribute can be used in exactly the same way as a standard XML attribute. When adding a stored query,
developers can specify a duration argument. Our system will automatically remove expired stored queries.

1For those stored functions (e.g. median) that are difficult to decompose, application developers can instead implement alocal method
which performs centralized computation.

stored_query

foo

stored_query

foo @bar

<foo>

query ="any xpath within foo’s subtree"

</foo>

<stored_query name="bar"

add a stored query
to node foo

foo

type ="on−demand/continuous"
mode ="polling/triggered if continuous"
period="xxx ms if continuous" />

(a) Application developers insert a stored query to node foo

// Application developers can use

// application−specific states
// continuous queries to maintain

(c) X−Tree system maintains the result of a continuous query
as a computed attribute

(b) Invoke an on−demand stored query.

//foo/stored_query[@name="bar"]

Fig. 6. Defining and using stored queries

Our continuous query implementation is similar to those in Tapestry [25], NiagaraCQ [7], and Telegraph
CACQ [17]. Please see [8] for details.

C. Bottom-up Composition of Application Tasks

Combining stored functions and stored queries, our solution supports bottom-up composition of appli-
cation tasks that may combine arbitrary data items and application-specific states. This is because:

• Application-specific states can be implemented as computed attributes and used in exactly the same
way as standard XML attributes.

• The Input XPATHof a stored function may be an on-demand stored query invocation; in other words,
an on-demand stored query higher in the XML hierarchy may process results of other on-demand
stored queries defined lower in the XML hierarchy. This gives application developers the power to
express arbitrary bottom-up computations using any data items in an XML document.

X-Tree Programming saves developers a lot of effort. Developers need not worry about unnecessary
details, such as the physical locations of XML fragments, network communications, and standard database
operations. They can simply write code as stored functions and invoke stored functions in any user
query. They can also associate derived states with any logical XML elements without worrying about the
computation and/or maintenance of the states.

VI. A UTOMATICALLY DISTRIBUTED EXECUTION OF APPLICATION CODE

Stored functions and stored queries can be dynamically added into applications. Developers upload their
compiled Java code to a well-known location, such as a web directory. When a stored function invocation
(or subquery) is received at a host machine, our X-Tree system will load the code from the well-known
location to the host.

Given a stored function invocation, our system automatically distributes the execution of theinit,
compute, andfinal methods to the relevant hosts where the data is located. The idea is to call the accessor
methods along with the evaluation of theInput XPATHquery, which selects the input data.

As shown in Figure 7(a), the stored function invocation is sent to the first-stop host of theInput XPATH
query. Our system employs the standard query processing facility (in our case, provided by IrisNet) to
evaluate theInput XPATH query against the local XML fragment. As shown in Figure 7(b), the results
of querying the local fragment mainly consist of two parts: i) local input data items (squares in the
figure), and ii) boundary elements (triangles in the figure) representing remote fragments that may contain
additional input data.

Next, our system composes a remote subquery for every boundary element, as shown in the shaded
triangles in Figure 7(b). There are two differences between a remote subquery and the original stored
function invocation. First, the function name is appended with a special suffix to indicate that an interme-
diate value should be returned. Second, a subXpathquery is used for the remote fragment. Note that the
latter can be obtained with the standard distributed query facility. Our system then sends the subqueries
to the remote fragments. On the other hand, our system calls theinit method for every selected local data
item, and thecomputemethod to merge multiple local intermediate values (if any).

i i

c

ii i

c

i i

c

c

f

query resultA document
fragment

i: init
c: compute
f: final

 function to where data is located
(a) X−Tree system distributes the execution of the stored

init + compute

compute

final

remote query remote query

myClass:mySF_midValmyClass:mySF_midVal
(subXPATH1, arg0, ...) (subXPATH2, arg0, ...)local values

boundary element

selected data item

(b) Evaluating the stored function at the first−stop host

Results of evaluating
Input_XPATH on the
local XML fragment

Fig. 7. Automatically distributed execution formyClass:mySF(InputXPATH, arg0, ...)

Finally, when the intermediate results of all the remote subqueries are received, our system calls the
computemethod to merge the local result and all the remote results into a final intermediate value, and calls
thefinal method to obtain the query result. Upon receiving a subquery of a stored function invocation at a
non-first-stop host, our system performs the same operations except that thefinal method is not invoked.

In summary, our system automatically distributes the execution of stored functions to where the data is
located for good performance. This scheme works regardless of the (dynamic) fragmentation of an XML
document among physical machines.

In addition to the above mechanism, application developers can use stored queries to guide the distributed
execution of their code. They can define stored queries that invoke stored functions at arbitrary logical
XML nodes. Upon a reference of a stored query, our system will execute the application code (final
method) at the host where the associated logical XML node is located.

VII. O PTIMIZATIONS

In this section, we first exploit the stored function Node interface to combine the computation of
multiple aggregates efficiently and to support group-by. Then we describe a caching scheme that always
achieves a total cost within twice the optimal cost.

A. Computing Multiple Aggregates Together

In IrisLog, administrators often want to compute multiple aggregates (e.g., total CPU usage and maximal
memory usage) of the same set of hosts at the same time. A naive approach would issue a separate stored
function invocation for every aggregate. However, this approach uses the same set of XML nodes multiple
times, performing a lot of duplicate operations and network communications. Therefore, it is desirable to
compute all the aggregates together in a single query.

Interestingly, we can enable this optimization through a special stored function that computes an arbitrary
number of aggregates at the same time, as shown in Figure 8. Note that there is no need to change the
underlying X-Tree system. An example query is as follows:

myOpt:multi(//User, "sum", "cpuUsage", "max", "memUsage")
The init, compute, andfinal methods are wrappers of the corresponding methods of the aggregate functions.
A multi’s intermediate value contains the intermediate value for every aggregate function (for the same
subset of XML nodes). Note thatmulti can be used directly in any application to compute any aggregates.

B. Group-By

Using techniques similar to the first optimization, we have also implemented an efficient group-by
mechanism, which provides automatic decomposition and distribution for grouping as well as aggregate
computations for each group. It supports a set of frequent queries in IrisLog. See [8] for details.

)String[] argsString multi_init (Node node,

String[] args)String multi_compute (String[]midVals,

String[] args)String multi_final (String midVal,

class {myOpt // args[2K] is function K, args[2K+1] is attribute K.

// Generate a concatenated intermediate value.

}

// For every function−attribute pair in args[], extract the attribute from the node and apply the function to get an intermediate value.

// For every function−attribute pair in args[], extract the intermediate values from midVals[], and merge them into a single value.
// Generate a concatenated intermediate value from all the computed intermediate values.

// For every function−attribute pair in args[], extract the intermediate value and compute the final result.

myOpt:multi (Input_XPATH, "function1", "attr1",

// on "attr1", "function2" on "attr2", and "function 3" on "attr3".
// Input_XPATH selects a set of nodes that contain all the specified attributes. For this set of nodes, multi computes "function1"

(Multi supports arbitrary number of functions.)

"function2", "attr2", "function3", "attr3")

Fig. 8. A stored functionmulti that computes multiple aggregates at the same time

C. Caching for Stored Functions

In the original IrisNet [3], XML elements selected by an Xpath query are cached at the first-stop
host in hopes that subsequent queries can be answered directly from the cached data. To exploit caching
for stored queries, we slightly modify our previous scheme for executing stored functions. As shown in
Figure 9(a), at the first-stop host, the system now has three strategies.2 The first strategy is the distributed
execution scheme as before. Because IrisNet can not exploit cached intermediate values, this strategy does
not cache data. The second strategy is to execute theInput XPATH query, cache all the selected XML
elements locally, and execute the stored function in a centralized manner by invoking all the methods
locally. The third strategy is to utilize existing cached data if it is not stale, and perform centralized
execution without sending sub-queries, thus saving network and computation costs.

Cached data becomes stale because of updates. In IrisNet, a user query may specify a tolerance time
to limit the staleness of cached data. A piece of cached data is time stamped at the caching time and is
only used for queries if its time stamp is within the query tolerance time.

Our system has to choose one of the strategies for an incoming query. For simplicity, we shall focus
on improving network cost. Assume for a given stored function invocation, the centralized strategy costs
K times as much as the distributed strategy, and the cost of a cache hit is0. Moreover, we assume all
queries have the same tolerance time T. Now we have an optimization problem as shown in Figure 9(a).

To solve this optimization problem, we propose the algorithm in Figure 9(b). This algorithm does not
require any future knowledge. It only requires our system to keep per-query statistics so that theY value
can be determined. The typical query patterns are shown in Figure 9(c). The algorithm chooses distributed
execution for the firstK queries, then it chooses centralized execution for queryK + 1, followed by a
period of time T during which all queries are cache hits. This pattern repeats. It is possible that the number
of “n” queries in a pattern is more thanK. The algorithm ensures that anyK +1 subsequent “n” queries
occur sparsely in a longer period of time than T.

Theorem 1:The algorithm in Figure 9(b) guarantees that the total cost is within twice the optimal cost.
Proof: Consider the query pattern in Figure 9(c). Let us denote the regions containing a series of

“n” queries followed by a single “c” query an “nc” region, and denote the period of time T following an
“nc” region a “T” region.

Consider an “nc” region containingM(M ≥ K) “n” queries and a single “c” query. The cost of our
algorithm for this region isM +K. Note thatM can be greater thanK, but the algorithm ensures that no
K + 1 subsequent queries in theseM queries may occur in a period of time T. Therefore, switching an
“n” query into a “c” query will have equal or larger cost. Any algorithm must have a cost at leastM to
handle these queries. The ratio of the cost of our algorithm to the optimal cost is within(M +K)/M ≤ 2.

Since our algorithm costs0 for “T” regions, its total cost is always within twice the optimal cost.

2We focus on the first stop host, but the techniques in this section can be applied at any host processing a subquery.

if (tolerance time has passed) {
 Y = number of distributed executions
 in the previous T time
 if (Y < K)
 distributed execution
 else centralized execution
}
else cache hit

T<T<T

(b) Our algorithm assuming no future knowledge

h h...h

k queries k queries >=k queries

time

n...nc n...nc n...nc

T

(c) Typical query patterns of our algorithm

Query costAbbreviation

cache hit (within the tolerance time T
of the last centralized execution)

1

K(K>1)

0

Execution strategy
n

c

h

(a) Optimization problem

Find an algorithm for choosing the strategy to evaluate an incoming
stored function so that the total query cost is minimized.

distributed execution, no caching
centralized execution to cache subtree

Fig. 9. Optimization for caching

VIII. E VALUATION

We have incorporated X-Tree Programming into IrisNet, and then used it to implement the three
applications discussed in Section III. Although the Person Finder application is only toy prototype,
the other two applications are real-world deployments: The Oceanographic Image Stitching application,
called CoastCam, has been deployed with real cameras at the Oregon coast. The Infrastructure Monitor
application, called IrisLog, has been deployed on 473 hosts in PlanetLab and has been publicly available
(and in-use) since September 2003. The rich and diverse set of application-specific functions and states
used by these applications supports the expressive power of X-Tree. The ease of programming using
X-Tree is supported by the small number of lines of code needed to implement these applications on our
system: 439 lines of code for supporting Bloom filters in Person Finder, 316 lines of code for wrapping
CoastCam’s image stitching code in stored functions to enable distributed execution, and 84 lines of code
for communicating with software sensors in IrisLog.

In the following, we present experimental results for both controlled and real-world experiments with
these applications. We perform comparative performance studies for various techniques proposed in
the paper, including stored function, stored query, and themulti stored function. Our approach is to
compare the performance of an application when our solution is used against the performance without
our techniques. Our aim is to demonstrate the performance benefit achievable by using our solution and
thus the effectiveness of our solution. We highlight our findings in Section VIII-C.

A. Controlled Experiments with Person Finder

We perform controlled experiments using the person finder application, as shown previously in Figure 2.
We set up 4 campuses in a university, 20 buildings per campus, 5 floors per building, 20 rooms per floor,
and on average 2 people per room. Every room element contains aname list attribute listing all people
names in the room. We distribute the database across a homogeneous cluster of seven 2.66GHz Pentium
4 machines running Redhat Linux 8.0 connected by a 100Mbps local area network. The machines are
organized into a three-level complete binary tree. The root machine owns the university element. Each
of the two middle machines owns the campus and building elements for two campuses. Each of the four
leaf machines owns the floor and room elements for a campus.

In our experiments, we issue queries one at a time from a 550MHz Pentium III machine. We measure
query response time on this machine and the number of bytes sent by the seven server machines. Every
result point reported is the average of 100 measurements.

1) Stored Functions:In order to study the benefit of distributed execution of stored functions for saving
network cost and exploiting parallelism, we compare the performance of computing an aggregate function
using two different approaches. The first approach implements the aggregate using theinit/compute/final
programming interface as a stored function. Therefore, the aggregate computation is automatically executed
in a distributed fashion. The second approach extracts all the input values from the database and performs

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25
R

es
po

ns
e

tim
e

(s
ec

on
d)

Input value size (byte)

centralized
distributed

10
0

10
1

10
2

10
3

10
4

10
4

10
5

10
6

10
7

10
8

10
9

N
um

be
r

of
 b

yt
es

 s
en

t

Input value size (byte)

centralized
distributed

1

3

10

30

100

300

R
es

po
ns

e
tim

e
(s

ec
on

d)

centralized
distributed

100Kbps 1Mbps 10Mbps 100Mbps
Network bandwidth

0 0.5 1 1.5 2
0

5

10

15

20

25

30

R
es

po
ns

e
tim

e
(s

ec
on

d)

Computation time for every input (ms)

centralized
distributed

(a) Response time varying (b) Communication cost (c) Response time varying (d) Response time varying
input value size varying input value size network bandwidth computation time

Fig. 10. Distributed vs. centralized execution

centralized execution3.
The aggregation function we use models the common behavior of numeric aggregates (such as sum and

avg), i.e. combining multiple input values into a single output value of similar size. For these experiments,
every room element in the database contains a dummy attribute and the aggregations use this attribute. In
order to make the size of input values a meaningful parameter to change, we choose to compute bit-by-bit
binary OR on all the dummy attributes in the database and update every dummy attribute with a string
of a given size before each experiment.

Figure 10(a) and (b) report the response time and communication cost of the two approaches while
varying the length of every input value from 1 byte to 10,000 bytes. As the input value size increases,
the communication cost of the centralized approach increases dramatically (noting the log scale of y axis
in Figure 10(b)), incurring large response time increases beyond 1000B. In contrast, distributed execution
only suffers from minor performance degradations. This is because centralized execution requires all input
values to be transferred, while distributed execution only transfers intermediate results.

Figure 10(c) varies network bandwidth for the 100B points in Figure 10(a) in order to capture a large
range of possible network bandwidth conditions in real use. The true (nominal) network bandwidth is
100Mbps. To emulate 10Mbps network, we change the IrisNet network communication code to send a
packet 10 times so that the effective bandwidth seen by the application is 1/10 of the true bandwidth.
Similarly we send a packet 100 and 1000 times to emulate 1Mbps and 100Kbps networks. Admittedly,
this emulation may not be 100% accurate since the TCP and IP layers still see 100Mbps bandwidth for
protocol packets. Nevertheless, we expect the experimental results to reflect similar trends. As shown in
Figure 10(c), when network bandwidth decreases, the performance gap between distributed and centralized
execution increases dramatically. When network bandwidth is 1Mbps or lower, which is quite likely in a
wide area network, distributed execution achieves more than 2.5X speedups over the centralized approach.

Figure 10(d) studies the performance for computation-intensive aggregation functions. To model such
a function, we insert a time-consuming loop into our aggregation function so that this loop is executed
once for every input value in both the distributed and the centralized approaches. Then we vary the
total number of loop iterations so that the whole loop takes 0, 0.5ms, 1ms, 1.5ms and 2ms, respectively,
which models increasingly computationally intensive aggregation functions. As shown in Figure 10(d),
distributed execution achieves over 1.7X speedups when the computation time is at least 0.5ms per input.
This is because distributed execution exploits the concurrency in the distributed database and uses all the
seven machines, while the centralized approach performs all the computation on a single machine.

2) Stored Queries:To study the benefit of stored queries, we compare the performance of the brute
force search approach and the Bloom filter pruning approach enabled by stored queries. For the latter, we
use continuous stored queries to maintain Bloom filters for the building elements, and user queries refer
to the Bloom filters using Xpath predicates. At every building element, queries (sub-queries) that do not

3We actually implemented this approach using the alternativelocal method in our Java programming interface, which is equivalent to an
implementation outside of the XML database system that runs on the root machine.

University Campus Building Mixed
0

1

2

3

4

5

R
es

po
ns

e
tim

e
(s

ec
)

LCA level

brute force search
prune with stored queries

Fig. 11. Pruning vs. brute force search

Site Region Country Global
0

5

10

15

R
es

po
ns

e
T

im
e

(s
ec

)

Average
Parallel
Multi

Site Region Country Global
0

50

100

150

200

250

T
ot

al
 T

ra
ffi

c
(K

B
)

Average
Parallel
Multi

(a) Response time (b) Network traffic

Fig. 12. Calling multiple aggregates

satisfy the corresponding Bloom filter are pruned.
We use a 550MHz Pentium III machine for generating background update requests that model the

movements of people. In the model, a person stays in a room for timeT , which is uniformly distributed
between 1 second and 30 minutes, then moves to another room. When making a move, the person will
go to a room on the same floor, in the same building, in different buildings of the same campus, and in
different campuses, with probabilities 0.5, 0.3, 0.1, and 0.1, respectively.

Figure 11 shows the performance comparison. We measure response times for queries that look for a
person in the entire university, in a particular campus, or in a particular building. The mixed workload
is composed of 20% university level queries, 30% campus level queries, and 50% building level queries.
Since the scope (university, campus, or building) of a query is usually a good guess by the end user, we
set up the queries so that a query would succeed and find a person 80% of the times in the given scope.

As shown in Figure 11, the Bloom filter approach achieves dramatically better performance than
the brute force approach for queries involving campus or university level elements, demonstrating the
importance of stored queries. The building level results are quite close because pruning is less effective
in a smaller scope and additional stored procedure overhead almost offsets the limited benefit of pruning.

B. Real World Experiments with IrisLog

Our workload consists of queries with four different scopes. Theglobal queries ask for information
about all the PlanetLab hosts (total 473 hosts).4 The countryqueries ask about the hosts (total 290 hosts)
within USA. The region queries randomly pick one of the regions (usa-east, usa-mid, or usa-west), and
refer to all the hosts (around 95 hosts per region) in that region. Finally, thesite queries ask information
about the hosts (around 4 hosts per site) within a randomly chosen site in USA.

PlanetLab is a shared infrastructure; therefore all the experiments we report here were run together
with other experiments sharing the infrastructure. We do not have any control over the types of machines,
network connections, and loads of the hosts. Thus our experiments experienced all of the behaviors of the
real Internet where the only thing predictable is unpredictability (latency, bandwidth, paths taken). To cope
with this unpredictability, we ran each experiment once every hour of a day, and for each run we issued
the same query 20 times. The response times reported here are the averages over all these measurements.
We also report the aggregate network traffic which is the total traffic created by the queries, subqueries
and the corresponding responses between all the hosts involved.

Calling Multiple Aggregates Using Multi. Figure 12 shows the performance of computing a simple
aggregate (average), computing four different aggregates (average, sum, max, and min) using four parallel
queries, and computing the same four aggregates using a single Multi query. For parallel queries, all the
queries were issued at the same time, and we report the longest query response time.5

4Although IrisLog is deployed on 473 PlanetLab hosts, 373 of them were up during our experiments. The query latency reported here
includes the timeout period IrisLog experiences while contacting currently down hosts.

5Note that IrisNet’s query processing module is single-threaded and therefore parallel queries are processed sequentially at every machine.
However, different stages of different queries can be executed in parallel on multiple machines and therefore parallel queries are still faster
than issuing queries one by one.

From the figures, we see that the average query response time is small considering the number and
the geographic distribution of the PlanetLab hosts. There exists a distributed tool based on Sophia [26]
that can collect information about all PlanetLab hosts. Sophia takes the order of minutes to query all the
PlanetLab nodes [9]. In contrast, IrisLog executes the same query in less than 10 seconds.

Moreover, both the response time and the network overhead of the Multi operation are very close to
those of a simple aggregation and are dramatically better than the parallel query approach. The Multi
operation avoids the overhead of sending multiple queries (sub-queries), and the packet header and other
common metadata in responses. It also avoids redundant selection of the same set of elements again.

C. Summary of Performance Study

Our performance study demonstrates that i) our stored function technique significantly improves ap-
plication performance, in both response time and network overhead, by providing automatic distributed
execution of application code; ii) continuous stored queries enable application-specific states (e.g., Bloom
filters for pruning search) that provide significant performance benefit; iii) our techniques are scalable, as
shown by IrisLog that has been running on 473 machines worldwide since September 2003.

In addition, we report more results in our full paper [8]. For a group-by query over all the nodes,
our scheme achieves25% speedups in response time and saves81% network bandwidth in IrisLog
compared to the naive approach of extracting all data and computing group-by results in a centralized
way. This is because our group-by implementation using the stored function Node interface enables
automatic decomposition and distribution of group-by computation. Moreover, we evaluate our solution
for stitching images against the centralized approach. We find that image stitching is highly computation
intensive. Because distributed execution exploits the parallelism of multiple hosts, our solution increases
the throughput of image stitching by 33-286%.

IX. D ISCUSSION

X-Tree Programming can be used in more general situations than the three application examples we
described. For example, the three application examples do not share sensor data across multiple services;
i.e. an XML document is only accessed by a single application. Therefore, our current implementation
allows application developers of a service to see the entire XML document. However, in some situations,
multiple sensing services may be built on top of the same sensor data. Access control for different XML
elements might be important in such situations. One possible approach is to associate access control lists to
every XML element and check every operation against the access control lists. Another possible approach
is to perform query rewriting similar to that in relational databases to append additional predicates to
queries that limit accesses only to the authorized part of a document.

The application tasks described so far are all read-only in nature with respect to the sensor data.
However, our system also supports typical XML update queries (XUpdate) to update data items in an
XML document. Application developers are free to send update queries from within stored functions, or
anywhere else.

X. CONCLUSION

In this paper, we presentX-Tree Programming, a novel database-centric approach to easily programming
a large collection of Internet-connected sensing devices. Our solution augments the valuable declarative
interface of traditional database-centric approaches with the ability to seamlessly incorporate user-provided
code for accessing, filtering, and processing sensor data. We demonstrate the effectiveness of our solution
through both controlled experiments and real-world applications, including an infrastructure monitor
application on a 473 machine worldwide deployment. Using X-Tree Programming, a rich collection of
application-specific tasks were implemented quickly and execute efficiently, simultaneously achieving the
goals of expressibility, ease of programming, and efficient distributed execution. We believe that X-Tree
Programming will enable and stimulate a large number of wide-area sensing services.

REFERENCES

[1] The Argus program. http://cil-www.oce.orst.edu:8080/.
[2] Irislog; a distributed syslog. http://www.intel-iris.net/irislog.
[3] IrisNet (Internet-scale Resource-Intensive Sensor Network Service). http://www.intel-iris.net/.
[4] PlanetLab. http://www.planet-lab.org/.
[5] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a Powerful and Simple Database Language. InVLDB 1987.
[6] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor database systems. InIEEE Mobile Data Management, 2001.
[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Continuous Query System for Internet Databases. InSIGMOD

2000.
[8] S. Chen, P. B. Gibbons, and S. Nath. Stored Procedures for Distributed XML Databases. Technical report, Intel Research Pittsburgh.
[9] B. Chun. PlanetLab researcher and administrator, http://berkeley.intel-research.net/bnc/, Personal communication, November, 2003.

[10] A. Deshpande, S. K. Nath, P. B. Gibbons, and S. Seshan. Cache-and-Query for Wide Area Sensor Databases. InSIGMOD 2003.
[11] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: An architecture for world-wide sensor web.IEEE Pervasive Computing,

2(4), 2003.
[12] R. Holman, J. Stanely, and T. Ozkan-Haller. Applying video sensor networks to nearshore environment monitoring.IEEE Pervasive

Computing, 2(4), 2003.
[13] P. R. Kumar. Information processing, architecture, and abstractions in sensor networks. SenSys’04 Invited Talk.
[14] J. Kurose. Collaborative adaptive sensing of the atmosphere. SenSys’04 Invited Talk. http://www.casa.umass.edu/.
[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGgregation Service for Ad-Hoc Sensor Networks. InOSDI

2002.
[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional query processor for sensor networks. In

ACM SIGMOD, 2003.
[17] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously Adaptive Continuous Queries over Streams. InSIGMOD 2002.
[18] G. Mainland, L. Kang, S. Lahaie, D. C. Parkes, and M. Welsh. Using virtual markets to program global behavior in sensor networks.

In Proceedings of the 11th ACM SIGOPS European Workshop, 2004.
[19] R. Newton and M. Welsh. Region streams: Functional macroprogramming for sensor networks. InProceedings of the First International

Workshop on Data Management for Sensor Networks (DMSN), 2004.
[20] S. Rhea and J. Kubiatowicz. Probabilistic location and routing. InINFOCOM, 2002.
[21] T. Roscoe, L. Peterson, S. Karlin, and M. Wawrzoniak. A simple common sensor interface for planetlab. PlanetLab Design Notes

PDN-03-010.
[22] M. Stonebraker, J. Anton, and E. N. Hanson. Extending a Database System with Procedures.TODS, 12(3), 1987.
[23] D. Suciu. Distributed Query Evaluation on Semistructured Data.TODS, 27(1), 2002.
[24] D. L. Tennenhouse and D. J. Wetherall. Towards an active network architecture.SIGCOMM Comput. Commun. Rev., 26(2):5–17, 1996.
[25] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous Queries over Append-Only Databases. InSIGMOD 1992.
[26] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information plane for networked systems. InHotnets-II, 2003.
[27] M. Welsh and G. Mainland. Programming sensor networks using abstract regions. InNSDI, 2004.
[28] Y. Yao and J. Gehrke. Query processing in sensor networks. InCIDR, 2003.

