
Specifying and Verifying the Correctness
of Dynamic Software Updates

Stephen Magill∗
smagill@cs.umd.edu

Christopher M. Hayden∗
hayden@cs.umd.edu

Michael Hicks∗
mwh@cs.umd.edu

Nate Foster†
jnfoster@cs.cornell.edu

Jeffrey S. Foster∗
jfoster@cs.umd.edu

∗University of Maryland, College Park †Cornell University

Abstract
Recently, there has been much interest in dynamic software updat-
ing (DSU) systems, which allow running programs to be patched
on-the-fly to add features or fix bugs. Open-source and commercial
products are now available to support dynamic updates to OS ker-
nels, desktop applications, server programs, and embedded devices.
However, despite the many recent advances in DSU mechanisms,
techniques to reason that dynamic updates are correct have lagged
behind, focusing largely on simple properties like type safety. In
this paper, we present a more complete framework for specifying
and verifying the correctness of dynamic updates. Our framework
is capable of describing application-specific, behavioral notions of
correctness. We use our framework to characterize several classes
of program properties that arise in updatable software. To verify
such properties in actual updatable programs, we develop a trans-
formation that combines the old and new versions of a program into
a single merged program. This merged program is provably equiv-
alent to running the old and new programs in a DSU system, and,
most importantly, the merged program can be analyzed by off-the-
shelf program analysis tools. We describe an implementation of a
program merger we have developed for C, and we demonstrate its
utility with several case studies.

1. Introduction
Dynamic software updating (DSU) systems were originally devel-
oped for a few limited domains such as telecommunications net-
works, financial transaction processors, and the like, but are now
becoming pervasive. Ksplice provides a service that dynamically
updates commodity Linux kernels with security patches [5]. Un-
sanity’s Application Enhancer updates executing MacOS applica-
tions with bugfixes [31]. Many web applications employ DSU tech-
niques to provide 24/7 service to a global audience—for these sys-
tems, there is no single time of day when taking down the service to
perform upgrades is acceptable. Taking a broad view, even iPhone
and Android applications update dynamically: when a user navi-
gates away from a running application, and the application code is
upgraded before the user resumes it, the new version may restore
any checkpointed state to pick up where the old version left off.

Given the increasing desire for DSU, an obvious question is:
How do developers ensure that a dynamically updated program
will behave correctly? Most DSU system builders have ignored
this question, or focused on generic safety properties that rule out
obviously wrong behaviors. For example, the commonly used ac-
tiveness restriction [5, 8, 30] and the related con-freeness restric-
tion prevent updates to running or soon-to-be-running components;
when used properly, these restrictions ensure type safety [29].
While very useful for avoiding problems, type-safe executions may

nevertheless be incorrect, a fact that has been observed empirically
in past work [14].

A few researchers have studied dynamic update correctness in
more detail. Gupta et al. [13] proposed reachability as a correctness
criterion for dynamic updates. Under this criterion, an update is
considered correct if the updated program eventually enters a state
that could have been reached by running the new program from
scratch. Unfortunately, reachability is a blunt instrument: while it
is often what we want, it can allow updates that intuitively should
be rejected and forbid updates that are reasonable. Consider the fol-
lowing example. In version 1.1.0, the vsftpd FTP server introduced
a feature that limits the number of connections from any single
host, implemented by maintaining a table of per-IP address connec-
tion counts. What should constitute correct behavior if we update
a running vsftpd server with several active connections? A natural
choice would be to preserve the connections; after all, a prime pur-
pose of dynamic updating is to avoid service disruptions. But doing
this violates reachability because the number of connections from a
particular host could exceed the limit, and should these connections
remain active indefinitely, we would never enter a reachable state
of the new program. On the other hand, reachability would allow
an update that simply terminates all existing connections; but if we
are willing to do that, why update dynamically in the first place?

Others have proposed criteria that address some of the short-
comings of reachability (e.g., Ajmani et al. [4], see Section 7), but
they ultimately do not provide what we think is most needed: means
for specifying and verifying that a dynamic update is correct for a
particular program. This paper attempts to fill this gap, making two
main contributions.

First, we define a formal language syntax and semantics for
specifying fine-grained dynamic update correctness properties.
Specifications describe the interactions between clients and an
updatable server using remote procedure calls (RPCs) to model
communication. The novel feature of these specifications is the
construct running p, which returns true when the server is running
version p, and false otherwise. A specification that does not use this
construct implicitly assumes that the server could be updated at any
time. On the other hand, a specification that does use it explicitly
assumes that certain interactions occur at one server version, while
other interations occur at another version. For example, for the
vsftpd update mentioned above, our specification could start out
assuming the server is running version 1.0. After n connections are
established, the specification assumes the server is running version
1.1.0, indicating that the update must have taken place some time
prior to this point. If the desired semantics is for all connections
to remain active after the update, we can stipulate that they must
remain so. Or, if the desired semantics is that some or all of them
are terminated, we can stipulate that condition, as well.

1 2010/12/2

Variables x, y, z Global Names f, g

Operators op Integers i, j Addresses a

Locations l ::= a | g
Values v ::= x | l | i | (v1, v2) | ()
Expressions φ, e ::= v | v op v | f(v) |

? | v1 := v2 | !v | ref v |
if v then e1 else e2 |
let x = e1 in e2 |
while e1 do e2 end |
assume v | assert v | running p

Figure 1. Core syntax.

While our framework is quite general, one of the goals of this
work is to make it easy to derive update specifications from ex-
isting, single-version specifications. We identify three classes of
common update specifications that can be derived in this way:
backward-compatible specifications describe properties that are
identical in the old and new versions; post-update specifications
describe what must happen when new features are added by an
update; and conformable specifications describe properties that are
identical in the old and new versions, modulo a renaming of RPC
function calls. Based on what we find in the literature [9, 14, 23–
25, 30], we believe most update specifications will fall into one
of these three classes. Thus, in many cases, the programmer can
simply reuse existing single-version specifications. Of course, our
framework also allows the programmer to describe arbitrary update
specifications that do not fall into one of these categories, such as
the ones for FTP example, above.

Our second contribution is a means to verify update specifica-
tions automatically. Conceptually, a dynamic update consists of a
new version of the program and a function that transforms the state
of the old version of the program into the form expected by the
new version. To enable verifying dynamic updates using off-the-
shelf tools, we develop a novel program transformation that takes
an old program and an update and produces an ordinary program
that simulates running the old program and updating it at any of
the possible program points at which updates may occur. With a
merged program in hand, we can reduce the problem of verifying
an update specification for a patched program to the problem of
verifying a single-version specification for an ordinary program.
We formalize our transformation and prove that a property holds
for the merged program if and only if it holds for the original pro-
gram for any run during which an update may occur.

We have implemented a program merger for C programs and
used it to validate update properties using two off-the-shelf tools:
the symbolic executor Otter [28], and a combination of the verifi-
cation tools THOR [22] and Interproc [20]. We ran both tools on a
series of patches to two small programs that we wrote ourselves, a
key-value store and a multiset, and we ran Otter on actual patches to
Redis, an open-source storage server [3]. We found Otter in partic-
ular to be quite effective: it required little manual effort and readily
found problems in incorrect patches we (inadvertently) wrote for
the small programs, and correctly flagged a semantic change to Re-
dis’s behavior, manifesting as a violation of an invalidated property.
We also successfully verified several of the small-program updates
using THOR+Interproc, though doing so required more manual ef-
fort. As far as we are aware, our system represents the first auto-
matic tool for verifying properties of dynamic updates.

2. Update correctness specifications
In this section, we formalize our notion of update specifications,
which describe how a program should behave in the presence of
dynamic updates. For purposes of this paper, we focus on dynamic
updates that change a server program that interacts with one or
more clients. By client, we mean any other system or entity inter-
acting with the server, e.g., a wget process communicating with a
web server, a BitTorrent server interacting with its peer, or an ap-
plication interacting with an operating system.

Since we focus on updating servers, our notion of specification
is from the perspective of the client. For example, we write specifi-
cations that capture intuitive properties such as “if we dynamically
update the server from version 1.0 to version 2.0, the server must
respond correctly to clients that remain active throughout the up-
date,” or, “after we perform the update, a client must be able to
reliably use new features added in version 2.0.”

Figure 1 formalizes a core expression language we use to de-
scribe both servers and clients. We will typically use e to de-
note server expressions, and φ to denote client expressions. This
language is largely standard, but has a few notable aspects. Per-
haps most importantly, we will model all interactions between a
client and server as synchronous function calls f(v) to a server
function f . Our core language provides no bindings for function
names—we introduce syntax for server function definitions below.

To support writing specifications, our language includes a non-
deterministic expression ?, which evaluates to a random integer;
assume v, which establishes an assumption that v is non-zero;
and assert v, which checks that v is non-zero. It also includes the
construct running p to test whether server program p (defined next
in Section 2.1) is the currently running version of the server.

Finally, all expressions are in administrative normal form [10]
to keep the semantics simple. Thus, instead of e1 + e2 we write
let x = e1 in let y = e2 in x + y, where + is a built-in operator,
written in the syntax as op. (We write e1; e2 as an abbreviation for
let x = e1 in e2 where x does not appear free in e2.)

Examples As a running example we will consider a server imple-
menting a key-value store. Some popular key-value stores include
include Cassandra [2], used by Facebook, and Redis [3], used by
Craiglist. These services are typically placed between an applica-
tion server and a back-end database to cache the results of prior
database queries.

We assume that, perhaps among other remotely-accessible func-
tions, the key-value store server defines functions set(k, x), which
associates key k with value x, and get(k), which returns either the
associated value v or the special name error otherwise. Figure 2(a)
gives an example specification; function calls should be viewed as
RPCs from client to server. This particular specification states that
for an arbitrary pair of integers (k,x), if we associate k with x in the
store via set , then a subsequent call get(k) should return x. (We as-
sume = is a built-in operator that implements structural equality.)
The specification in Figure 2(b) states that if we associate x with
k, but then subsequently associate k with x′, calling get should re-
turn the most recent value. Section 3 gives many more examples,
including ones that use running p.

2.1 Server and specification semantics
We now present two semantics. First, we give a semantics for server
programs written in the same language as Figure 1 but extended
slightly to permit dynamic updates. Second, we give a semantics for
specifications (clients), which models execution of a specification
against a server.

2 2010/12/2

let k = ? in

let x = ? in

set(k, x);

let x′ = get(k) in

assert (x = x′)

let k = ? in

let x = ? in

set(k, x);

let x′ = ? in

assume (x 6= x′);

set(k, x′);

let x′′ = get(k) in

assert (x′′ = x′)

(a) Basic specification (b) Spec. with assumptions

Figure 2. Example specifications

Program p ::= p, (g, λx.e) | ·
Expressions e ::= ... | update

Heaps σ ∈ Locations ⇀ Values

Server s ::= (p, σ)

Patch π ::= (p, e)

Labels ν ::= π | ε

〈p;σ; v1 op v2〉 ; 〈p;σ; v′〉 v′ = [[op]](v1, v2)

〈p;σ; ref v〉 ; 〈p;σ[a 7→ v]; a〉 a 6∈ dom(σ)

〈p;σ; !l〉 ; 〈p;σ; v〉 σ(l) = v

〈p;σ; a := v〉 ; 〈p;σ[a 7→ v]; v〉 a ∈ dom(σ)

〈p;σ; g := v〉 ; 〈p;σ[g 7→ v]; v〉
〈p;σ; ?〉 ; 〈p;σ; i〉 for some i
〈p;σ; let x = v in e〉 ; 〈p;σ; e[v\x]〉
〈p;σ; f(v)〉 ; 〈p;σ; e[v\x]〉 p(f) = λx.e

〈p;σ; if 0 then e1 else e2〉; 〈p;σ; e2〉
〈p;σ; if v then e1 else e2〉; 〈p;σ; e1〉 v 6= 0

〈p;σ;while e1 do e2 end〉 ;
〈p;σ; let x = e1 in

if x then e2;while e1 do e2 end

else 0〉
x 6∈ fv(e1, e2)

〈p;σ; update〉 ; 〈p;σ; 0〉
〈p;σ; update〉 π; 〈p′;σ; (e; 1)〉 π = (p′, e)

〈p;σ; e1〉 ν; 〈p′;σ′; e′1〉
〈p;σ; let x = e1 in e2〉 ν; 〈p′;σ′; let x = e′1 in e2〉

Figure 3. Server syntax and semantics.

Server semantics Figure 3 gives a semantics for servers. A server
program p is a mapping from function names g to functions λx.e.
Clients may call any of the functions named in the mapping. The
server program may also call any of its own functions if desired.
A function body e is written in the core language extended with an
additional form update to indicate a position where an update may
occur (discussed more below).

A server is a pair containing the server program and its initial
heap σ, where a heap is a partial function from locations l to values
v and a location l is either a (dynamically allocated) address or a
(static) global name g. We often describe heaps using set notation,
writing {l1 7→ vi, . . . , lk 7→ vk} for the heap that maps li to vi
for i from 1 to k and is otherwise undefined. We write dom(σ)
for the set of locations for which σ is defined and σ[l 7→ v] for
the heap that maps l to v and otherwise behaves like σ. Note that

server programs do not have closures, but since global names g are
values, the language does support function pointers as in C.

Our semantics is written as a series small-step rewriting rules
between configurations of the form 〈p;σ; e〉, which contain the
server program p, its current heap σ, and the current expression
e being evaluated. Arrows ; are annotated with labels ν, which
are either a patch π (indicating π was dynamically applied), or the
empty label ε; an unlabeled arrow is implicitly annotated with ε.

Most of the rewrite rules are straightforward. We write e[x\v]
for the expression obtained by substituting v for every occurrence
of x in e. We assume that the semantics of primitive operations
op are defined by some mathematical function [[op]]; e.g., [[+]] is
the integer addition function. Loops are rewritten to conditionals,
where guards in both cases treat non-zero values as true, and zero
as false. Assignment to global names g is unusual: if the variable
g does not exist then the rule creates it; conversely, addresses a
must be allocated prior to assigning to them. This feature is used
to allow state transformation functions, described below, to define
new global variables accessible to an updated program.

The update command identifies a position in the server code at
which a dynamic update may take place. Semantically, update non-
deterministically transitions either to 0, indicating that an update
did not occur, or to 1 (eventually), indicating that a dynamic update
was available and was applied. In the case where an update occurs,
the transition is labeled with the patch π, where π is a pair (p′, e)
consisting of the new program code p′ and an expression e that
transforms the current server heap to make it compatible with the
new code in p′. This expression is placed in redex position and is
evaluated immediately. In practice, update would be implemented
by having the run-time system check for an update, and apply it if
one is available [16].

The placement of the update command has a strong influence
on the semantics of updates. To permit updates only between server
calls, the server developer could make update the last command
of every function implementation, prior to returning, as advocated
by some prior work [4, 14, 19, 24, 25]. To allow updates to take
effect more readily, update could appear throughout server-side
code, essentially modeling asynchronous updates, also advocated
in prior work [5, 8, 12]. In practice, such an approach necessitates a
timing mechanism to prevent updates from occurring at potentially-
unsafe points; e.g., changes to functions f may not be permitted
while f is running. To model such a timing mechanism, we could
parameterize our semantics by a predicate on the patch π and the
current state, and only allow update-taking transitions when the
predicate is satisfied. We do not do so to keep things simple. In
any case by making the update policy explicit with the update
command, we can verify that such a policy does not compromise
update correctness.

Specification semantics Figure 4 gives the small-step reduction
rules for specifications. The main judgment is defined at the bot-
tom of the figure as three small-step rules that relate specification
configurations 〈p;σs;σc; e〉. These configurations have four com-
ponents: the server p, the server heap σs, the client heap σc, and the
current expression e. The first rule defines the semantics of most
specification terms by appealing to the server relation −→ just de-
fined, but using the empty program ·, since specifications do not
define functions. Doing so effectively rules out reductions involv-
ing function calls, and these are handled by the bottom two rules,
which we will explain shortly. (Recall that we assume update does
not appear in specifications φ. It it could, the aforementioned rule
would not work as we might expect, since the update would be ap-
plied to the client heap, and an empty program.)

Figure 4 also extends the definition of ; to give semantics to
running p, assume v, and assert v, used in specifications. (While

3 2010/12/2

Expressions φ ::= ... | error

Results u ::= v | error

〈p;σ; running p〉 ; 〈p;σ; 1〉
〈p;σ; running p′〉 ; 〈p;σ; 0〉 p′ 6= p

〈p;σ; assume v〉 ; 〈p;σ; v〉 v 6= 0

〈p;σ; assert v〉 ; 〈p;σ; v〉 v 6= 0

〈p;σ; assert 0〉 ; 〈p;σ; error〉
〈p;σ; let x = error in e〉; 〈p;σ; error〉

〈·;σc;φ〉; 〈·;σ′c;φ′〉
〈p;σs;σc;φ〉 −→ 〈p;σs;σ′c;φ′〉

〈p;σs; f(v)〉 ~π;∗ 〈p′;σ′s;u〉

〈p;σs;σc; f(v)〉
~π−→ 〈p′;σ′s, σc;u〉

〈p;σs;σc;φ1〉
~π−→ 〈p′;σ′s;σ′c;φ′1〉

〈p;σs;σc; let x = φ1 in φ2〉
~π−→ 〈p′;σ′s;σ′c; let x = φ′1 in φ2〉

Figure 4. Specification semantics.

server programs can technically use these expressions, too, we ex-
pect them to appear only in specifications.) Expression running p
returns 1 if p is the server program currently running (thus we en-
code a program version as the program text itself), and 0 other-
wise. Expression assume v returns v if v is non-zero; execution is
stuck for assume 0, identifying an irrelevant execution. Expression
assert v returns v if it is non-zero, and error otherwise, which by
the rule for let propagates to the top level. In short, type errors and
failed assumptions result in stuck programs, while failed assertions
produce an explicit error. We will discuss the reasons for this design
in the next subsection.

The last two rules at the bottom of Figure 4 handle remote func-
tion calls and let bindings on the client side. The former rule pushes
the call to the server, with the server’s heap. The latter rule is nec-
essary to handle function calls in specifications whose results are
to let-bound variables. We write ~π−→∗ for the reflexive, transitive
closure of the −→ relation. As each step −→ is potentially labeled
with an update π, the transitive closure is labeled with a vector of
updates ~π consisting of the sequence of non-empty labels associ-
ated with individual transitions (empty labels are discarded).

2.2 Specification satisfaction
We can now define specification satisfaction, written s, ~π |= φ,
which holds if and only if none of the possible executions of
specification φ on server program s that apply any subsequence
of the updates ~π result in a failed assertion. Formally:

Definition 1 (Satisfaction). A server program s = (p, σ) and a
sequence of updates ~π satisfy a specification φ, denoted s, ~π |= φ,
if and only if for all p′, σs, σc, e, ~π0 such that ~π0 is a prefix of ~π it is
the case that 〈p;σ; ·;φ〉 ~π0−→∗ 〈p′;σs;σc; e〉 implies e is not error.

Notice that specification satisfaction does not imply type-
correct executions as expressions such as !1 are simply stuck. We
could add rules that transition such bogus expressions to error, but
we do not do so to keep things simpler; there are many well-known
techniques for avoiding type errors in dynamic updates, such as the
activeness or con-freeness restrictions [5, 8, 29, 30].

When the sequence of updates is empty we simply write s |=
φ. This states that every non-updating execution of the server s
satisfies the specification φ, corresponding to standard notions of

correctness for single-version programs. The relation s, π |= φ
states that server s satisfies φ when subject to a single update π.

3. Defining update specifications
Given an old server s0 of the form (p0, σ0), a new server s1 of
the form (p1, σ1), and a patch π of the form (p1, e) that updates
the server to p1, a developer needs a way to check that s0 behaves
correctly when dynamically updated using π. In this section, we
show that in many cases such update specifications can be derived
from existing single-version specifications used for verification—
i.e., φ such that either s0 |= φ or s1 |= φ, or both. We identify
three classes of update specification that can be derived systemat-
ically: backward compatible specifications, post-update specifica-
tions, and conformable specifications. Otherwise, general specifi-
cations that characterize update-specific behavior can be written by
hand. Such general specifications require careful consideration, but
are also the most interesting and the most rare. In short, we believe
that verifying a dynamic patch should add little work beyond the
work already needed to verify s0 and s1 in isolation.

3.1 Backward compatible specifications
Most programs satisfy many of the same properties before and after
a dynamic update—i.e., most of the server’s behavior that the client
observes is unchanged between versions. For instance, Hayden et
al. [14] observed that OpenSSH’s test suite only grew between
versions—all of the old tests continued to hold as time went on.
This makes intuitive sense: many updates simply add new features,
leaving the old features (and properties about them) unchanged,
or refactor the program to improve non-functional aspects such as
performance.

A backward-compatibile specification φ is one that holds for
both s0 and s1 independently, i.e., s0 |= φ and s1 |= φ. Such
specifications are immediately usable. As an example, suppose that
s0 and s1 are different versions of a key-value store and further
suppose that the specification in Figure 2(a), call it φ, holds for both
versions. Now we want to check that φ is preserved when updating
from s0 to s1. This is easy to do: we use φ exactly as is, but now
try to verify s0, π |= φ. Performing this verification could reveal
bugs in the state transformation expression e packaged with π. In
particular, imagine that update appears in the server code at the
end of every exported function; i.e., an update, if available, will be
applied at the conclusion of any remote function execution. Now
suppose that e is written incorrectly so that it resets the store. In
this case, s0, π 6|= φ because when the update is applied at the
conclusion of the set operation, the result of get will fail to match
since the store is now empty.

3.2 Post-update specifications
Another common category of properties consists of those that apply
to the new version but not the old version, i.e., φ such that s1 |= φ
but s0 6|= φ. As an example, suppose that s0 is our key-value
store and it contains a bug: set does not properly override existing
associations, but leaves intact the initial association. Server s1 fixes
this bug and the developer writes the specification in Figure 2(b),
call it φ, to verify as much; i.e., she proves the fix is correct by
checking s1 |= φ. We cannot verify s0, π |= φ directly since
there are some executions for which this property fails to hold; e.g.,
those for which the update takes place after the second call to set .
However, we can easily derive an update specification from φ that
we can use to verify the update.

Observe that φ should hold regardless of the initial state it is exe-
cuted in. Thus, we can transform φ into a post-update specification
φ′ that prefixes φ with an arbitrary sequence of calls into the old
program version ending with the assumption assume (running p1)

4 2010/12/2

to ensure the new version p1 is running when φ is checked. More
formally, we can define the post-update specificationP[[φ]] as given
in Figure 5(a) where p0 = (f0, λx.e0), (f1, λx.e1), Thus,
P[[φ]] can now be checked against an update from p0 to p1. For our
exampleP[[φ]] would produce a specification that performs an arbi-
trary number of set and get operations using the old code, expects
the update to take place sometime during the last such operation,
and then checks φ on the updated program.

Post-update specifications often make sense for updates that
add features or fix bugs. However, in general only specifications
that assume the server could be in an arbitrary initial state are
suitable for the post-update transformation. As a trivial example,
the specification assert (get(?) = error) explicitly checks that
our key-value store starts empty, and may not hold immediately
after an update.

3.3 Conformable specifications
In some cases, updates add new features that change the behavior
of existing features, but they do it in a systematic way. To illustrate,
suppose a developer writes s1 to extend our key-value store s0 with
support for namespaces. Such a change occurred between versions
0.3 and 0.4 of the Cassandra distributed database [2]. The new set
of server functions now take a namespace identifier as an initial pa-
rameter, i.e., set(d, k, v) associates key k to value v in namespace
d, and likewise get(d, k) retrieves the value associated with k in
namespace d. After making this change, the developer adapts the
existing single-version specifications for s0 to be compatible with
the new version. For example, the specification in Figure 2 would
be adjusted so that calls to get and set are made using some default
namespace identifier.

To update s0 dynamically, the developer must write a patch π
whose state transformation expression e adjusts the key-value store
to be compatible with the new code—e.g., any existing key-value
pairs already in the server heap could be placed in a default names-
pace. A reasonable choice is to have e add a default namespace d to
each existing key-value pair. To test that this update provides rea-
sonable continuity, we can take a new-version specification φ that
uses this default namespace and adapt it so that it starts by using
the old versions of the changed functions, and then changes to the
new version midstream.

We formalize this process as follows. We assume we are given
a new specification φ, as well as a meta-function F [[f(v)]] that
takes a call to a new-version function and transforms it to an ap-
propriate call to an old-version function. As this may not always
be possible, F [[·]] may be partial. Then we can define the meta-
function C[[φ]] that conforms φ as shown in Figure 5(b). For our
example, the developer would define F [[get(k)]] = get(d, k) and
F [[set(k, v)]] = set(d, k, v). Note that F [[·]] bears some resem-
blance to Ajmani et al.’s simulation objects [4]; see Section 7.

Now suppose that s1 also adds a new function that permits a
client to delete an entry: del(d, k) removes any association with
k from namespace d. Since there is no analogue to del defined in
s0, there is no backward translation for calls del(d, k) that could
appear in s1 specifications. To see how C[[·]] works in this case,
consider the example given in Figure 5(c), which shows φ and
C[[φ]] side by side. Here, C[[φ]] permits updates to happen up until
the del call, at which point we assume the update has taken place.
(This means that the running p0 check that follows it will always
be false.)

3.4 General specifications
Some updates change program behavior in ways that cannot be
easily tested using existing specifications. For example, suppose
that server s1 changes key-value store s0 by limiting the num-

P[[φ]] = while ? do

assume (running p0);

if ? then f0(?) else if ? then f1(?) else . . .

end;

assume (running p1);

φ

(a) Post-update function P[[·]]

C[[f(v)]] = if (running p0) then F [[f(v)]] else f(v)

if F [[f(v)]] defined
C[[f(v)]] = assume (running p1); f(v)

if F [[f(v)]] undefined
C[[let x = e in e′]] = let x = C[[e]] in C[[e′]]
C[[while e do e′ end]] = while C[[e]] do C[[e′]] end

C[[φ′]] = φ′ for all other φ′

(b) Conformance function C[[·]]

φ C[[φ]]
let k = ? in

let x = ? in

set(d, k, x);

del(d, k);

let x′′ = get(d, k) in

assert (x′′ = error)

let k =? in

let x =? in

if (running p0) then set(k, v)

else set(d, k, v);

assume (running p1); del(d, k);

let x′′ = (if (running p0) then get(k)

else get(d, k)) in

assert (x′′ = error)

(c) Example conformance of spec from Fig. 2(b)

Figure 5. Transforming new-version specifications

ber of keys stored in any given namespace. To ensure this limit is
met post-update, the developer might write a state transformation
function that randomly removes key-value pairs from namespaces
that exceed the limit. No existing specification can accurately ver-
ify this behavior: old-version specifications assume no limit (so all
gets following a set on the same key should succeed), while new-
version specifications assume deterministic behavior, e.g., once the
limit is reached, no new pairs are allowed, but old pairs remain
available. Thus, to verify this particular update’s behavior, the de-
veloper needs to write an appropriate update specification from
scratch. It is very likely the developer’s update specification will
need to call running p to reason about when the update, with its
randomized state transformer, has been executed.

4. Verification via program merging
We now describe a way to verify that an update specification φ
is satisfied. While much technology exists for verifying program
properties, all of it assumes a single, static program. In this section,
we describe a program transformation that takes an old program
(p, σ) and a patch π and yields a single merged program (p, σ)�π.
The semantics of the merged program is provably equivalent to
the original program with the patch applied to it. Formally, we can
show the following theorem, where [[φ]]p,π is a transformed version
of φ:

5 2010/12/2

[[p′, (g, λy.e)]]p,π = [[p′]]p,π,

(g, λy.[[e]]p,π),

(gptr , λy.let z = isupd() in

if z then g′(y) else g(y))

[[·]]p,π = (·, (isupd , λy.let z = !uflag in

z > 0))

———-
[[σ]]p,π = {l 7→ [[v]]p,π | σ(l) = v}

———-
[[let x = e1 in e2]]

p,π = let x = [[e1]]
p,π in [[e2]]

p,π

[[if v then e1 else e2]]
p,π = if [[v]]p,π then [[e1]]

p,π else [[e2]]
p,π

[[v(v′)]]p,π = [[v]]p,π([[v′]]p,π)

[[update]]p,(p
′,e) = let z = isupd() in

if z then 0 else

uflag := ?;

let z = isupd() in

if z then ({|e|}p
′
; 1) else 0

[[running p]]p,π = let z = isupd() in z = 0

[[running p′]]p,(p
′,e) = isupd()

[[running p′′]]p,(p
′,e) = 0 p′′ 6= p ∧ p′′ 6= p′

[[g]]p,π = gptr if p(g) = λx.e

[[l]]p,π = l (otherwise)
[[v1 := v2]]

p,π , etc. = transform vi structurally, as for if

Figure 6. Transforming old-program code.

{|p′, (g, λy.e)|}p = {|p′|}p, (g′, λy.{|e|}p)
{| · |}p = ·

———-
{|let x = e1 in e2|}p = let x = {|e1|}p in {|e2|}p

{|if v then e1 else e2|}p = if {|v|}p then {|e1|}p else {|e2|}p

{|v(v′)|}p = {|v|}p({|v′|}p)
{|update|}p = 0

{|running p|}p = 1

{|running p′|}p = 0 p 6= p′

{|g|}p = g′ if p(g) = λx.e

{|l|}p = l (otherwise)
{|v1 := v2|}p, etc. = transform vi structurally, as for if

Figure 7. Transforming new-program code.

(p, σs) � π , (p, σs)

where
π = (p′, e′)

i ≤ 0

p = {|p′|}p
′
, [[p]]p,π

σs = [[σs]]
p,π[uflag 7→ i]

Figure 8. Transforming programs.

Theorem 1 (Equivalence). For all p, σ, π, φ such that π = (p′, e′)
and dom(p′) ⊇ dom(p) we have that (p, σ), π |= φ if and only if
((p, σ) � π) |= [[φ]]p,π .

In other words, a server (p, σ) patched with π satisfies a spec-
ification φ if and only if the merged program (p, σ) � π satisfies
[[φ]]p,π . This result lets us use stock verification tools to check prop-
erties of programs with updates instead of having to develop new
tools or extend existing ones.

For simplicity, we require that the updated program p′ does
not delete any functions in p. The merging strategy applies to a
single program update. Our approach can be readily generalized to
arbitrary sequences of updates, but we do not do so here to keep the
description simpler.

The definition of (p, σ) � π is given in Figure 8. It makes use
of functions [[·]]· and {| · |}· that are defined in Figures 6 and 7,
respectively. The transformation of specifications φ in the theorem
also uses the [[·]]· function.

The merging transformation is quite simple: It handles functions
by renaming each new-version function from g to g′, to distinguish
the old and new versions, and changing all new-version code to
call g′ instead of g (see Figure 7). For each old-version function
g it generates a new function gptr whose body conditionally calls
the old or new version of g, depending on whether an update has
happened (see Figure 6). The transformation introduces a global
variable uflag and a function isupd to keep track of whether the
update has taken place. It then rewrites all calls to g in the old
version to call gptr instead.

The transformation rewrites updates update appearing in old-
version code into expressions that, when reached, check whether
uflag is positive. If yes, then the update has already taken place,
so there is nothing to do. Otherwise, the transformation sets uflag
to a non-deterministic value, which simulates a non-deterministic
choice to apply the update or not. If uflag now has a positive value,
the update is viewed as having taken place, so the transformation
executes the developer-provided state transformation e, which is is
also transformed according to {| · |}· to properly reference functions
in the new program. The transformation translates version tests
running p into calls to isupd .

We prove the equivalence theorem via bisimulation, showing
that the semantics of a specification using the original program sim-
ulates the transformed specification and program, and vice versa. In
the supplemental material we give the proof of this theorem and de-
scribe the key lemmas. The proofs of these lemmas will be made
available in a forthcoming technical report.

5. Implementation
We have implemented a tool suite that closely follows the formal
development from Sections 2 to 4. We write specifications as C
program fragments that model clients that call server functions. We
have implemented a program merger that combines two versions of
a server written in C, a state transformer, and a client specification
into a single program. We can then check and verify the merged
program using off-the-shelf tools; we discuss our experience doing
so in the next section.

5.1 Specifications in C
In our formal framework, client requests and server responses are
modeled as direct function calls. In practice, such interactions take
place via some more primitive communication mechanism. For
example, a server may be structured using an event loop pattern,
where there is a single loop that parses input from the network
and dispatches requests to the appropriate internal functions. The
responses from these internal functions are directed back to clients
via the event loop code. For example, a web server event loop might

6 2010/12/2

1 // Key−value interface
2 int get(int k, int ∗v) {
3 ...
4 update();
5 return ...
6 }
7 void set(int k, int v) {
8 ...
9 update();

10 }
11

12 // Sample specifications
13 void arbitrary () {
14 int k = nondet();
15 int v = nondet();
16 if (nondet())
17 get(k,&v);
18 else
19 set(k,v);
20 }

21 void back compat spec() {
22 int k = nondet();
23 int v in = nondet();
24 int v out , found;
25 while(nondet())
26 arbitrary ();
27 set(k, v in);
28 found = get(k,&v out);
29 assert (found &&
30 v out == v in);
31 }
32 void post update spec() {
33 int k = nondet();
34 int v out , found;
35 while(nondet())
36 arbitrary ();
37 assume updated();
38 delete (k);
39 found = get(k,&v out);
40 assert (!found);
41 }

Figure 9. Sample C specifications for key-value store.

read the HTTP command GET /index.html from a socket, parse
this command, and then call get(”/index.html”), where get is an
internal function whose response is marshaled and sent back to the
client. We refer to functions like get as interface functions since
they implement the logic of the server’s external interface.

Thus, to verify a typical server using client-oriented specifica-
tions such as those in Figure 2, a verification tool would have to
properly model client-server communication via sockets, interpro-
cess communication, etc. Unfortunately, we know of no verification
tools that are able to do this. Therefore, we take an approach very
close to how we have modeled the situation formally: client speci-
fications are C code that call a server’s interface functions directly.
From the point of view of a verification tool, the specification is the
entry point to the program (rather than main()). We arrange this en-
try point to begin with any initialization code that would have run
prior to executing the server’s actual event loop, and then proceed
to executing our client specification. We have manually developed
specifications in this manner for the open-source key-value store
Redis [3] and found it not too difficult.

The specifications we write in C are very close to the formal
specifications shown earlier, with a few surface-level differences.
In particular: we implement the update command as a call to func-
tion update(), non-deterministic integers ? as calls to nondet(), and
version assumptions assume running p′ as calls assume updated()
(recall that merging only considers a single update). The last is akin
to directly calling the isupd function introduced by the merging
transformation. Unlike the formal framework, we allow client spec-
ifications to define functions for convenience.

Figure 9 shows an example of two specifications and snippets
of code for a key-value server that supports get and set functions.
Lines 1–10 represent the implementations of the server functions;
the salient point is that a call to update() appears at the end of
each, indicating that updates may take place only when server func-
tions complete. The remainder of the figure shows the specifica-
tion code. The function arbitrary (lines 13–20) is used by both
specifications. It non-deterministically calls one of the two server
functions with non-deterministic arguments. The first specification,

back compat spec, performs an arbitrary sequence of server oper-
ations and then checks that an element subsequently added by set
will be returned by get. This is a backward compatible specification
and thus holds regardless of where the update occurs (Section 3.1).
The second specification, post update spec, targets an update that
adds a delete operation. It checks that, following the update, the
delete operation performs as expected. This is an example of a
post-update specification (Section 3.2).

5.2 Merging
Our program merger is implemented on top of the C Intermedi-
ate Language (CIL) [26], a C parser and intermediate representa-
tion written in Objective Caml. The merger takes two arguments,
and old program and a new program, and produces a merged pro-
gram whose entry point is the old program’s main() function. We
assume that the new program contains a distinguished function
state xform() that is meant to be called when an update takes
place; this call plays the role of the expression e in a patch π.

To use the merger to perform verification, the user is responsi-
ble for setting up the old program’s main() function appropriately.
We do this as follows. First, we extract the initialization code in
the normal main() into a separate init() function, and rename the
existing main() function. Second, we put all our specification func-
tions (e.g., like those in Figure 9) into a separate file that is consid-
ered part of the old program. Finally, for each specification, we
run a script that creates a custom main() for each specification—
this simply calls init() and then calls the specification function. For
each custom main() function we merge the old and new program
to create a viable verification target.

Our merger is very close to the formal description given earlier.
One difference is that we will often uniformly rename the global
variables of the program version to simplify writing state xform().
For example, suppose a global variable curtime in the program is
changed from an int to a float. Then we automatically rename this
variable to be curtime new, and the programmer can initialize it in
state xform() by the assignment curtime new := itof(curtime).

On a related note, we must also take care in how we treat
functions whose types have changed. Consider our example from
Section 3.3 in which we add a namespace parameter to get and set .
In the formalism, get takes a single argument, which is a key in the
old version, and a namespace-and-key pair in the new version. The
getptr function introduced by the transformation in Figure 6 simply
passes its argument, whether key or pair, to the appropriate version.
We cannot write such a function in C, however, because C functions
take multiple arguments.

It turns out this is not as deep of a problem as it might seem.
For functions g whose type changes, we can produce gptr whose
true branch fails, i.e., contains assert 0. This is reasonable because
new code will invoke the new version directly—function names g
that appear in new code are transformed to g′, not gptr ; see Fig-
ure 7. Any call to gptr must be from old code, rather than new code,
and thus the call is a legitimate type error—in the actual program,
the call would pass the wrong number of arguments. This trans-
formation simulates Stoyle et al.’s previously proposed analysis for
avoiding type-incorrect updates [29], but is more precise since we
use a path-sensitive, rather than simply flow-sensitive, analysis (as
mentioned below).

6. Experiments
With a merged program we can check update specifications using
off-the-shelf tools. This section describes our experience doing so
trying several tools on a variety of updates, some of which we
constructed ourselves, inspired be realistic changes, and some of
which we acquired from Redis [3]. We begin by describing the

7 2010/12/2

Update Specification Type

key-value store — bug-fix
put-get-distinct∗ backward compatible
new-def-shadows∗ general
new-def-shadows∗ (fails) backward compatible

key-value store — added namespaces
new-def-shadows-postupdate post-update
put-get-postupdate post-update
new-def-shadows-conformed conformable
put-get-conformed conformable

key-value store — no duplicate keys, bad state transformer
put-get (fails) backward compatible
new-def-shadows (fails) backward compatible

key-value store — no duplicate keys, correct
put-get backward compatible
new-def-shadows backward compatible

multiset — change to set, correct
mem-mem∗ backward compatible
add-mem∗ backward compatible
add-add-del-set∗ general
add-add-del-multiset∗ general

multiset — change to set, broken
mem-mem backward compatible
add-mem∗ backward compatible
add-add-del-set∗ (fails) general
add-add-del-multiset∗ general

Figure 10. Summary of verified update specifications. ∗Indicates
examples that were verified with THOR.

tools we have tried, and what we find works well with them and
what does not, and then describe our experiences with particular
updates in more detail. As far as we are aware, ours is the first
study of statically verifying dynamic updates.

6.1 Tools
To verify a dynamic update translated into a merged program, a ver-
ification tool must provide at least some degree of path-sensitivity
to be able to accurately model the state of uflag . A path-insensitive
tool would incorrectly consider calls to old-version functions to be
possible after an update, which would likely to lead to false alarms.
In practice, we found that support for reasoning about pointer-based
data structures is also important for verifying interesting properties.
We have experimented with two classes of tools: symbolic execu-
tion tools, and verification tools. These two classes present a trade-
off: the former are easier to use and scale better, but provide incom-
plete assurance, while the latter can provide complete assurance but
do not scale as well and require more manual effort.

Symbolic Execution Using a symbolic executor, programmers
can identify certain values as symbolic, meaning they represent ar-
bitrary concrete program values. When the program uses symbolic
data, the symbolic executor separately considers all feasible paths
along which a possible concrete valuation of the data could lead.
Symbolic execution has gained popularity in recent years, with
KLEE [18] and SAGE [11] being exemplars.

We have experimented with using Otter, a symbolic executor for
C developed by Reisner et al [28], to check update specifications.
We find that it works quite well: checking is reasonably fast, works
on non-toy programs, and requires little manual effort. We also
tried using KLEE; its incomplete support for standard library code
(used extensively by Redis) was a hindrance, but we doubt there are
any fundamental problems. With Otter, we implement nondet() as

returning a fresh symbolic value. Thus, conditioning on nondet()
will cause both branches to be explored. Otter supports assume
and assert directly.

While easy to use, symbolic executors provide incomplete as-
surance. They explore each program path individually, so they
can only consider a finite number of paths. For potentially non-
terminating programs, this means full verification is not possible.
Nevertheless, by replacing unconstrained loop guards in specifica-
tions (e.g., Line 25 of Figure 9) with small bounds, Otter was able
to find bugs in dynamic updates in relatively short order.

Verification We refer to tools that attempt to prove that proper-
ties hold for all executions of a program as verification tools. Ex-
amples of such tools include model checkers, such as Blast [15]
and Spin [17], and abstract interpreters such as ASTREE [1] and
Interproc [20]. We originally attempted to use Blast to perform our
verification experiments. However, the heavy use of pointer-based
data structures by our example programs proved problematic. This
issue arises not from merged programs, but from the nature of the
original programs.

We were able to overcome these problems using a version of
THOR [22], a static analysis tool specialized for programs that use
heap-based data structures. Because our specifications state cor-
rectness properties that go beyond standard safety properties, they
pose a challenge for many verification tools (and THOR had to be
modified to accommodate them). Nevertheless, tools are constantly
improving, and because our verification strategy is based on pro-
gram merging rather than any particular verification tool, it can take
advantage of these improvements as they emerge. The update spec-
ifications we have explored may even constitute useful examples to
help spur further tool development.

6.2 Small key-value store and multiset
Figure 10 summarizes a set of example patches we developed
for the key-value store and multiset. We will explain the figure
shortly. We used Otter to check whether these updates satisfy the
specifications. Otter flags specifications that do not hold, but cannot
verify the rest, since its exploration is bounded. In the cases marked
with an asterisk, we were then able to use THOR and Interproc
to prove that these potentially true specifications hold over all
program runs.

Key-value store We worked with five versions of the key-value
store, constituting four updates; each update is grouped and labeled
in Figure 10, along with names of specifications we checked for that
update, and the category to which they belong (e.g., backward com-
patible, post-update, etc.). Each individual version of the program
is 40-50 lines excluding state transformation and specifications.

The first update fixes a bug where only the value from the first
call to set for a particular key is stored, while values from sub-
sequent sets for that key are ignored. We developed two spec-
ifications to check for correct new-version behavior. The first,
put-get-distinct, is a backward-compatible specification, in which
we verify a key inserted for the first time is properly mapped.
The second, new-def-shadows, is a general specification similar to
the one in Figure 2(b), except with assume updated() in place of
assume(x 6= x′). Without one of these assumptions the specification
rightly fails to verify (as indicated by the line marked “(fails)”).

The next update adds namespaces for indexing into the key-
value store, as described in Section 3.3. We verified post-update
specifications for two properties of the new version. Because all of
the old-version operations have close analogs in the new version,
old-version specifications can be conformed to work at the new
version by adding a default namespace. We constructed two such
conformable specifications and successfully verified them.

8 2010/12/2

The third update is a memory-use optimization to the key-value
store that discards duplicate elements. The put-get specification
checks a slightly more general version of back compat spec in
Figure 9 and the second specification checks that old bindings
are properly shadowed by new bindings. Our state transformation
function iterates through the existing state and removes duplicate
elements, to establish the invariant expected by the new code. Our
first attempt at writing this transformer had a bug in it which
failed to remove all duplicates. Happily, Otter uncovered the bug by
failing to check the specification. The next grouping in the figure
shows the verification results for the corrected patch.

Multiset / Set We considered two patches, one correct and one
broken, that update a container so that it provides set semantics,
rather than multiset semantics. Each program version is roughly 60
lines long, excluding state transformation and specifications.

In the broken patch, the state transformer leaves the state un-
modified, while in the correct patch, the state transformer correctly
removes duplicates. In each case we verified two backward compat-
ible properties: mem-mem, which requires that two tests of mem-
bership for some element, without intervening deletes, return the
same value, and add-mem, which requires that an add of some el-
ement followed by a membership test for that element returns true
provided there were no intervening deletes. Both of these prop-
erties passed for each patch. The last two specifications describe
the precise update timing at which set semantics are first observed.
These specifications state that a delete operation should provide
set semantics whenever the update occurs prior to the delete. This
specification could only be verified for the patch containing a state
transformer that removes duplicates, as expected.

6.3 Redis
Redis [3] is an open-source server that provides access to and
storage for a variety of container types including sets and hashes
(the latter making it a kind of key-value store). We developed two
dynamic patches for Redis, one for updating version 1.3.6 to 1.3.7,
and the other for version 1.3.7 to 1.3.8, and we developed update
specifications in both cases. Each version is significantly larger than
the simple examples just presented, with each version roughly 12k
lines of C code. We used Otter to check our specifications; we have
yet to try using THOR+Interproc.

The first update did not affect the externally-observable behav-
ior of the server, so we constructed two backward-compatible spec-
ifications. The first requires that, if a set operation that creates a
mapping between a key and a value is followed by arbitrary sets
and gets (where none of the sets is to the initial key), then a subse-
quent get of the initial key will return the initial value. The second
specifies that if an element is added to a set, followed by arbitrary
add and remove operations, a check for the existence of the set will
succeed; the set may be empty, but it will still exist on the server.

The second update implemented several observable changes
to behavior. Among other changes, the semantics of set removal
changed: if a remove operation deletes the last element of a set,
the set itself is deleted. We attempted to check the two backwards-
compatible specifications from the previous patch. Our technique
successfully found that the second spec was no longer valid due to
the change in set-remove semantics. We constructed a post-update
spec to check the new behavior, and a post-update spec to check the
behavior of a new hash-value increment operation.

To ensure that specification checking using Otter terminated rel-
atively quickly, we limited the use of loops of arbitrary operations
to one or two kinds of operations in each case, rather than explor-
ing branches for each of the dozens of operations that Redis sup-
ports. To get a sense of the running time of merged-program check-
ing compared to single-version checking, we measured the running
times of the three backward-compatible specifications on the origi-

nal, unmerged program, with their running time on the merged pro-
gram. In the former case the running times were 9.19s, 9.74s, and
9.18s (the average of 5 executions), while in the latter, the running
times were 23.94s, 28.82s, and 28.60s, respectively, for each spec-
ification. Though we did not explore the reasons for the difference
in depth, it is intuitively clear that for merged programs additional
exploration is needed since each update point increases the number
of paths to be explored.

7. Related work
This paper is distinguished from prior related work in two ways.
First, our notion of update specification generalizes various correct-
ness criteria proposed previously. Second, we are the first to imple-
ment automatic techniques for verifying update specifications.

The earliest work we are aware of that attempts to formally
define a notion of correctness for dynamic updates is by Bloom and
Day [6, 7]. They observed that requiring an update to preserve every
observable behavior of the program being updated is too inflexible
in practice (nevertheless, later work by others stipulated this strict
notion of correctness [19]). They therefore relaxed this condition
to allow “future-only implementations” and “invisible extensions”,
which are classes of programs obeying specifications similar to our
post-update and backward-compatible specifications.

Gupta et al. [13] proposed a criterion called reachability that
relaxes the one identified by Bloom and Day by allowing updates
that eventually reach some state of the new program. They proved
that reachability is undecidable in general, but showed that certain
classes of updates based on a notion of “functional enhancements”
always satisfy it. As discussed in Section 1, the added flexibility
offered by this definition is both a blessing and a curse in that it
permits intuitively useful behaviors as well as detrimental ones.

Ajmani et al. [4] studied dynamic update in a richer setting
where multiple versions of the program are allowed to execute
simultaneously. Every update includes single-version specifications
for the old and new program, expressed in the usual way as pre-
conditions and post-conditions, as well as an update invariant,
discussed below. They also proposed simulation objects, which
provide a way for the updated program to continue to provide old-
version functionality. Our conformable specifications are inspired
by simulation objects.

The connection between our updates that preserve backward
compatibility and Ajmani’s invariants can be captured in the fol-
lowing way. Let s1 and s2 be server programs, π a patch, and φ a
backward-compatible client specification. For simplicity, suppose
that s1 and s2 define the same set of functions and that update
only ever appears as the last command in the body of a function.
An update invariant is a binary relation I on server states such that

1. for all functions f , the evaluations of f in s1 and s2 from states
related by I with an identical argument either both diverge
or both terminate and yield identical results and states again
related by I .

2. the update establishes the invariant—i.e., for all states σ1 and
σ2 such that σ2 can be obtained by running the state transformer
starting from σ1, we have that σ1 and σ2 are related by I .

It is not hard to show that if such an update invariant exists for π,
then π preserves φ.

Liskov and Wing’s work on behavioral subtyping [21] captures
a condition like our notion of preserving a backward-compatible
specification. They present a notion of subtyping that uses pre-
conditions, post-conditions, and invariants to capture richer notions
of the behavior of the object than can be described using types
alone. However, behavioral subtyping does not address updates that

9 2010/12/2

make semantic changes to interfaces (e.g., removing a method) or
behaviors (e.g., fixing a bug).

We generalize recent work by Hayden et al. [14] on system-
atically testing dynamic software updates. Given tests that should
pass for both the old and new versions, Hayden et al. tested every
feasible test run that started the test at the old version and updated
at some point during the run. They proposed a compression strat-
egy which rules out runs that are provably equivalent to ones that
have already been tested. Systematic tests are akin to our backward-
compatible specifications. Our paper focuses on specification and
verification of properties that go beyond simple tests.

Our merging tool was inspired by KISS [27], a program trans-
formation also meant to precede off-the-shelf analysis tools. The
goal of KISS is to transform a multi-threaded program into a single
threaded program in which all possible choices of when to perform
a single context switch are made manifest in the program text. Thus
KISS makes manifest a non-deterministic choice. Our merger fol-
lows the same idea, where the non-deterministic choice is when to
perform the update. The merging strategy for our application en-
codes the behavior of the original program exactly (cf. Theorem 1),
whereas the KISS transformation only represents some of the pos-
sible executions of the original (those with one context switch).

8. Summary and future work
In this paper we have presented the first system for specifying and
verifying the correctness of dynamically updated programs. We
proposed client-oriented update specifications as a way to prescribe
the correct behavior of updating executions, and formalized the
syntax and semantics for these specifications. We showed how
to construct update specifications for several common classes of
updates based on existing, single-version specifications for the old
and/or new programs. We developed a verification methodology
based on combining the old and new programs into a single merged
program, which allows us to check properties of updated programs
using standard program analysis tools. We wrote a merging tool for
C programs, and used it in conjunction with three analysis tools
—Otter, a symbolic executor; THOR, a heap analysis tool, and
Interproc, an abstract interpreter— to verify update specifications
for several interesting C programs.

Our work on specifying and verifying properties of dynamic
updates is ongoing. In the immediate future, we plan to expand the
empirical study of our technique on more programs, to further eval-
uate its applicability, and more carefully understand the sources of
overhead. For the longer term, we would like to develop technol-
ogy that would permit us to check specifications directly, in terms
of client/server interactions via sockets. One possibility would be
develop a symbolic executor that can execute client and server pro-
grams together and accurately model interactions via I/O.

References
[1] The ASTREE static analyzer. http://www.astree.ens.fr/.
[2] Cassandra API overview. http://wiki.apache.org/cassandra/API.
[3] Redis - project hosting on Google Code.

http://code.google.com/p/redis/.
[4] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Modular software

upgrades for distributed systems. In ECOOP, July 2006.
[5] Jeff Arnold and Frans Kaashoek. Ksplice: Automatic rebootless kernel

updates. In Eurosys, 2009.
[6] Toby Bloom. Dynamic Module Replacement in a Distributed Pro-

gramming System. PhD thesis, Laboratory for Computer Science, The
Massachussets Institute of Technology, March 1983.

[7] Toby Bloom and Mark Day. Reconfiguration and module replacement
in Argus: theory and practice. Software Engineering Journal, 8(2):
102–108, March 1993.

[8] Gilad Bracha. Objects as software services. http://bracha.org/-
objectsAsSoftwareServices.pdf, August 2006.

[9] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew.
Polus: A powerful live updating system. In ICSE, 2007.

[10] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In PLDI, 1993.

[11] Patrice Godefroid, Michael Levin, and David Molnar. Automated
whitebox fuzz testing. In NDSS, 2008.

[12] Deepak Gupta and Pankaj Jalote. On line software version change
using state transfer between processes. SPE, 23(9), 1993.

[13] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A formal framework
for on-line software version change. IEEE TSE, 22(2), 1996.

[14] Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jef-
frey S. Foster. Efficient Systematic Testing for Dynamically Updatable
Software. In HOTSWUP, 2009.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In POPL, pages 58–70. ACM Press, 2002.

[16] Michael Hicks and Scott Nettles. Dynamic software updating. ACM
Trans. Program. Lang. Syst., 27(6), 2005.

[17] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2003. ISBN 0-321-22862-6.

[18] Cristian Kadar, Daniel Dunbar, and Dawson Engler. KLEE: Unas-
sistaed and automatic generation of high-coverage tests for complex
systems programs. In OSDI, 2008.

[19] Jeff Kramer and Jeff Magee. The evolving philosophers problem:
Dynamic change management. IEEE TSE, 16(11), 1990.

[20] Gaël Lalire, Mathias Argoud, and Bertrand Jeannet. Interproc, 2010.
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-
forge/interproc/index.html.

[21] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. TOPLAS, 16:1811–1841, November 1994.

[22] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for
reasoning about shape and arithmetic. In CAV, LNCS 5123, pages
428–432. Springer, 2008.

[23] Kristis Makris and Rida Bazzi. Immediate multi-threaded dynamic
software updates using stack reconstruction. In USENIX ATC, 2009.

[24] Iulian Neamtiu and Michael Hicks. Safe and timely dynamic updates
for multi-threaded programs. In PLDI, June 2009.

[25] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol.
Practical dynamic software updating for C. In PLDI, 2006.

[26] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
LNCS, 2304:213–228, 2002.

[27] Shaz Qadeer and Dinghao Wu. KISS: Leep it simple and sequential.
In PLDI, 2004.

[28] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and
Adam Porter. Using symbolic evaluation to understand behavior in
configurable software systems. In ICSE, 2010.

[29] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iu-
lian Neamtiu. Mutatis Mutandis: Safe and flexible dynamic software
updating. ACM Trans. Program. Lang. Syst., 29(4), 2007.

[30] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dy-
namic software updates for Java: A VM-centric approach. In PLDI,
2009.

[31] Unsanity. Application Enhancer – enhance the applications by loading
modules. http://www.unsanity.com/haxies/ape, 2010.

A. Proof of equivalence
For the proofs of the lemmas used, we change the transformation
slightly, to make sure we always transform non-values into non-
values. In particular, whenever [[e]]· = v where e is a non-value,

10 2010/12/2

(|σ|)p,π = {l 7→ (|v|)p,π | σ(l) = v}
———-

(|let x = e1 in e2|)p,π = let x = (|e1|)p,π in (|e2|)p,π

(|if v then e1 else e2|)p,π = if (|v|)p,π then (|e1|)p,π else (|e2|)p,π

(|v(v′)|)p,π = (|v|)p,π((|v′|)p,π)
(|update|)p,π = let z = isupd() in

if z then 0 else

uflag := ?;

let z = isupd() in

if z then ({|e|}p
′
; 1) else 0

(|update|)p,π = 0

(|running p|)p,(p
′,e) = 0 or let z = isupd() in z = 0

(|running p′|)p,(p
′,e) = 1 or isupd()

(|running p′′|)p,(p
′,e) = 0 p′′ 6= p ∧ p′′ 6= p′

(|g|)p,(p
′,e) = gptr if p(g) = λx.e

(|g|)p,(p
′,e) = g′ if p′(g) = λx.e

(|l|)p,π = l

(|v1 := v2|)p,π , etc. = transform vi recursively, as for if

Figure 12. Old/new program transformation.

(p, σs) � π , (p, σs)

〈p;σs; e〉 � π , 〈p, σs, e〉
〈p;σs;σc; e〉 � π , 〈p, σs, σc, e〉
〈p;σs; e〉 [�] π , 〈p, σ̂s, ê〉

〈p;σs;σc; e〉 [�] π , 〈p, σ̂s, σ̂c; ê〉
where

π = (p′, e′)

i ≤ 0

p = {|p′|}p
′
, [[p]]p,π

σs = [[σs]]
p,π[uflag 7→ i]

σc = [[σc]]
p,π

e = [[e]]p,π

j > 0

σ̂s = (|σs|)p,π[uflag 7→ j]

σ̂c = (|σc|)p,π

ê = (|e|)p,π

Figure 11. Transforming configurations.

we change the transformation so that [[e]]· = let z = 0 in v, and
likewise for {| · |}· and (| · |)·.

A.1 Soundness
The first lemma states that the merged program simulates the origi-
nal. To make the lemmas easier to read, we sometimes write 〈p;C〉
to represent an arbitrary configuration 〈p;σs;σc; e〉, where the lat-
ter three elements are not interesting. We write C is not an error
state to mean that the e portion of C is not error.

Lemma 1. For all p, p′′, C, C′′, π, where π = (p′, e), we have
〈p;C〉 ~ν−→∗ 〈p′′;C′′〉 implies that

• ~ν = ε implies p′′ = p and 〈p;C〉 � π −→∗ 〈p;C′′〉 � π
• ~ν = π implies p′′ = p′ and 〈p;C〉 � π −→∗ 〈p;C′′〉 [�] π

In words, this lemma states that any trace, which may have an
update or not, taken by an untransformed program is matched by a
trace in the transformed program. The lemma refers to 〈p;C〉 [�] π,
which is the “post-update” transformation, shown in Figure 11.
The definition is the same as · � · but for two differences. First,

uflag is set to some positive integer, to indicate the update has
occurred. Second, rather than transform the active expression and
heap using [[·]]p,π it uses (| · |)p,π , where (| · |)·,· is the union of the
transformations [[·]]· and {| · |}·. That is, (|e|)p,p

′
applies either [[·]]p,σ

or {| · |}p
′

to e’s outermost form, and then independently applies
one or the other transformation to each of its subexpressions. The
full transformation is shown in Figure 12. Using (| · |)·,· is necessary
because after the simulated update takes place locations l may end
up binding either old/new function pointers fptr or new function
pointers f ′. Notice that if [[e0]]

p,π = e′ then (|e0|)p,π = e′ and
likewise if {|e0|}p = e′′ then (|e0|)p,π = e′′; the same holds for
transformed heaps.

This lemma is proved in three steps using the following lemmas,
the first of which proves the simulation holds prior to an update,
when taking a single step.

Lemma 2. For all p, C,C′, π, it is the case that 〈p;C〉 −→
〈p;C′〉 implies 〈p;C〉 � π −→+ 〈p;C′〉 � π.

The next lemma proves the simulation is also preserved by an
update from the old program to the new one.

Lemma 3. For all p, C,C′, π, where π = (p′, e′′), it is the case
that 〈p;C〉 π−→ 〈p′;C′〉 implies 〈p;C〉 � π −→+ 〈p;C′〉 [�] π.

The next lemma proves that the simulation is preserved follow-
ing the update.
Lemma 4. For all p, C,C′, π, where π = (p′, e), it is the case that
〈p′;C〉 −→ 〈p′;C′〉 implies 〈p;C〉 [�] π −→+ 〈p;C′〉 [�] π.

The proofs of the three previous lemmas involve proving iso-
morphic lemmas that apply to just the server semantics.

A.2 Completeness
We state completeness as follows:

Lemma 5. For all p, p′′, C, C′′, π where π = (p′, e) it is the case
that 〈p;C〉 � π −→∗ 〈p′′;C′′〉 implies there exists C′ such that

• 〈p′′;C′′〉 −→∗ 〈p;C′〉 � π and 〈p;C〉 −→∗ 〈p;C′〉 ; or
• 〈p′′;C′′〉 −→∗ 〈p;C′〉 [�] π and 〈p;C〉 π−→∗ 〈p′;C′〉 ; or

This lemma states that for any execution trace of the trans-
formed program, there will be a corresponding trace of the untrans-
formed program. However, the transformed program may need to
execute a little more before it matches up with an untransformed
state. The proof follows by repeated applications of the next two
lemmas.

Lemma 6. For all p, p′′, C, C′′, π where π = (p′, e) suppose that
〈p;C〉� π −→+ 〈p′′;C′′〉 and there exists no C0 such that either

• 〈p;C〉�π −→+ 〈p;C0〉�π −→+ 〈p′′;C′′〉 and 〈p;C〉 −→
〈p;C0〉 or
• 〈p;C〉 � π −→+ 〈p;C0〉 [�] π −→+ 〈p′′;C′′〉 and
〈p;C〉 π−→ 〈p′;C0〉.

Then there exists C′ such that either

• 〈p′′;C′′〉 = 〈p;C′〉 � π and 〈p;C〉 −→ 〈p;C′〉 ; or
• 〈p′′;C′′〉 = 〈p;C′〉 [�] π and 〈p;C〉 π−→ 〈p′;C′〉; or
• 〈p′′;C′′〉 ν−→ 〈p′′;C′〉.

In words, this lemma states that if we have a transformed pro-
gram state that can take some number of steps, then either that state
matches an untransformed state we can also step to, or we can take
another step. If we are in the last case, we can repeatedly apply the
lemma to eventually reach a matching state.

The last lemma is similar, but considers post-update states:

11 2010/12/2

Lemma 7. For all p, p′′, C, C′′, π where π = (p′, e) suppose
that 〈p;C〉 [�] π −→+ 〈p′′;C′′〉 and there exists no C0 such
that 〈p;C〉 [�] π −→+ 〈p;C0〉 [�] π −→+ 〈p′′;C′′〉 and
〈p′;C〉 −→ 〈p′;C0〉. Then there exists C′ such that either

• 〈p′′;C′′〉 = 〈p;C′〉 [�] π and 〈p′;C〉 −→ 〈p′;C′〉 ; or
• 〈p′′;C′′〉 −→ 〈p′′;C′〉.

The proofs of all of these lemmas involve proving isomorphic
lemmas that apply to just the server semantics.

A.3 Equivalence
One last lemma to prove:

Lemma 8. For all p, π, e, we have that e 6= error if and only if
[[e]]p,π 6= error and (|e|)p,π 6= error.

This simply states that error states are preserved by the transfor-
mation, and is proved easily by inspection.

Now, recall Theorem 1:

For all p, σ, π, φ, it is the case that (p, σ), π |= φ if and only
if ((p, σ) � π) |= [[φ]]p,π .

We can expand the definitions of satisfiability and get

For all p, σ, p′, e′′, φ where π = (p′, e′′), it is the case that
for all e, p′′, σs, σc, ~ν where ~ν = ε or ~ν = π, we have
〈p;σ; ·;φ〉 ~ν−→∗ 〈p′′;σs;σc; e〉 implies e is not error if and

only if for all e′, p′′′, σ′s, σ′c we have 〈p;σ; ·;φ〉 � π −→∗
〈p′′′;σ′s;σ′c; e′〉 implies e′ is not error.

Here is the proof. Consider the forward direction. Pick any run
〈p;σ; ·;φ〉� π −→∗ 〈p′′′;σ′s;σ′c; e′〉 of the transformed program.
By Lemma 5 there exists some C′ such that

• 〈p′′′;σ′s;σ′c; e′〉 −→∗ 〈p;C′〉 � π and 〈p;σ; ·;φ〉 −→∗
〈p;C′〉. By assumption, the latter fact gives us that 〈p;C′〉 is
not an error state and thus 〈p′′′;σ′s;σ′c; e′〉 is not an error state
either. This is because either 〈p′′′;σ′s;σ′c; e′〉 = 〈p;C′〉�π and
thus the result follows by Lemma 8, or because 〈p′′′;σ′s;σ′c; e′〉
can take a step, which is not possible in an error state.

• 〈p′′′;σ′s;σ′c; e′〉 −→∗ 〈p;C′〉 [�] π and 〈p;σ; ·;φ〉 π−→∗
〈p′;C′〉. Same argument as above.

Now consider the backward direction. Pick some evaluation
〈p;σ; ·;φ〉 ~ν−→∗ 〈p′′;σs;σc; e〉. By Lemma 1

• ~ν = ε implies p′′ = p and 〈p;σ; ·;φ〉�π −→∗ 〈p;σs;σc; e〉�π.
By assumption, the latter fact gives us [[e]]p,π is not error, and
Lemma 8 e cannot be error either.
• ~ν = π implies p′′ = p′ and 〈p;σ; ·;φ〉�π −→∗ 〈p;σs;σc; e〉 [�] π.

By assumption, (|e|)p,π is not error, and thus by Lemma 8 e can-
not be error either.

QED.

12 2010/12/2

