
IRIS: Internet-scale Resource-Intensive Sensor Services
Sigmod’03 Demo Proposal

Amol Deshpande†,∗ Suman Nath‡,∗ Phillip B. Gibbons∗ Srinivasan Seshan‡,∗

∗Intel Research Pittsburgh †U.C. Berkeley ‡Carnegie Mellon University

ABSTRACT
The proliferation and affordability of smart sensors such as
webcams, microphones etc., has created opportunities for
exciting new classes of distributed services. A key stum-
bling block to mining these rich information sources is the
lack of a common, scalable networked infrastructure for col-
lecting, filtering, and combining the video feeds, extracting
the useful information, and enabling distributed queries.

In this demo, we demonstrate the design and an early
prototype of such an infrastructure, called IRIS (Internet-
scale Resource-Intensive Sensor services). IRIS is a poten-
tially global network of smart sensor nodes, with webcams or
other sensors, and organizing nodes that provide the means
to query recent and historical sensor-based data. IRIS ex-
ploits the fact that high-volume sensor feeds are typically
attached to devices with significant computing power and
storage, and running a standard operating system. Aggres-
sive filtering, smart query routing, and semantic caching are
used to dramatically reduce network bandwidth utilization
and improve query response times, as we will demonstrate.

The service that we demonstrate here is that of a park-
ing space finder. This service utilizes webcams that monitor
parking spaces to answer queries such as the availability of
parking spaces near a user’s destination.

1. INTRODUCTION
Imagine driving towards a destination in a busy metropoli-

tan area. While stopped at a traffic light, you query your
PDA specifying your destination and criteria for desirable
parking spaces (e.g., within two blocks of your destination,
at least a four hour meter). You get back directions to an
available parking space satisfying your criteria. Hours later,
you realize that your meter is about to run out. You query
your PDA to discover that, historically, meter enforcers are
not likely to pass by your car in the next hour. A half hour
later, you return to your car and discover that although it
has not been ticketed, it has been dented! Querying your
PDA, you get back images showing how your car was dented
and by whom.

This scenario demonstrates the potential utility of sensor-
based services such as a Parking Space Finder, Silent (Acci-
dent) Witness and Meter Enforcement Tracker. While sev-
eral research projects [5, 4, 2, 3, 8, 9] have begun to ex-
plore using and querying networked collections of sensors,
these systems have targetted the use of closely co-located
resource-constrained sensor “motes” [6, 7]. In this demo, we
demonstrate an early prototype of a sensor network system
architecture, called IRIS (Internet-scale Resource-Intensive

Sensor services)1 based on much more intelligent partici-
pants. We envision an environment where different nodes
on the Internet (standard PCs, laptops and PDAs) have at-
tached sensors such as webcams (video cameras attached
to Web-enabled devices). Any sensor-based service can re-
trieve information from this collection of sensors and provide
service to users.

While webcams are inexpensive and easy to deploy across
a wide area, realizing useful services requires addressing a
number of challenges:

• Preventing the transfer of large data feeds across the
network is necessary for system scalability.

• Efficiently discovering relevant data among the dis-
tributed collection of sensor and service nodes and de-
livering it to interested participants is crucial for rea-
sonable response times.

• Efficiently handling static meta-data information (e.g.,
parking meter details and map directions), live read-
ings from multiple sensor feeds, readings from the re-
cent past, and long term historical data is required
in order to answer queries like those in our example
scenario.

Our goal in IRIS is to create a common, scalable software in-
frastructure that allows services to address these challenges
in a manageable fashion. This would enable rapid develop-
ment and deployment of distributed services over a world-
wide network of sensor feeds.

IRIS is composed of a potentially global collection of Sens-
ing Agents (SAs) and Organizing Agents (OAs). SAs collect
and process data from their attached webcams or other sen-
sors, while OAs provide facilities for querying recent and
historical sensor data. Any Internet connected, PC-class
device can play the role of an OA. Less capable PDA-class
devices can act as SAs. Continued advances in micropro-
cessing technology enable significant processing power and
memory to be encapsulated in smaller and cheaper devices
that may act as SAs.2 Key features of IRIS include:

• IRIS provides simple APIs for orchestrating the SAs
and OAs to collect, collaboratively process and archive
sensor data while minimizing network data transfers.

1Note to the reviewers: Our project is not to be confused
with a new project, also called IRIS, on building networked
systems using distributed hash tables.
2Note that SAs (and OAs) need not have keyboards or dis-
plays.

• The user is presented with a logical view of the data
as a single XML document, while physically the data
is fragmented across any number of host nodes (data
transparency).

• IRIS supports a large portion of XPATH, a standard
XML query language, for querying the data in the sys-
tem.

• IRIS handles issues of service discovery, query routing,
semantic caching of responses and load balancing in a
scalable manner for all services.

We believe that IRIS can enable a wealth of new sensor-
based services. Example future uses include providing live
virtual tours of cities, answering queries about the waiting
time at different restaurants, unobtrusive monitoring of your
children playing in the neighborhood, witnessing whose dog
pooped on your lawn, and determining where an umbrella
was left behind.

2. THE IRIS ARCHITECTURE
In this section we describe the overall architecture of IRIS.

its query processing features, and its caching and data con-
sistency mechanisms.

Architecture. IRIS is composed of a dynamic collection
of SAs and OAs. Nodes in the Internet participate as hosts
for SAs and OAs by downloading and running IRIS mod-
ules. Sensor-based services are deployed by orchestrating
a group of OAs dedicated to the service. These OAs are
responsible for collecting and organizing the sensor data in
a fashion that allows for a particular class of queries to be
answered (e.g., queries about parking spaces). The OAs in-
dex, archive, aggregate, mine and cache data from the SAs
to build a system-wide distributed database for that service.
Having separate OA groups for distinct services enables each
service to tailor the database schema, caching policies, data
consistency mechanisms, and hierarchical indexing to the
particular service. This does not restrict the placement of
OAs, because multiple OAs can be hosted on the same node.

In contrast, SAs are shared by all services. An SA col-
lects raw sensor data from a number of (possibly different
types of) sensors. The types of sensors can range from web-
cams and microphones to temperature and pressure gauges.
The focus of our design is on sensors that produce large
volumes of data and require sophisticated processing, such
as webcams. SAs with attached webcams include, as part
of the IRIS module, Intel’s open-source image-processing li-
brary [1]. The sensor data is copied into a shared memory
segment on the SA, for use by any number of sensor-based
services.

OAs upload scripting code to any SA collecting sensor
data of interest to the service, basically telling the SA to
take its raw sensor feed, perform the specified processing
steps, and send the distilled information to the OA. For
video feeds, the script consists primarily of calls to the im-
age processing library. Filtering data at the SAs prevents
flooding the network with high bandwidth video feeds and
is crucial to the scalability of the system. Even compressed
video consumes considerable bandwidth, whereas aggressive
filtering can reduce 10 minutes of video down to under a
kilobyte of data, depending on the service. For example,
the Parking Space Finder service distills the video down to
a bit vector indicating which spots are empty.

Block1

Block2

Block3

Block1

Block2

Block3

usRegion state city neighborhood blockcounty

PA Allegheny
Pittsburgh

Shadyside

Oakland

Butler EtnaNY

NE

Figure 1: OA Hierarchy

One key concern is that because multiple services utilize
each SA, the relatively limited computing power of the SA
may be overloaded. Therefore, it is important that SAs are
used efficiently and avoid repetitious work. Thus, our pro-
gramming API for the SA allows downloaded code from dif-
ferent OAs to cooperate and avoid redundant processing and
storage. For example, both the Parking Space Finder service
and the Silent Accident Witness service perform common
steps of filtering for motion detection and for identifying
vehicles. Opportunities for work sharing can be detected
automatically by the SA, by observing matching sequences
of library calls on the incoming stream of frames. We antici-
pate significant work sharing, because the downloaded codes
are all specialized to the processing of the SA’s particular
sensor feeds.

Query Processing. Central to IRIS is distributed query
processing. Data is stored in XML databases associated
with each OA. We envision a rich and evolving set of data
types, aggregate fields, etc., best captured by self-describing
tags – hence XML was a natural choice. Larger objects such
as video frames are stored outside the XML databases; this
enables inter-service sharing, as well as more efficient image
and query processing.

Data for a particular service is organized hierarchically,
with each OA owning a part of the hierarchy. An OA may
also cache data from one or more of its descendants. A com-
mon hierarchy for OAs is geographic, because each sensor
feed is fundamentally tied to a particular geographic loca-
tion.3 Figure 1, for example, shows a geographical hierarchy
for Parking Space Finder.

A user’s query, represented in the XPATH language, se-
lects data from a set of nodes in the hierarchy. The query in
Figure 2, for example, selects data from the Oakland Block1
and Shadyside Block1 nodes in the hierarchy of Figure 1.
We exploit the hierarchical nature of the OA organization
to expedite the routing of queries to the data, as follows.
Observe that each query contains a (maximal) hierarchical
prefix, which specifies a single path from the root of the hi-
erarchy to the lowest common ancestor (LCA) of the nodes
potentially selected by the query. For the query in Figure 2,
this is the prefix of the query up to city[@id=’Pittsburgh’].

3A service may define indices based on non-geographic hier-
archies. In IRIS, such hierarchies are reflected in the XML
schema.

/usRegion[@id=’NE’]/state[@id=’PA’]

/county[@id=’Allegheny’]/city[@id=’Pittsburgh’]

/neighborhood[@id=’Oakland’ OR @id=’Shadyside’]

/block[@id=’1’]/parkingSpace[available=’yes’]

Figure 2: Query asking for all available parking
spaces in Oakland Block1 or Shadyside Block1.

We denote this LCA node (in our example, the Pittsburgh
node) as the starting point for the query.

In IRIS, a query from a user anywhere in the world is
first routed to its starting point. But how do we find the
starting point OA, given the large number of OAs and the
dynamic mapping of OAs to host machines? Our solu-
tion is to have DNS-style names for OAs that can be con-
structed from the queries themselves, to create a DNS server
hierarchy identical to the OA hierarchy, and to use DNS
lookups to determine the IP addresses of the desired OAs.
For our example query, we construct the DNS-style name
pittsburgh.allegheny.pa.ne.parking.intel-iris.net, perform
a DNS lookup to get the IP address of the Pittsburgh OA,
and route the query there.

Upon receiving a query, the starting point OA queries its
local database and cache, and evaluates the result. If nec-
essary, it gathers missing data by sending subqueries to its
children OAs (the Oakland and Shadyside OAs in our ex-
ample), who may recursively query their children, and so
on. Finally the answers from the children are combined and
the result is sent back to the user. Note that the children
IP addresses are found using the same DNS-style approach,
with most lookups served by the local host. The key techni-
cal challenge overcome in our approach is how to efficiently
and correctly detect, for general XPATH queries, what parts
of a query answer are missing from the local database, and
where to find the missing parts.

XPATH queries supported. In our current prototype,
we take the common approach of viewing an XML docu-
ment as unordered, in that we ignore any ordering based
solely on the linearization of the hierarchy into a sequential
document. For example, although siblings may appear in
the document in a particular order, we assume that siblings
are unordered, as this matches our data model. Thus we fo-
cus on the unordered fragment of XPATH, ignoring the few
operators such as position() or axes like following-siblings
that are inappropriate for unordered data. We support the
entire unordered fragment of XPATH 1.0.

Partial-Match Caching and Data Consistency. An
OA may cache query result data from other OAs. Subse-
quent queries may use this cached data, even if the new
query is not an exact match for the original query. For
example, the query in Figure 2 may use data for Oakland
cached at the Pittsburgh OA, even though this data is only
a partial match for the new query. Similarly, if distinct Oak-
land and Shadyside queries result in the data being cached
at Pittsburgh, the query may use the merged cached data to
immediately return an answer.

Due to delays in the network and the use of cached data,
answers returned to users will not reflect the absolutely most
recent data. Instead, queries specify a consistency criteria
indicating a tolerance for stale data (or other types of ap-
proximation). For example, when heading towards a des-
tination, it suffices to have a general idea of parking space
availability. However, when arriving near the destination,
exact spaces are desired. We store timestamps along with

NE PA Allegheny

Shadyside

Oakland

Pittsburgh

Craig st at Forbes ave

Morewood st at Forbes ave

5th ave at Morewood st

Dithridge st at Winthrop st

Figure 3: The hierarchy used in the demonstration
and the mapping of the hierarchy onto the OAs

Figure 4: Webcams monitoring toy parking lots

the data, so that an XPATH query specifying a tolerance is
automatically routed to the data of appropriate freshness.
In particular, each query will take advantage of cached data
only if the data is sufficiently fresh.

3. A PARKING SPACE FINDER SERVICE
The service that we demonstrate in this demo is that of a

parking space finder. This service utilizes webcams that are
monitoring parking spaces to gather information about the
availibility of the parking spaces.

Sensing Agents. We use 4 cameras that are monitoring
toy parking spaces set up as part of our demo (Figure 4).
These cameras are attached to 1.6 GHz laptop machines
that process the video feed, and perform image processing
to decide whether a parking spot is full or empty. Figure 5
shows the actual locations of the four parking lots that we
simulate using the above setup. These are parking lots near
Intel Research Pittsburgh.

Organizing Agents. The organizing agents that we use for
this demo are 7 PCs scattered throughout the Intel research
labs. Figure 3 shows the part of the hierarchy that is used in
this demonstration. This logical hierarchy is mapped onto
the 7 machines as follows : (1) the four blocks corresponding
to the parking lots are mapped onto one OA each, (2) the
two neighborhoods, Oakland and Shadyside, are mapped
onto one OA each, and (3) the rest of the nodes in the
hierarchy are mapped onto one OA.

Figure 5: Parking lot locations, and user destina-
tions (Pittsburgh, PA)

Figure 6: Driving directions to the parking spot are
displayed using the Yahoo Maps Service

Web Frontend. The web frontend for this service essen-
tially presents the user with a form that the user can fill
out to specify her destination, and also other constraints
that she might have (e.g., that the parking spot must be
covered). Currently, we only allow the user to pick from 5
destinations near the parking lots (Figure 5) using a drop-
down menu. Once the user specifies her criteria and submits
the query, the frontend finds the nearest available parking
spot that satisfies the user’s constraints using IRIS, and then
uses Yahoo Maps Service to find driving directions to that
parking space from the user’s current location. These driv-
ing directions are then displayed to the user (Figure 6).

The driving directions are continously updated as the user
drives towards the destination, if the availability of the park-
ing spot changes, or if a closer parking spot satisfying the
constraint is available. We envision that a car navigation
system will repeatadly and periodically ask the query as the
user nears the destination. Lacking that, we currently simu-
late such a behaviour by resubmitting the query periodically
by assuming that the user has reached the next intersection
along the route (the next intersection is obtained by parsing
the driving directions provided by the Yahoo Maps Service).

Figure 7: A modified version of NAM is used to
show the messages during a query execution

Logging and replaying messages. We also demonstrate
a mechanism that we have built for logging and replaying the
messages exchanged by the web frontend and by the OAs.
The collected log information during execution of a query
is used to lazily replay the messages that were sent during
the execution of the query. We use the NAM network sim-
ulator to show these messages. NAM is part of the popular
open-source network simulator, ns, with a graphical display
that shows the configuration of the network under consider-
ation (Figure 7), and uses animation to show messages being
communicated in the network.

A series of XPATH queries of increasing complexity are
used to demonstrate visually various aspects of our system
such as routing to the starting point, recursive query pro-
cessing, partial-match caching, and query-based consistency.

4. REFERENCES
[1] Intel Open Source Computer Vision Library.

http://www.intel.com/research/mrl/research/opencv/.
[2] Webdust: Automated construction and maintenance of

spatially constrained information in pervasive microsensor
networks. http://athos.rutgers.edu/dataman/webdust.

[3] Bonnet, P., Gehrke, J. E., and Seshadri, P. Towards
sensor database systems. In MDM (2001).

[4] Culler, D., Brewer, E., and Wagner, D. Berkeley
Wireless Embedded Systems (WEBS).
http://webs.cs.berkeley.edu/.

[5] Estrin, D., Govindan, R., and Heidemann, J. SCADDS:
Scalable Coordination Architectures for Deeply Distributed
Systems. http://www.isi.edu/scadds.

[6] Estrin, D., Govindan, R., Heidemann, J., and Kumar, S.
Next century challenges: Scalable coordination in sensor
networks. In MOBICOM (1999).

[7] Kahn, J., Katz, R. H., and Pister, K. Next century
challenges: Mobile networking for ’smart dust’. In
MOBICOM (1999).

[8] Madden, S., and Franklin, M. J. Fjording the stream: An
architecture for queries over streaming sensor data. In ICDE

(2002).
[9] Madden, S., Franklin, M. J., Hellerstein, J. M., and

Hong, W. Tag: A tiny aggregation service for ad hoc sensor
networks. In OSDI (2002).

