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Abstract

Previous work on sensor networks has targeted ad
hoc wireless networks of closely-colocated, resource-
constrained scalar sensor motes. Such work has over-
looked richer sensor types such as webcams and mi-
crophones, which are typically attached to Internet-
connected machines with significant computing power
and storage. In this paper, we describe IrisNet (Internet-
scale Resource-Intensive Sensor Network services), an
architecture for wide-area sensor networks based on
these more capable sensing nodes. IrisNet provides a
common, scalable software infrastructure that enables
the flexible creation of sensor-based Internet services.
It dramatically reduces network bandwidth utilization
through the use of senselets, binary code fragments that
perform intensive data filtering at the sensing nodes,
leveraging the available processing power and mem-
ory. IrisNet employs a two-tier hierarchy of sensing
nodes and query processing nodes. Key features of
IrisNet include flexible data partitioning, efficient and
protected sharing of sensor nodes, low-latency queries,
partial match caching, query-specified freshness toler-
ances, and monitoring and logging support. This pa-
per reports on experiments with a working IrisNet pro-
totype running a parking space finder service, demon-
strating the effectiveness of IrisNet’s features in achiev-
ing scalability and reducing query response times.

1 Introduction

The proliferation and affordability of webcams and
other smart sensors has created opportunities for new
sensor-based services. Consider for example a Park-
ing Space Finder service for locating available park-
ing spaces near a user’s destination. The user specifies
criteria for desirable parking spaces (e.g., within two
blocks of her destination, at least a four-hour meter),
and receives directions to an available parking space

satisfying her criteria. If the space is taken before she
arrives, the directions are automatically updated to head
to a new parking space. Cameras overlooking park-
ing spots may also be used by additional concurrently
running services, such as a Meter Enforcement Tracker
service for determining when a meter reader last passed

by.

While several research projects [14, 11, 7] have be-
gun to explore the use of networked collections of sen-
sors, these systems target the use of densely deployed,
energy- and resource-constrained sensor motes (smart
dust) [15, 21]. Severely limited energy, computational,
storage, and network capacities are the key drivers of
design choices in these projects. These systems are
aimed at ad hoc wireless networks of sensors deployed
in a single contiguous communication domain, e.g.,
a battlefield being monitored for tanks, or an island
whose habitat is being monitored. Specialized hard-
ware, operating systems, programming languages and
database systems have been developed to accommodate
this severely constrained environment [18, 22, 25].

In this paper, we discuss a complementary agenda
based on more capable sensing devices (which might
be called brilliant rocks). We describe IrisNet (Internet-
scale Resource-Intensive Sensor Network services), a
wide-area sensor network architecture for much more
intelligent and capable devices that are widely deployed
at the edges of the global Internet. Many of today’s In-
ternet nodes already have interfaces that support the at-
tachment of sensors such as webcam video cameras.
IrisNet leverages the available processing power and
memory at these nodes to perform intensive processing
of the sensor data at the nodes. Commodity off-the-
shelf (COTS) hardware, operating systems, program-
ming languages and databases are exploited to provide
a powerful shared sensor network infrastructure. Iris-
Net is designed to be a common platform for service
developers to create and deploy sensor-based web ser-
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Figure 1: Key differences

vices. The same infrastructure can be shared by a wide
variety of services such as Parking Space Finder and
Meter Enforcement Tracker. Figure 1 summarizes the
key differences between IrisNet and the previous work
on smart dust.

There are two fundamental aspects to designing a
system for wide-area sensor services, both of which
are relevant to IrisNet. First, on the data-producer side
of the sensing system, a service designer needs mech-
anisms to deploy sensor service code to the appropri-
ate sensor nodes, run the code on them, and collect the
output. Second, on the data-consumer side, users of a
sensing service need to be able to address queries to
the sensor network as a single unit, and should receive
prompt and accurate responses.

These two broad aspects of wide-area sensing in turn
give rise to many criteria for the design of a successful
system. For each design criterion, we highlight the key
features of IrisNet that satisfy the criterion.

e Network bandwidth efficiency: The system will
make use of potentially vast numbers of sen-
sor data feeds, distributed across the Internet.
These feeds may include rich, high bit-rate sensed
datatypes, such as video and audio. To scale,
the system must be efficient in its use of network
bandwidth as the number of sensing nodes and bit-
rate of sensor feeds increase.

IrisNet approach — Distributed filtering: IrisNet
processes high bit-rate sensor feeds on the CPU of
the sensor node where the data are gathered. This
dramatically reduces the bandwidth consumed:
instead of transferring the raw data across the
network, IrisNet sends only a potentially small
amount of post-processed data. As an added ben-
efit, having each sensor node perform its own pro-
cessing (in parallel) avoids concentrating the pro-
cessing of many sensor feeds at a single CPU.

o Efficient and protected sharing of sensor nodes:

The data feed produced by a particular sensor, by
virtue of the sensor’s position and sensing modal-
ity, may be of interest to multiple distinct sensor
services. A successful system must support shar-
ing of sensor devices by multiple mutually dis-
trusting services. Moreover, these services may
overlap in the processing they perform on the same
data source. Eliminating such redundant computa-
tions increases the scalability of the system. This
creates a tension between the desire for isolation
and for sharing at the sensor nodes.

IrisNet approach — Sensing code protection: Each
sensing service sharing the same sensor CPU is
encapsulated in a separate process, to prevent their
interfering with one another’s address spaces. The
entire set of sensing codes may be encapsulated
in a virtual machine, to enforce limits on the total
resources they consume.

IrisNet approach — Re-use of intermediate re-
sults: IrisNet includes a mechanism for sharing
of results between sensing services running on the
same node. Distinct sensing tasks name the results
of their computations, and they may look up, by
name, and re-use results computed by other sens-
ing tasks.

Low-latency queries: As with any interactive
system, users desire prompt responses to their
queries of the wide-area sensing system.

IrisNet approach — Hierarchical caching and
query routing: IrisNet organizes sensor nodes into
a hierarchy, and uses the hierarchy to cache previ-
ous responses, to reduce response latency for fu-
ture queries. Queries are routed directly to the
nodes of interest to the query. The system incor-
porates sophisticated caching techniques, such as
partial match caching, whereby previously cached
data that only satisfy portions of a newly arrived
query may be synthesized to build a response.

Flexible consistency constraints: Sensed data
can be highly dynamic. Depending on the context,
a user may demand up-to-date data, or may prefer
a faster response using cached, slightly stale data.

IrisNet approach — Freshness specifications: A
query in IrisNet may explicitly specify the age of
the data it desires, trading off response time for
data freshness.



o Efficient monitoring and logging support: Be-
cause of the aggressively distributed nature of a
wide-area sensing system, users will need a way to
record and collect measurements of the system’s
behavior, to support testing, debugging, and per-
formance analysis of their sensing services. The
system should provide these measurements with-
out reliance on heavyweight coordination, such as
globally synchronized clocks.

IrisNet approach — Logging with logical clocks:
IrisNet uses low-overhead logical clocks to record
causality between distributed events in the system,
and logs these events for subsequent on-demand
collection.

IrisNet is the first system to address these challenges
in wide-area sensing. We have built a working proto-
type of the IrisNet system, running on COTS PC desk-
tops, laptops, and webcams. As a proof of concept,
our current prototype supports the above-mentioned
Parking Space Finder (PSF) service in a controlled
environment consisting of toy cars on tabletop park-
ing lots. We present measurements of CPU load, net-
work bandwidth consumption, response time, and sen-
sor code protection overhead gathered on this testbed
that demonstrate the utility of the IrisNet design fea-
tures enumerated above in achieving our stated design
criteria.

In the following sections, we give a more detailed
overview of the IrisNet architecture (Section 2), de-
scribe the distributed database IrisNet uses to serve user
queries (Section 3), and give details of IrisNet’s execu-
tion environment for sensing code (Section 4). After
briefly presenting the logging and monitoring support
offered by IrisNet (Section 5), we provide a detailed de-
scription of the PSF service (Section 6), as an example
of an application of the architecture and features previ-
ously set forth, and detailed measurements of this ser-
vice’s behavior and performance (Section 7). Finally,
we place IrisNet in the context of related work (Sec-
tion 8) and present conclusions (Section 9).

2 The IrisNet Architecture

In this section, we describe the basic two-tier archi-
tecture of IrisNet (Figure 2), its benefits, and some of
the challenges it creates. We also examine how a ser-
vice developer can build services using this infrastruc-
ture. The two tiers of the IrisNet system are the Sens-
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Figure 2: IrisNet Architecture

ing Agents (SAs), which collect and filter sensor read-
ings, and the Organizing Agents (OAs), which perform
query processing tasks on the sensor readings. Service
developers deploy sensor-based services by orchestrat-
ing a group of OAs dedicated to the service. As a result,
each OA participates in only one sensor service (a sin-
gle physical machine may run multiple OAs), while an
SA may provide its sensor feeds and processing capa-
bilities to a large number of such services.

2.1 OA Architecture

The group of OAs for a single service is responsible
for collecting and organizing sensor data in order to an-
swer the particular class of queries relevant to the ser-
vice (e.g., queries about parking spots for a PSF ser-
vice). Each OA has a local database for storing sensor-
derived data; these local databases combine to consti-
tute an overall sensor database for the service. One
of the key challenges is to divide the responsibility for
maintaining this Internet-scale sensor database among
the participating OAs. IrisNet relies on a hierarchically
organized database schema (using XML) and on corre-
sponding hierarchical partitions of the overall database,
in order to define the responsibility of any particular
OA. Each service can tailor its database schema and
indexing to the particular service’s needs, because sep-
arate OA groups are used for distinct services. The de-
tails of the operation of OAs are described in Section 3.

2.2 SA Architecture

SAs collect raw sensor data from a number of (possi-
bly different types of) sensors. The types of sensors
can range from webcams and microphones to tempera-
ture and pressure gauges. The focus of our design is on
sensors such as webcams that produce large volumes of
data, and can be used by a variety of services.



One key challenge is that transferring large volumes
of data to the OAs can easily exhaust the resources of
the network. IrisNet relies on sophisticated processing
and filtering of the sensor feed at the SA to reduce the
bandwidth requirements. To greatly enhance the op-
portunities for bandwidth reduction, this processing is
done in a service-specific fashion. IrisNet enables OAs
to upload programs, called senselets, to perform this
processing to any SA collecting sensor data of inter-
est to the service. These senselets instruct the SA to
take the raw sensor feed, perform a specified set of pro-
cessing steps, and send the distilled information to the
OA. Senselets can reduce the needed bandwidth by or-
ders of magnitude, e.g., PSF senselets reduce the high
volume video feed to a few bytes of available parking
space data per time period. On the other hand, the use
of senselets creates three new challenges: (1) what pro-
gramming language does IrisNet provide for the sense-
lets, (2) how does IrisNet ensure that the senselets do
not compromise the security of the SAs, and (3) how
does IrisNet enable scaling to a large number of sense-
lets running on the same SA. The details of the SA pro-
gramming and execution environment are provided in
Section 4.

2.3 Developing a Service

We here describe the steps a service developer performs
to create a new service using IrisNet to illustrate how
our two-tired architecture is used.

1. The developer must first create the sensor database
schema. The schema defines the attributes and
tags used to describe the sensor readings and the
hierarchies used to index the data. IrisNet uses the
schema to create a single OA that hosts the overall
database for the service. IrisNet provides a mech-
anism to add new OAs to a service and re-partition
the database across the nodes as needed.

2. To populate the database, the developer must write
senselet code for the SAs that have sensor cov-
erage relevant to the desired sensor service. The
senselets take the sensor feeds, extract just the data
relevant to the service, and send the data to the ap-
propriate OA. The developer also initializes any
static data in the database.

3. Finally, the developer must provide a user inter-
face for end users to access the service. This user

interface takes some simplified user input and gen-
erates the appropriate set of database queries to the
OAs for the service. IrisNet provides functional-
ity to efficiently answer these queries over the dis-
tributed sensor database.

To assist developers in testing, debugging, and eval-
uating their designs, IrisNet logs events throughout the
system. Developers can collect these logs when needed
and playback the events in a visualization system that
IrisNet provides. The details of this monitoring system
are described in Section 5.

The above description highlights how IrisNet
achieves its core objective of making it easier to cre-
ate and deploy new services. IrisNet seamlessly han-
dles many of the common tasks within sensor-based
services, such as the query processing, indexing, net-
working, caching, load balancing, and resource shar-
ing. In the following sections, we describe the details
of how IrisNet performs these tasks.

3 OAs as a Distributed Database

One of the core components of almost any sensor ser-
vice is the ability to make queries about relevant sensor
readings. The OAs within IrisNet provide a simple way
for a service to incorporate support for rich queries. In
this section, we give an overview of IrisNet’s support
for the database processing of typical sensor services.

3.1 Query Processing

Two important issues for query processing are: (1) the
type of data descriptions and queries to support, and
(2) the mechanisms for scaling the system to large
amounts of data and high update frequencies. Here, we
describe how IrisNet handles these two issues.

We envision a rich and evolving set of data types,
aggregate fields, etc., within a service and across
services, best captured by self-describing tags. In
addition, each sensor takes readings from a geo-
graphic location, so it is natural to organize sen-
sor data into a geographic/political-boundary hierar-
chy. Hence, we choose to represent sensor-derived
data in XML since it is well-suited to representing
such data. We use the XPATH query language, be-
cause it is the most-widely used query language for
XML, with good query processing support. Fig-
ure 3 gives a simple example of an XPATH query



Query: lusRegion[ @id="NE’]/state[ @id="PA’]

[city[ @id="Pittsburgh’]/neighborhood[ @id="Oakland’

OR @id="Shadyside’]/block/parkingSpace[available="yes’]
DNS-style name of the LCA:

city-pittsburgh.state-pa.usregion-ne.parking.intel-iris.net
Figure 3: A typical XPATH query and the DNS-style
name found from its hierarchical prefix

on a hierachical schema for parking spaces consist-
ing of usRegion, state, city, neighborhood,
block, and parkingSpace. Predicates at each
level of the hierarchy are given in square brackets.
This query requests all available parking spaces in two
neighborhoods in Pittsburgh, PA. XPATH supports a
rich set of query predicates.

3.1.1 Partitioning and naming

In order to support a large number of sensor readings
coming from geographically diverse sources, it is crit-
ical to enable the sensor database to be widely dis-
tributed. IrisNet permits a very flexible partitioning
scheme for distributing a sensor database, based on a
set of partitioning rules, special tag attributes, and in-
variants it maintains. In a nutshell, the sensor database
can be partitioned at any /Dable node in the hierarchy.
An IDable node has a special 1d attribute. The value
of an id attribute is a short name that makes sense
to the user query (e.g., Pittsburgh). The value is
unique among its siblings, e.g., there can be only one
city whose id is Pittsburgh among the children of
the PA state node. Moreover, an IDable node has an
IDable parent node (or it is the root node of the hierar-
chy); thus an IDable node is uniquely identified by the
sequence of node names and ids on the path from the
root to the node.

Each OA registers with DNS the unique name for
each IDable node in its partition, appending the ser-
vice name (e.g., parking) and the domain name
intel-iris.net. Figure 3 depicts the DNS name
for the Pittsburgh IDable node. The DNS name
server hierarchy can be maintained on the same set of
OA nodes if necessary. DNS provides a simple way for
any node to contact the owner of a particular IDable
node of the database. It is the only mapping from the
logical database to physical IP addresses in the system,
enabling considerable flexibility in mapping databases
and OAs to physical machines. This permits the system
to scale to as many machines as needed, each operating

in parallel, in order to support large data volumes and
high update frequencies.

3.1.2 Routing a query and gathering the answer

Due to our flexible partitioning, providing fast and cor-
rect answers to user queries is quite challenging. The
goals are to route queries directly to the nodes of in-
terest to the query, to take full advantage of the data
stored at each OA visited, and to pass data between OAs
only as needed. We show how IrisNet addresses each
of these goals.

An XPATH query selects data from a set of nodes in
the hierarchy. In IrisNet, the query is routed directly
to the lowest common ancestor (LCA) of the nodes
potentially selected by the query. Due to our naming
scheme, for an arbitrary XPATH query posed anywhere
in the Internet, IrisNet can determine where to route the
query with just a DNS lookup: no global information
is needed to produce the DNS name of the LCA! To
see this, we observe that each XPATH query contains a
(maximal) hierarchical prefix, which specifies a single
path from the root of the hierarchy to the LCA. From
the node names and id fields in the query, IrisNet con-
structs the DNS name for the LCA. For example, for
the query in Figure 3, the hierarchical prefix is shown
in bold font, the LCA node is Pittsburgh, and the DNS
name is as shown. IrisNet uses a simple parser to scan
the query for a sequence of id predicates, and create
the DNS name. After looking up the IP address, Iris-
Net transmits the query to that OA, which we call the
starting point OA for the query.

Upon receiving a query, the starting point OA queries
its portion of the overall database and evaluates the re-
sult. However, for many queries, a single OA may not
have enough of the database to respond to the query.
Based on the invariants and tags it maintains for its lo-
cal database, the OA determines which part of a user’s
query can be answered by the local database and where
to gather the missing parts. The OA looks up the IP
addresses of the other OAs to contact and sends sub-
queries to them. These OAs may, in turn, perform a
similar gathering task. Finally, the different responses
are collected and combined by the starting point OA
and the result is sent back to the user. For the example
in Figure 3, if the Oakland and Shadyside nodes
reside on different machines than the Pittsburgh
node, then the Pittsburgh OA sends subqueries to the
Oakland OA and the Shadyside OA, who each return a



list of available parking spaces, to be combined at the
Pittsburgh OA and returned to the user.

3.2 Caching and Data Consistency

Like many other network services, it is obvious that
there will be a great deal of locality in the user requests
to a sensor service. For example, in a PSF service, there
are likely to be many more queries about downtown
parking than rural/suburban parking. To take advantage
of such patterns, OAs may cache data from any query
gathering task that they perform. Subsequent queries
may use this cached data, even if the new query is not an
exact match for the original query. Each OA maintains
partitioning and cache invariants that ensures that even
the partial matches on cached data can be exploited.

Due to delays in the network and the use of cached
data, answers returned to users may not reflect the most
recent data. A query may specify consistency criteria
indicating its tolerance for stale data. For example,
the IrisNet service developer for PSF might specify a
large tolerance when the user is far from her destina-
tion or there are a large number of available spots, be-
cause the user probably would not mind an old cached
response. However, as the user approaches her desti-
nation or when available spots are scarce, a low tol-
erance is specified. The ability to specify a tolerance
for data timeliness is a natural and useful feature for
sensor-based services. For example, it enables users to
ask queries such as “Have you seen Joe?” and spec-
ify whether the desired timeframe is this morning, to-
day, this week, etc. We store timestamps along with the
cached data, so that an XPATH query specifying a tol-
erance is automatically routed to the data of appropriate
freshness.

The combination of XML, hierarchical data organi-
zation, and effective response caching allows IrisNet
to support large-scale wide-area sensor databases while
providing interactive response times to user queries. In
this paper, we overview IrisNet’s database processing
support. For further details on the XML processing and
mechanisms needed to support querying and caching in
IrisNet, we refer the reader to [12].

4 The SA Execution Environment

We envision a decentralized deployment of SAs on the
IrisNet network, where loosely federated users will par-
ticipate in IrisNet by hosting sensing code on their
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hosts. Loose federation is a basic requirement for a
system intended to scale to the wide-area Internet; it
would be unreasonable to assume that all participat-
ing nodes are controlled by the same administrative
authority, with perfect trust for one another. Sense-
lets, the sensor feed processing code running at SAs,
may be mutually distrusting, and the author of a sense-
let and operator of an SA node may not trust one an-
other perfectly. Moreover, bugs in senselets may (un-
maliciously) exhaust the resources available on an SA,
eliminating that SA’s availability to IrisNet. To address
these difficulties, IrisNet supports limited protection of
senselets from one another, and of non-IrisNet applica-
tions (run by the SA owner on the SA node) from the
entire set of IrisNet senselets executing on an SA.

Moreover, a sensor feed may be of interest to mul-
tiple IrisNet users who use different services: e.g., a
video feed in a particular location may be used by
one user to monitor parking spaces, and by another
to track passersby in the same visual field. To make
sensor feeds maximally available to users of heteroge-
neous services, IrisNet must support sharing of SAs
among multiple senselets. Because senselets will often
be CPU-intensive, and may perform identical process-
ing on identical data, naively running multiple sense-
lets in time-shared fashion may waste significant CPU
resources needlessly on duplicated execution. To scale
well when multiple senselets with overlapping compu-
tation share an SA, IrisNet shares intermediate results
between senselets that are willing to do so.

In the following, after defining the structure of the
SA execution environment in Section 4.1, we describe
the details of how IrisNet meets the above two chal-
lenges. Section 4.2 presents the mechanism IrisNet
uses to reduce the load on SA hosts by sharing compu-
tation across senselets, and Section 4.3 describes pro-
tection in IrisNet.



4.1 Filtering with Senselets

Figure 4 shows the execution environment in an SA
host. All SA code runs within a single virtual machine
(VM) (e.g., VMWare or UML), that shares the SA’s
CPU alongside user applications. Inside the VM, an
SA Daemon accepts commands (to download senselets,
to start execution of senselets, &c.) from OAs. Each
senselet runs as a separate process within the VM.

Senselets are written in the standard C and C++ pro-
gramming languages'. These binary executables filter
and process the raw sensed data available at an SA. The
IrisNet execution environment on SAs provides sensor
feed processing libraries with well-known APIs to be
used by the senselets. We expect typical senselets to
be sequences and compositions of these well-known li-
brary calls, such that the bulk of the computation con-
ducted by a senselet occurs inside the processing li-
braries. Raw sensed data are periodically copied into
a circular shared memory buffer within the VM, read-
able by senselets; the sharing model for senselets is dis-
cussed in detail in Section 4.2.

A typical senselet is written in a way to achieve soft
real time behavior: the senselet uses periodic deadlines
for completing computations, but associates a slack
time, or tolerance for error, with these deadlines. A
senselet periodically reads a sensor feed from shared
memory, processes it, sends output information to an
OA, and sleeps until the next deadline. Senselets dy-
namically adapt their sleep times under varying CPU
load to target finishing their next round of processing
within the window defined by the next deadline, plus-
or-minus the slack time.

4.2 Cross-Senselet Sharing

Multiple senselets in an SA run continuously on the
same sensor feeds, such that there may exist many
common sub-tasks across the senselets. For example,
consider the two senselets whose data flow graphs are
shown in Figure 5. Note the bifurcation at time 12, step
(b) between senselets 1 and 2; their first two image pro-
cessing steps, “Reduce Noise” and “Find Contour,” are
identical, and computed over the same raw input video
frame. More generally, a sequence of operations on a
set of raw sensor data feeds {V } can be represented as
a directed acyclic graph (DAG), where the nodes with
zero in-degree are in {V'}, the remainder of the nodes
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Figure 5: Computation DAGs for two senselets. The
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represent intermediate results, and the edges are the op-
erations on intermediate results. If multiple senselets
use the same sensor data feed set {V }, their correspond-
ing DAGs can be merged into a single DAG referred to
as the computation DAG. Figure 5 shows such a compu-
tation DAG where two scripts are processing the same
sensor data with timestamp 12.

In general, we expect image processing primitives
(e.g., color-to-gray conversion, noise reduction, edge
detection, &c.) to be reused heavily across senselets
working on the same video stream. If multiple sense-
lets perform very similar jobs (e.g., tracking different
objects), most of their processing would overlap [16].
For example, many image processing algorithms for
object detection and tracking use background subtrac-
tion. Multiple senselets using such algorithms need to
continuously maintain a statistical model of the same
background [13]. These examples suggest a large de-
gree of shared computation across services we are cur-
rently considering.

We wish to enable senselets like the pair shown in
Figure 5 to cooperate with one another. In the fig-
ure, one senselet could share its intermediate results
(marked as (a) and (b)) with the other, and thus elim-
inate the computation and storage of redundant results
by the other. IrisNet uses names of sensor feed pro-



cessing API calls to identify commonality in execu-
tion, rather than attempting to determine commonality
across any arbitrary piece of C code. Because most of
a senselet’s time is spent within the sensor feed pro-
cessing APIs, using this simple mechanism to optimize
across only those APIs will reduce computation and
storage requirements significantly.

Two mechanisms are required for sharing intermedi-
ate results between senselets: a data store that is shared
between separate senselets (which run as distinct pro-
cesses), and an index whereby senselets can publish re-
sults of interest to other senselets, and learn of ones of
interest to themselves. We describe these mechanisms
in the following two sections.

4.2.1 Shared Buffering of Intermediate Results

IrisNet stores senselets’ intermediate results in shared
memory at run time. This technique is quite similar
in spirit to the memoization done by optimizing com-
pilers, where the result of an expensive computation is
stored in memory for re-use later, without repetition of
the same computation.

In IrisNet, intermediate results are generated and
kept in shared memory regions so that all senselets can
use them. The SA Daemon, which spawns senselets,
allocates each new senselet a shared memory region.
The SA execution environment provides senselets with
a memory management library that allocates memory
from the calling senselet’s own shared memory pool.
A senselet has read/write access to memory allocated
from its own shared memory pool, but read-only access
to memory allocated in other senselets’ shared mem-
ory pools; the SA Daemon configures senselets’ shared
memories this way, with the support of the shared mem-
ory library [5]. This allocation strategy prevents one
senselet from overwriting intermediate results gener-
ated by other senselets. Figure 4 shows that senselet
2 can read and write the memory allocated from its
own shared memory pool, but can only read from other
shared memories.

To generate intermediate results in the shared mem-
ory, we replace standard dynamic memory allocation
calls in the sensor feed processing libraries with our
shared memory allocation calls. Note that intermediate
results are not self-contained — they often may contain
pointers to other objects which may in turn contain ad-
ditional pointers. These pointers, in general, are not
meaningful across senselets running as separate pro-

cesses. Fortunately, pointers to shared memory regions
are valid for all senselet processes since they map each
others’ shared memory regions at identical addresses.
This equivalence of pointers across address spaces is
also essential for indexing the shared memory, as will
be revealed in the next section. All intermediate results
are marked with the timestamp of the original sensor
feeds they are generated from.

When allocation of shared memory for a new result
fails, IrisNet evicts an intermediate result from shared
memory. The replacement policy for shared memory is
to evict the item with the oldest timestamp. If multiple
such results exist (because they all are from the same
DAGQG), the one generated most recently is selected. The
intuition here is that old results are relatively less likely
to be used by other senselets, and within the same com-
putation DAG, the ones generated more recently (far-
ther down in the computation DAG) are less likely to
be common across senselets.

The maximum amount of advantage that can be
achieved from the commonality of computation across
senselets depends on the size of the slack and the
amount of shared memory allocated to store the inter-
mediate results. In Section 7.3, we present experimen-
tal results measuring the effect of these two factors on
system performance.

4.2.2 TStore: Indexing Intermediate Results

To make use of the shared memory store, senselets
need an index for it, to advertise and find interme-
diate results. IrisNet indexes intermediate results as
tuples in a Tuple Store (TStore), which is itself in
a shared memory region mapped into all senselets’
address spaces’>. Tuples are of the form (name,
timestamp, result), where name is a unique
name for the result computed from a sensor feed
with timestamp t imestamp. The result may con-
tain a value (if the intermediate result is a scalar)
or point to a shared memory address where that in-
termediate result is stored; recall that shared store
pointer values are valid across all senselets. Con-
ceptually, TStore is a black box with two operations:
Insert (tuple), which inserts a tuple into TStore,
and Lookup (tuple—name, time-spec), which

2In our current implementation, all senselets have read and write
permissions to the TStore. However, we are moving to a model
where only the SA daemon has write permission and performs all
writes to the TStore.



finds tuples with the specified tuple-name and time-
spec (timestamp and slack) in the TStore.

The names of intermediate results (i.e., the name
fields of tuples) must be consistent across senselets,
uniquely describe results, and be easily computable.
Recall that senselets are comprised of API function
calls to libraries provided by the IrisNet SA platform.
Senselets leverage the function names in this well-
known library API to name their intermediate results
for sharing with other senselets.

A tuple within TStore represents the result of apply-
ing a series of API function calls to some particular sen-
sor feed. We name a tuple using its /ineage, which is
an encoding of the path from the original sensor feed
to the result in the computation DAG. The encoding
should preserve the order of the non-commutative func-
tion calls. IrisNet names the intermediate result pro-
duced by a function by hashing the concatenation of
the names of the function and its operands. For ex-
ample, the name of the tuple marked (b) in Figure 5
is the hash of the function name saFindContour,
concatenated with the name of the tuple marked (a),
concatenated with the names of other operands to
saFindContour. Note that TStore may contain
multiple tuples with the same name, but they will have
different timestamps.

We implement TStore as a hash table keyed on tuple
name fields. Within a hash chain, tuples are stored as
a linked list in decreasing order of their timestamps.
This ordering improves the performance of Lookup
and Insert operations.

A senselet uses TStore by preceding calls to the sen-
sor data processing libraries with Lookup calls for tu-
ples with names for the appropriate function and data
source, and the desired time-spec. If TStore contains
a matching intermediate result previously computed
by another senselet within the appropriate time range,
Lookup returns the requested intermediate result from
shared memory. Otherwise, the senselet calls the actual
sensor data processing library function and stores the
result in TStore with Insert.

Similarly, tuples are evicted from TStore when the
corresponding intermediate results are evicted from
shared memory, or when TStore itself exhausts storage
for new tuples. The TStore tuple replacement policy for
selecting a victim tuple is similar to that for intermedi-
ate results in shared memory.

4.3 Protected Execution

While the core SA code is trusted, senselets may not be,
and users of IrisNet services may only be loosely fed-
erated with one another, or with the administrators of
SAs. There are two relationships between code running
on SAs of interest: senselet-to-senselet, and IrisNet-to-
non-IrisNet. While we have discussed above the per-
formance benefits of sharing data between senselets, a
senselet should retain the option of refusing to use re-
sults from other senselets, or refusing to make its re-
sults available to other senselets. The owner of an SA
node has an interest in isolating his own applications
from downloaded senselets that share the SA node’s
CPU; even non-malicious bugs in senselets might oth-
erwise exhaust resources on the SA node. We now de-
scribe IrisNet’s support for protected execution, which
addresses these needs.

IrisNet supports encapsulating all senselets in a sin-
gle User-Mode Linux (UML) virtual machine [19],
within which each concurrently executing senselet is a
single process, as shown in Figure 4. UML is easily
integrated into IrisNet, because its VM environment is
binary-compatible with native Linux, on which IrisNet
was initially developed. We run all senselets in a single
VM instance because of the high memory and process-
ing overhead of multiple VM instances executed con-
currently; each VM runs a complete copy of the oper-
ating system.

Between senselets, there exists standard UNIX-style
process protection, so that senselets cannot overwrite
one another’s address spaces. Shared memory buffers,
used in sharing of intermediate results, may be mapped
into multiple senselet processes. Each senselet controls
whether it elects to make its results available to other
senselets in such segments, or whether it elects to use
results from other senselets’ shared memories.

The UML VM that encapsulates senselet execution
runs alongside native applications executed by the SA
node owner. This separation allows an SA node owner
to limit the CPU consumption of the senselets in the
aggregate, to ensure an SA node devotes a particular
portion of its execution time to the SA owner’s tasks.
Should a faulty senselet greedily consume CPU, the
UML also permits the SA node owner to retain con-
trol of the SA. This degree of control is important in
cases where an SA may be deployed in a location not
easily accessible, such that rebooting the SA may be
impractical.

The upcoming release of UML supports bounding



the consumption of CPU, memory, disk, and network
bandwidth for a UML VM. These resource limits will
thus be enforceable for the set of senselets executing on
an SA.

UML imposes one overhead on IrisNet beyond the
expected virtualization overhead of any VM system,
because it doesn’t virtualize many sensor input devices,
such as webcams. That is, only the host Linux instance
(running on the bare hardware) can read from, e.g.,
USB devices. To make sensor inputs available to sense-
lets inside the guest UML VM instance, we’ve imple-
mented a tunnel writer for the host Linux instance, that
reads raw sensor inputs and sends them over a network
socket. This socket connects to a corresponding fun-
nel reader process inside the UML VM, which writes
the stream arriving on the socket into a shared memory
accessible to senselets executing inside the UML VM.
Copying the raw sensor data across the socket in this
fashion is not required when senselets execute directly
on the host Linux instance, and thus represents addi-
tional CPU overhead we pay for encapsulating sense-
lets in a UML VM. We plan in future to add support
to UML for direct reading of sensor input devices, to
eliminate the data copy overhead of the tunnel reader
and writer.

S Service Monitoring

As can be seen over the previous sections, the interac-
tion between the SAs and OAs can be quite complex.
Monitoring a distributed service, such as a collection
of OAs and SAs, for debugging, testing, and perfor-
mance evaluation purposes is always challenging [20].
In this section, we describe the tools that IrisNet pro-
vides to aid service developers in this task. First, Iris-
Net provides mechanisms to log the events at each node
(e.g. exchange of messages) and to gather logs to a cen-
tral place. Second, IrisNet provides tools to replay the
events and visualize them in a graphical interface.

5.1 Logging

Each OA independently logs the events triggered by the
services running on it. The current prototype of IrisNet
only logs message transmission and reception events at
the OAs; however, the set of events that are logged can
easily be extended. Information about the operation of
the SAs is collected by recording the reception of SA
messages at some OA. Each log entry includes at least

Alle; ghey @
Pillsburg}, @

Dimee

Oakl ayﬁ@ wadyside
SIRNNNC
&mmcm Bk
® @
Bldok2  Blobi3  Blobi e 1 e | mms |

[ —

On click, nodes
show their status

Status bar shows
the current events e
- T e ) |
TN EYTTETIET: EYYrETEY N

e \
e

Figure 6: Animation of the events

the following: type of the message (Query, Sub-query,
Reply etc.), sender and receiver names, name of the ser-
vice related to the event, and query ID. Log entries also
need to be timestamped so that distributed operations
(e.g. a query followed by the response) can be replayed
later in correct order. However, generating this times-
tamp raises several issues.

Since different nodes in the system may not be time
synchronized, physical timestamps may not represent
the global causal order of the events. To overcome this
problem, IrisNet uses logical clocks instead of physi-
cal timestamps to maintain the event order. Each OA
maintains a logical clock (Lamport clock [23]) which
is incremented on each event. Messages sent by an OA
are timestamped with the value of the clock at the time
they were sent. On receiving a message, an OA updates
its timestamp to be the maximum of the received times-
tamp and its current timestamp. Such a clock maintains
the causal order of the events, which can later be used
to replay the events.

In our system, the collected logs are sent to a central
server (maintained by the service developer) as they are
generated by the OAs.?> In addition, we plan to have
each OA store a sliding window of the log entries in
its local XML database. When needed, a developer can
collect these logs using IrisNet’s query processing sup-
port. This would make it possible to retrieve the logs
for a failed request by querying all the events generated
by the failed query (specified by the query ID) for a
specific service (e.g. PSF). This approach may be more
attractive since the logs are only collected when needed
and the possible bottleneck of central log collection is
avoided.

3Note that, even with this setting, physical timestamps by the
central server may not provide the correct event ordering.
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Figure 7: OA Hierarchy for the PSF service
5.2 Replay and Visualization

Since the log of events for many services will have a
large volume, they may be difficult to examine for the
purposes of debugging. IrisNet provides two tools to
process and replay the logs once they are collected. The
first tool is the Trace Generator which sorts the logs in
ascending order of their logical timestamps and gener-
ates NAM-style [4] trace. The second tool, the Trace
Animator, displays the topology of OAs and SAs as a
graph and animates the events of message exchanges
among nodes. The trace animator is created by modi-
fying NAM to support a few extra commands (e.g., to
provide a view of the content cached at a node). Fig-
ure 6 shows a snapshot of this animator, replaying the
logs collected from the PSF service described in Sec-
tion 6.

6 An Example Service

We have built a working prototype of the IrisNet sys-
tem and a PSF service using commodity, off-the-shelf
PC desktops, laptops, and webcams. The objective of
the PSF service is to use feeds from cameras installed
in parking lots in a metropolitan area and allow users
to make queries about the availability of parking spots
at a particular location. Our prototype of this service
uses simulated parking lots on a tabletop with toy cars.
This simulated setup was chosen in the interest of hav-
ing a controlled experimental environment. Here, we
describe the implementation details of PSF.

6.1 Database processing

A service developer creates the XML schema which de-
fines, along with other information, the hierarchy used
by the service. Figure 7 shows part of the hierarchy
used in our current deployment of the PSF service and
Figure 8 shows one instance of the physical distribution
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Figure 8: Processing of a query in the PSF service. One
physical machine contains one or more nodes in the hi-
erarchy. The numbers beside the messages show their
relative order. The corresponding XML query is given
below.

of the nodes in the hierarchy, where (a) the four blocks
corresponding to the parking lots (leaves in the hierar-
chy) are mapped onto one OA each, (b) the two neigh-
borhoods, Oakland and Shadyside, are mapped onto
one OA each, and (3) the rest of the nodes in the hierar-
chy are mapped onto one OA. The OAs maintain a dis-
tributed XML database based on the supplied schema.
This database includes dynamically changing parking
space availability information from the SAs as well as
static data describing each of the parking spots moni-
tored (e.g., meter restrictions on the spot).

Figure 8 shows how query processing is done for the
PSF service. The illustrated query asks for the available
parking spots in blocks 1 and 3 in Oakland. The web
server initiates the query on behalf of the user. The
query is first sent to the Oakland OA, which is the LCA
for the supplied query string. The Oakland OA then
sends subqueries to its children OAs, aggregates and
caches the responses, and sends the final answer to the
web server.



6.2 Sensor feed processing

In our current prototype, we use four webcams to mon-
itor four parking lots — one at each block in the hierar-
chy shown in Figure 7. The webcams are attached to
laptops which act as the SAs.

The block-level OAs upload image processing sense-
lets to each of their associated SAs. The senselets are
written using the Intel OpenCV library [3], which per-
forms the necessary image processing. The OpenCV
library was modified to make effective use of the tu-
ple store described in Section 4.2. The saAbsDiff
(Figure 9) call shows how the OpenCV calls have
been modified. Before calling the cvAbsDiff func-
tion provided by the OpenCV library, the saAbsDiff
function uses the getName and Lookup calls to de-
termine if the result of the call is already available in
the tuple store. Similarly, if the result is computed, the
Insert call is used to add the result to the tuple store.

The senselets for the PSF application process the we-
bcam video feeds to determine which parking spots
are available and send this availability information to
the appropriate OAs. The processing is done via a se-
quence of calls to the OpenCV library. The senselet is
configured using a fixed set of background images of
each parking spot. The senselet takes the difference of
the current image and the fixed background image, and
uses a threshold to decide if the parking spot is empty
or full. While the senselet could use more sophisti-
cated image processing algorithms*, our simple image
processing code is sufficient for our tabletop environ-
ment and to demonstrate the important features of the
the IrisNet infrastructure.

6.3 The frontend

The web frontend for this service presents the user with
a form that he/she can fill out to specify a location and
any other constraints (e.g., that the parking spot must
be covered) for the desired parking spot. The frontend
uses IrisNet to find an available parking spot close to
the desired location that satisfies the user’s constraints,
and then uses the Yahoo Maps Service [8] to find driv-
ing directions to that parking spot from user’s current
location. The driving directions and destination park-
ing spot are displayed in response to the user query.

4A possible algorithm [13] would be to maintain different sta-
tistical models for each pixel in the background image based on the
time of day. This model could more easily compensate for changes
in sunlight, shadows, etc.

void cvsAbsDiff (IplImage* srchA,IplImage* srcB,
IplImage* dst);

void saAbsDiff (TimeSpec ts, IplImage* srch,

IplImage* srcB, IplImage* dst) {

// pre-processing
name getName (srcA, srcB, SA_ABSDIFF);
foundTuple Lookup (name, ts);
if (foundTuple != NULL) {
dst foundTuple->result;
return;

// call the OpenCV API
cvAbsDiff (srcA, srcB, dst);
// post-processing
tuple—>name
tuple->result
Insert (tuple);
return;

Figire 9: Wrapped up version of an OpenCV API
shared across scripts

name;
dst;

The driving directions are continuously updated as
the user drives towards the destination, if the availabil-
ity of the parking spot changes, or if a closer parking
spot satisfying the constraints is available. We envi-
sion that a car navigation system using the PSF service
could periodically repeat the query, along with its cur-
rent GPS coordinates, as the user nears the destination.

7 Experimental Results

We present a performance evaluation of the IrisNet
infrastructure that seeks to answer the following four
questions:

1. What are the performance gains in intelligently
filtering at the SAs vs. performing the work at the
OAs (Section 7.2)?

2. What is the cost or gain of cross-senselet sharing
(Section 7.3)?

3. What is the raw performance of the prototype on
simple queries, in terms of processing time, com-
munication time and querying time (Section 7.4)?

4. What is the overhead of providing protection using
a VM (Section 7.5)?
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| Method | Bandwidth (bps) |
Raw camera feed (30 FPS) 221184000
1 FPS sampling 7372800
Compressing in SA (1 FPS) 143000
Filtering in SA (1 FPS) 256

Figure 10: Bandwidth requirements for data sent from
the SA to the OA under four scenarios.

7.1 Experimental Setup

In our experiments, we run SAs on 1.2 GHz and OAs on
2.0 GHz Pentium IV PCs, all with 512 MB RAM. All
the machines run Redhat 7.3 Linux with kernel 2.4.18.
SAs are written in C and OAs are written in Java. We
run the off-the-shelf Xindice XML database [1] at OAs.
SAs sample the webcam feed 10 times per second,
to support services that require up to that frame rate,
and write frames into a shared buffer sized to hold 50
frames. Note, however, that senselets may elect to sam-
ple frames at a lower rate. For example, the PSF ser-
vice we examine herein reads one frame per second.
All measurements presented are for experiments with-
out UML, with the exception of Section 7.5, where we
specifically measure the overhead of UML on senselet
execution.

We study the PSF service described in Section 6 that
uses the hierarchy shown with solid lines in Figure 7.
The nodes in the hierarchy are distributed among seven
machines on a LAN as shown in Figure 8. To simulate
wide-area network latencies, we add appropriate artifi-
cial delays on the links between OAs, as shown in Fig-
ure 7. Each SA runs on a separate host with a connected
webcam.

7.2 Processing Webcam Feeds

In our first set of experiments, we show the effective-
ness of filtering sensor feeds at the SAs. We compare
SA filtering with filtering at the OAs. For OA filtering,
SAs send compressed video frames to the OAs, who
then decode the frames, process them with the sense-
let code, and update their local databases. We use the
FAME [2] library for encoding the video frames into
MPEG-4 at the SAs, and the SMPEG [6] library for de-
coding the frames at the OAs. We assume that the OA
database is updated once per second.

Figure 10 shows how filtering at the SAs reduces the
required bandwidth between SAs and OAs. The first
two rows in the figure show numbers estimated using

640 x 480 RGB video frames, while the last two rows
show numbers from actual measurements. Although
cameras feed a large volume of raw video data to the
SAs>, our PSF service samples the frames at only 1
frame per second. Still, sending these uncompressed
frames to the OAs demands a vast amount of band-
width. The figure reveals that encoding the frames in
MPEG-4 format reduces the traffic. While the com-
pression ratio depends on the dynamic behavior of the
video feed, we found the average compression ratio to
be approximately 50. However, filtering the frames in
the SAs produces the least volume of traffic—as low as
a few bytes per frame.

Figure 11 shows the breakdown of time spent on
stages of extracting information from a video frame
and updating the database under the strategies of fil-
tering in SAs and OAs, respectively. Here we mea-
sure the execution time required to run one senselet
on the SA, 8 senselets on the SA (the scenario is de-
scribed in the next section), and one senselet on the
OA. Not only does filtering at SAs save network band-
width; it also parallelizes sensor feed processing across
SAs, rather than concentrating processing at OAs. Fig-
ure 11(b) shows that an OA takes the same order of
time to process a video frame as an SA, but intuitively,
aggregation of feeds from many SAs at an OA can eas-
ily overwhelm the computational capability of even the
fastest processor. This poor scaling is exacerbated in
the case where multiple OAs run on the same physical
machine. Figure 11(a) also reveals that while filtering
at SAs puts high load on SA hosts, even moderate shar-
ing across the senselets reduces the per-senselet compu-
tational load significantly. To wit, the second bar in the
graph shows that running 8 concurrent senselets and en-
abling result sharing across them significantly reduces
the per-senselet costs.

All these results suggest filtering at SAs is far more
scalable than filtering at OAs. The advantage is two-
fold: first, the network and computational loads are dis-
tributed over the SAs (expected to outnumber the OAs,
as multiple SAs may report to the same OA), and sec-
ond, co-locating senselets at SAs creates the opportu-
nity to share computation among senselets.

SMost webcams compress the video to less than 12Mbps to
transfer it across a USB bus.
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Figure 11: Breakdown of time spent extracting information from video frames and updating the database.

7.3 Effectiveness of Sharing among Services

We now report measurements of the performance of
cross-senselet sharing. Through these experiments, we
try to understand the amount of overhead we intro-
duce by wrapping the OpenCV image processing APIs
in TStore calls, and the performance gains we achieve
from sharing across senselets.

7.3.1 The Workload

For the experiments in this section, we use four dif-
ferent image processing senselets we have developed
using the image processing library provided on SAs.
These senselets perform image processing tasks (e.g.,
detecting an empty parking spot, detecting motion,
etc.), and constitute a realistic synthetic workload for
SAs. The four senselets and the sequences of major im-
age processing operations they perform are as follows:

e Parking Space Finder 1 (PSF1): Get current frame
— Reduce noise — Convert to gray — Find con-
tour — Compare contours — - - -

Parking Space Finder 2 (PSF2): Current frame —
Reduce noise — Convert to gray — Get image
parts — Subtract background — - -

e Motion Detector (MD): {Current frame — Re-
duce noise — Gray, 1 second old frame — Reduce
noise — Gray} — Subtract images — - - -

Person Tracker (PT): Current frame — Reduce
noise — Gray — Find Contour — Get image parts
— Subtract background — - - -

The PSF service described in Section 6 uses the
senselet PSF2.

| Operation | Time (ms) |
cvCvtColor () 1.78
cvAbsDiff () 2.85
cvFindContour () 495
Lookup () + Insert() 0.02

Figure 12: Average time required by different opera-
tions.

We report the results of four sets of experiments. The
combinations of senselets in each set, and their deadline
intervals in seconds are as follows:

[E1] 2 senselets: {PSF1, 1 sec} + {MD, 1 sec}

[E2] 4 senselets: E1 + {PSF2, 1 sec} + {PT, 1 sec}

[E3] 6 senselets: E2 + {PSF1, 2 secs} + {MD, 2 secs}

[E4] 8 senselets: E3 + {PSF2, 2 secs} + {PT, 2 secs}
We average all measurements in this section over 20

30-minute executions.

7.3.2 Overhead of wrapping the APIs

Figure 12 shows the execution times for a few typi-
cal functions in the OpenCV API and the overhead of
wrapping them. The numbers reported in the figure are
the averages of performing the operations on a lightly
loaded SA on 20 different 640 x 480 24-bit images. A
typical OpenCV API takes 1-5 ms, whereas the over-
head we introduce by wrapping them is around 0.02
ms, less than 1% of the time taken by the original API
in most of the cases. As we reveal later in this section,
we make significant gains for this small cost.

7.3.3 The amount of slack and shared memory

For all the experiments, slack is defined as a percentage
of senselet’s execution interval.
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The optimal size of shared memory needed to
achieve the maximum sharing depends on a senselet’s
sensor feed access pattern, execution pattern (deadline
and slack values), and intermediate result generation
rate. For a small shared memory, arrival of a new in-
termediate result may force the discarding of an old in-
termediate result, before that prior result has been used
by other senselets. In these cases, the prior result will
be recomputed redundantly. Let us assume that around
1/k (k is a constant) of the intermediate results gener-
ated by one senselet will eventually be used by some
other senselet. In the case where most senselets use in-
put from the same sensor data feed, we estimate that a
senselet should allocate (Periodmax /Periodgepce]et X
SizeIR)/ k bytes of shared memory, where Periodmax
is the maximum of the periods of all the concurrent
senselets, Periodgepqelet 18 the per-iteration running
time of the senselet under consideration, and Sizeg is
the size of the intermediate results the senselet gener-
ates in each execution round for other scripts to share.

7.3.4 The effect of sharing on CPU load

Figures 13(a) and 13(b) show that cross-senselet shar-
ing significantly reduces the CPU load on SAs. In ac-
cordance with intuition, the gain from sharing increases
as the number of senselets increases, and more redun-
dant computation is saved by result reuse. The graphs
also show the ideal CPU load for the same set of sense-
lets, where the ideal load is computed assuming that
no two tuples with the same lineage and timestamp are
ever generated. However, in IrisNet a result computed
by one senselet may be evicted from the fixed-size
TStore and shared memory before it is needed by an-
other senselet, and thus must be computed again. Also,
if a senselet working on the current frame misses its
deadline and is scheduled later, it may not find a tu-
ple fresh enough to use, even though it could have used
the tuple if scheduled within the deadline. The likeli-
hood of these occurrences increases with the number of
concurrent senselets, as at higher CPU loads, senselets
requiring the same tuple may be scheduled to execute
far apart in time from each other. This argument ex-
plains why the load with sharing in IrisNet is higher
than the ideal load, and why the gap between the two
curves grows with the number of concurrent senselets.

We note that the performance gap between sharing
and the ideal case can be reduced by using greater slack
values on senselet deadlines or larger shared memory
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buffers. Figure 13(a) shows that the CPU utilization un-
der result sharing approaches the ideal CPU utilization
as the slack value increases. Greater tolerance of older
results increases the likelihood of finding an intermedi-
ate result with a timestamp falling in the desired win-
dow. Figure 13(b) reveals that as the shared memory
size increases (k decreases), the performance of shar-
ing again approaches the ideal case, as shared memory
holds progressively more results for later re-use.

7.3.5 The effect of sharing on missed deadlines

As described in Section 4.1, senselets exhibit soft real
time behavior by dynamically adjusting the length of
the period they sleep between two successive rounds
of processing. However, because the SAs do not run
under a real-time OS, scheduling of SAs may become
unpredictable at high CPU loads, such that senselets
miss more deadlines. Figures 14(a) and 14(b) show
how the number of missed deadlines increases with
the number of concurrent senselets. Without sharing,
the SA host becomes overloaded quickly and senselets
miss more and more deadlines. Cross-senselet sharing
significantly reduces missed deadlines by shedding re-
dundant CPU load and re-using tuples computed pre-
viously to meet deadlines. As before, the number of
missed deadlines can be reduced by using longer slack
times (Figure 14(a)) and larger shared memories (Fig-
ure 14(b)).

7.4 Query Execution

Despite IrisNet’s distributed nature and hierarchical
queries, the system offers response times for queries
well within the range demanded by users of interactive
applications. For a simple query in the PSF service,
asking for available parking spots in block 1 of Oak-
land, IrisNet responds in approximately 70 ms. Even
if we artificially route the same query to an ancestor
OA two levels above the relevant block’s OA in the OA
hierarchy, the response time only increases to 150 ms.
These results suggest that even queries that must tra-
verse multiple layers of the OA hierarchy receive rea-
sonable interactive response times. They also suggest
that routing queries directly to the OA with the de-
sired data significantly reduces response time, as was
our goal in the design of IrisNet.

For further details concerning IrisNet’s query pro-
cessing performance, we refer the reader to [12].
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7.5 Overhead of Protected Execution

The entire evaluation presented thus far has been for
senselets running natively on the host machine. We
now present results to argue that the additional compu-
tational overhead of running senselets in a virtual ma-
chine is reasonable, in exchange for added control over
the resource consumption of senselets running along-
side non-IrisNet applications.

Figure 15 compares the time required to process one
frame of a video feed in a senselet when running na-
tively, vs. under a UML VM. We also include measure-

ments for VMWare, a commercial VM emulator, for
comparison. As compared with native execution, the
parking space finder senselet’s execution slows by 13
and 40 percent under UML and VMWare, respectively.
This modest slowdown can be attributed to the math-
intensive nature of senselets; it’s system calls that have
the greatest overhead under VMs, whereas arithmetic
operations are relatively unaffected by virtualization.
Note that the tunnel reader portion of execution under
the two VMs may be reduced by virtualizing the camera
device for direct use by senselets, rather than tunneling
over network sockets, as described in Section 4.3.

8 Related Work

Several of the subcomponents of IrisNet share tech-
niques and goals similar to those of other systems.
Many of these similarities have been highlighted
throughout this paper. Here, we describe large systems
with similar goals to IrisNet’s. These efforts fall into
a few categories: 1) work on numerous but geographi-
cally limited deployments of resource-constrained sen-
sors; 2) work on creating large queriable databases with
distributed updates; and 3) work on limited deploy-
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ments of intelligent surveillance systems.

The work on networked sensors has largely concen-
trated on the use of “motes,” small nodes containing
a simple processor, a little memory, a wireless net-
work connection and a sensing device. Because of
the emphasis of past efforts on resource-constrained
motes, earlier key contributions have been in the ar-
eas of tiny operating systems [18] and low-power net-
work protocols [22]. Mote-based systems have relied
on techniques such as directed diffusion [17] to direct
sensor readings to interested parties or long-running
queries [9] to retrieve the needed sensor data to a front-
end database. Other groups have explored using query
techniques for streaming data and using sensor proxies
to coordinate queries [24], to address the limitations of
sensor motes. None of this work considers sensor net-
works with intelligent sensor nodes, high-bitrate sensor
feeds, and global scale.

The distributed database infrastructure in IrisNet
shares much in common with a variety of large-scale
distributed databases. For example, DNS [26] relies on
a distributed database that uses a hierarchy based on
the structure of host names, in order to support name-
to-address mapping. LDAP [27] addresses some of
DNS’s limitations by enabling richer standardized nam-
ing using hierarchically organized values and attributes.
However, it still supports only a relatively restrictive
querying model.

A number of large research projects have explored
automated video surveillance. The Video Sureveillance
and Monitoring (VSAM) [10] project at CMU is a good
example of the work in this area. Most of these ef-
forts have concentrated on image processing challenges
such as identifying and tracking moving objects within
a camera’s field of vision. These efforts are comple-
mentary to ours, as we focus on wide-area scaling and
development tools, rather than sensor feed processing
algorithms.

9 Conclusions

The goal of the IrisNet system is to enable the devel-
opment of large-scale sensor-based services. We have
discussed features in IrisNet that greatly simplify many
common tasks in these services, such as collecting, fil-
tering and combining sensor feeds, and enabling dis-
tributed queries with reasonable response times.
IrisNet achieves scalability and flexibility through
the effective use of service-specific processing and fil-
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tering of the sensor feeds at the SAs. This approach
introduces the additional challenges of eliminating du-
plicate or redundant sensor processing at the SAs and
isolating a senselet from the SA software and from
other senselets. IrisNet makes use of data structures in
shared memory segments to pass results between differ-
ent senselets. We use a combination of process protec-
tion and virtual machine technology to securely isolate
the senselets.

IrisNet supports low latency query times through the
novel marriage of hierarchical schemas, OA hierachies,
DNS-style names extracted from the hierarchical pre-
fixes of queries, and partial match caching within the
hierarchy.

We have reported performance numbers demonstrat-
ing the efficacy of our approach. We have also de-
scribed an example service (Parking Space Finder) to
illustrate how IrisNet makes the development of ser-
vices simpler.

Three areas that we are currently exploring are ser-
vice discovery, integration with smart dust sensors, and
privacy. We plan to use service discovery to enable the
dynamic matching of OAs to SAs with appropriate sen-
sor coverage. We also plan to explore how the capabil-
ities of smart dust sensors, such as distributed query
processing, can be used effectively to connect them to
IrisNet. Finally, privacy is a concern in any wide de-
ployment of rich sensor recording devices. We believe
that the SAs in our architecture can help address this
concern. For example, we can limit the senselet’s ac-
cess to the raw sensor data or inspect the data transmit-
ted from the SA and remove sensitive information.
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