
Preliminary Report of Public Experiment of
Semantic Service Matchmaker
with UDDI Business Registry

Takahiro Kawamura1, Jacques-Albert De Blasio1, Tetsuo Hasegawa1,
Massimo Paolucci2, and Katia Sycara2

1 Research and Development Center, Toshiba Corp
2 The Robotics Institute, Carnegie Mellon University

Abstract. The public experiment of the semantic service search with
the public UDDI registry is shown in this paper. The UDDI is a stan-
dard registry for Web Services, but if we consider it as a search engine,
the functionality is restrictive, that is, based on keyword retrieval only.
Therefore, the Matchmaker was developed to enhance the UDDI search
functionality by using semantics such as ontology and constraints. How-
ever, for Web Services as e-Business platform, compliance with the stan-
dard specification such as SOAP, WSDL, UDDI is the key. Thus, our
goal of this experiment is to seamlessly combine semantic search with
those standards, and investigate the feasibility of using semantics with
Web Services. This paper firstly shows the overall architecture where the
Matchmaker can be located between UDDI and service developers/users.
Then, the Matchmaker and our semantic service description which can
be complementary used with the standard WSDL and UDDI Data Struc-
ture are shown. Also, we illustrate some tools which generate the service
description and support the use of the Matchmaker. Finally, we qualita-
tively evaluate this experiment on the response from business users.

1 Introduction

Web Services are considered as the core technology of e-Business platforms. The
spreading of Web services in the Intranets and in the near future in the whole
Internet reveals the needs of sophisticated discovery mechanisms. In the space of
discovery, UDDI is emerging as the de-facto standard registry for Web services
and it is proposed as the main tool for Web service discovery. However, the
only discovery mechanism provided by UDDI is keyword search on the names
and the features of businesses and services descriptions; unfortunately, keyword
search fails to recognize the similarities and differences between the capabilities
provided by Web services. Ultimately, UDDI is useful only to find information
about known Web services, but it completely fail as a general Web services
discovery mechanism.

To address this problem, we developed Semantic Services Matchmaker, a
search engine for Web services, that enhances the discovery facilities of UDDI



2 Kawamura et al.

to make use of semantic information. Furthermore, we initiated an experiment
on a publicly available UDDI maintained by NTT-Communications, one of four
official UDDI operators to evaluated the scalability and viability of our approach
on a large scale 3.

The Semantic Services Matchmaker is based on the LARKS[1] algorithm,
but it also borrows some ideas from the DAML-S matching algorithm[2]. Specif-
ically,it adopts the LARKS filtering approach which uses sophisticated informa-
tion retrieval mechanisms to locate Web services advertisements in UDDI even
when no semantic information has been provided. To this extent, we can show
the contribution and the limits of information retrieval techniques to Web ser-
vices discovery, and the contribution of ontological information to increase the
precision of matching.

In the rest of the paper we will discuss our approach and experiment. In
section 2 we first introduce the overall architecture of this experiment; in section
3 and 4 we will introduce the Semantic Service Matchmaker and its semantic
service description called Web Services Semantic Profile (WSSP). In section 5 we
describe supporting tools that provide an interface to UDDI that allows semantic
markup and matching. Then, in section 6, we will present an initial evaluation
on the response from business users we have collected during its design and
deployment phase.

2 Architecture of Public UDDI Registry and Matchmaker

The architecture of the integrated UDDI Registry and Matchmaker is shown in
Fig. 1. In the architecture, the Matchmaker is inserted between the users of the
matchmaker, namely users that request services and Web Services developers
that advertise them, and the UDDI registry. The Matchmaker API is equivalent
to the UDDI API to facilitate the users seamless connection; furthermore, the
format of the results returned adopts the same format of the results returned by
UDDI. The result is that the Matchmaker can be added to any UDDI registry
leaving to users and developers the choice of the most preferable Web Services
registry in accordance with the cost and interoperability with their already-
existing systems. Fig. 2 shows the internal architecture of the Matchmaker, which
will be discussed in details in section 3.

The second feature of the architecture is that it strives to be compliant with
the current standard technology of Web Services such as SOAP and WSDL,
since the use of any proprietary technology would reduce the advantage of using
Web Services as the common e-Business platform.

3 The Semantic Services Matchmaker has been implemented in a collaboration be-
tween Carnegie Mellon University and Toshiba Corp. The public experiment is a
collaboration between Toshiba Corp. and NTT-Communications. The experiment
site is at www.agent-net.com.



Semantic Service Matchmaker 3

Fig. 1. Network architecture of UDDI and Matchmaker

2.1 Usage Scenario

In the rest of this section we will describe how the Matchmaker is used, and
specifically we will describe service registration and search scenarios. We hope
to demonstrate the contribution of the Matchmaker to the UDDI search facilities.

Registration

1. During service registration the client tools associated with the Matchmaker
Client in Fig. 1, are used to generate a semantic service description from
a WSDL description which has been automatically generated from the java
source code. The client tools, which will be described in details in section 5,
support annotation of the ontology classes in RDFS[8], DAML+OIL[9], or
OWL[10] to inputs and outputs’ parameters, and also the definition of rules
as inputs and outputs’ constraints. Of course the client may decide not to
send any semantic description to the Matchmaker at all; in the latter case,
the client registers as a standard UDDI client.

2. Upon receiving the registration, the Matchmaker extracts the semantic an-
notation. If the annotation is found, the Matchmaker stores it with all the
ontologies it refers to. Finally, the Matchmaker registers the service with the
UDDI registry.



4 Kawamura et al.

Fig. 2. Semantic Service Matchmaker

Search

1. During the service search, the client sends a search request to the Match-
maker. The search request consists of a search in UDDI augmented with a
semantic annotation of the desirable service interface, consisting of all the
desirable inputs’ ontology classes and outputs’ ontology classes. As in the
case of the service registration, users can specify the inputs and outputs’
constraints. Furthermore, the client may also decide to restrict his search to
the requirements of a normal UDDI keyword search tool.

2. The Matchmaker checks whether or not the search request includes seman-
tic designation like ontology classes and rules. If so, the matching engine
searches for a service that is similar enough to the service requested in the
registered services database. After making the matching results, the Match-
maker retrieves the detailed information of those results from the UDDI
registry, then get back them to the client. Note that several search options
for the Matchmaker can also be specified via UDDI APIs.

3 Semantic Service Matchmaker

Above we showed how users and programs can exploit the Matchmaker and the
UDDI API to find the services that provide the capabilities that they expect.
In this section, we provide the details of how the matching of capabilities is
performed.

Ideally, when the requester looks for a service, the matchmaker will retrieve a
service that matches exactly the service that the requester expects. In practice,
it is very unlikely that such a service is available, instead the matchmaker will
retrieve a service whose capabilities are similar to the capabilities expected by
the requester. One of the challenges of matchmaking is to locate services that



Semantic Service Matchmaker 5

the requester could despite the differences from the request. Furthermore, the
matchmaker should be able to characterize the distance between the request
and the matches found, so that the requester can make an informed decision on
which services to invoke.

To address this problem, the matchmaker identifies the three levels of match-
ing where exact corresponds to an exact match between the request and the ser-
vices provided. Furthermore, we allow the requester to specify how closely should
the request and the matches provided be. Ultimately, the matching process is
the result of the interaction of the services available, and the requirements of
the requester.

Exact match is the highest degree of matching, it results when the two de-
scriptions are equivalent.

Plug-in match results when the service provided is more general than the ser-
vice requested, but in practice it can be used in place of the ideal system that
the requester would like to use. To this extent the result can be “plugged
in” place of the correct match. A simple example of a plug-in match is the
the match between a requested service that sell books and a service that
sells printed materials. Since books are printed materials chances are that
the latter service can be used instead.

Relaxed match The relaxed match has a weakest semantic interpretation: it
is used to indicate the degree of similarity between the advertisement and
the request.

The second aspect of our matchmaker is to provide a set of filters that help
with the matching, and we allow users to decide which filters they would like
to adopt at any given time. Specifically, the matching process is organized as a
series of five filters. All filters are independent from each other, and each of them
narrows the set of matching candidates with respect to a given filter criterion.
The first three filters are meant for the relaxed match, and the last two are
meant for the plug-in match (see Fig. 3). Users may select any combination of
these filters at the search time, considering the trade-off between accuracy and
speed of the matching process. We briefly illustrate each filter as follows. Further
details are provided in Sycara et al.[1].

3.1 Namespace Filter

Pre-checking process which determines whether or not the requested service and
the registered ones have at least one shared namespace (a url of an ontology file).
The intersection of namespaces can be considered shared knowledge between
the request and the advertisement. Therefore, only the registered services which
have at least one shared namespace go into the next filter. Namespaces of default
like rdf, rdfs, xsd, etc. are not considered the intersection. Of course, there is a
case that the relation between two nodes of different ontology files does exist,
although the distance would be relatively long. This filter and the next two filters
are meant for the reduction of the computation time of the last two filters.



6 Kawamura et al.

Fig. 3. Criterion of each filter

3.2 Text Filter

Pre-checking process for human-readable service explanation parts such as com-
ment and text descriptions. It utilizes the well-known IR (Information Retrieval)
technique called TF/IDF (Term Frequency Inverse Document Frequency) method.
This filter help to minimize the risk to miss the services which have any relation
to the requested one.

3.3 Domain Filter

Pre-checking process to check whether or not each registered service and the
requested one belong to an ontology domain. The ontology domain here means
a subtree in a ontology tree. To determine the subtree which two services belong
to, we first we extract ontology nodes related with the service category or outputs
as concepts of the services, then we select a common ancestor in the ontology
tree. If the advertisement and the request are in a certain size of the subtree,
the registered one passes the filter. Note that if we can find relationship such
as subClassOf, sameAs between different ontology trees, we merge the trees and
trace up them seamlessly.

3.4 I/O Type Filter

The Type Filter checks to see if the definitions of the input and output pa-
rameters match. In the semantic service description shown in the next section,
parameter types of inputs and outputs are defined as ontology classes. A set
of subtype inferencing rules mainly based on structural algorithm are used to
determine in this filter.

Such a match is determined if: (see Fig. 4)

– the types and number of input/output parameters exactly matches, OR



Semantic Service Matchmaker 7

Fig. 4. Levels of plug-in match

– outputs of the registered service can be subsumed by outputs of the requested
service, and the number of outputs of the registered service is greater than
the number of outputs of the requested service, AND/OR

– inputs of the requested service can be subsumed by inputs of the registered
service, and the number of inputs of the requested service is greater than
the number of inputs of the registered service.

If there is a mismatch in the number of parameters, then the filter attempts to
pair up parameters in the registered one with those in the request, by seeking the
registered one’s parameters that are sub-types of the requested one’s parameters.

Further, the request may not have a model of what inputs may be required,
and may need to obtain this information from the returned service. To support
this, inputs and inputs’ constraints in the next section also match when those
of the request are empty.

3.5 Constraint Filter

The responsibility of this filter is to verify whether, the subsumption relation-
ship for each of the constraints are logically valid. The constraints filter com-
pares the constraints to determine if the registered service is less constrained
than the request. The Matchmaker computes the logical implication among con-
straints by using polynomial subsumption checking for Horn clauses. Matching is
achieved by performing conjunctive pair-wise comparisons for the properties. In
detail, the logical implication among constraints is computed using polynomial
θ-subsumption checking for Horn clauses.

The constraints for inputs and outputs are defined for the request (RI and
RO) and for each registered service (AI and AO). The constraints for inputs RI

is compared with AI , and a match is determined if AI subsumes RI , i.e.



8 Kawamura et al.

Fig. 5. Structure of WSSP

match(RI , AI) ⇐ (∀j, ∃i : (i ∈ RI) ∧ (j ∈ AI) ∧ subs(j, i)) ∨RI = ∅
where subs(j, i) is true when j subsumes i. The constraints for outputs match

when all the elements in RO subsumes elements in AO, i.e.

match(RO, AO) ⇐ ∀i,∃j : (i ∈ RO) ∧ (j ∈ AO) ∧ subs(i, j)

4 Semantic Service Description

In the previous section we described the matching process, and specifically we
described how ontologies are used by the constraint filter. In this section, we
describe the Web Service Semantic Profile (WSSP), a way to encode semantic
information in WSDL that is inspired by the DAML-S Service Profile[11].

WSDL specifies the programming interface of Web service to be used at
invocation time. To this account it specifies the name of the function to invoke
and the type of data that the Web service expects as input or it generates as
output. Data types describe how the information is formatted, but because there
are arbitrarily many ways of encoding the same information in data types, they
fail to express the semantics of the information that they encode. Unfortunately,
semantic information is exactly what is needed to express the capabilities of Web
services. The aim of the WSSP is to enrich WSDL with the semantics it needs
to represent capabilities of web services.

Fig. 5 shows the structure of a WSSP, and its relation with WSDL. As in
a WSDL file, we define each message and each parameter of those messages.
Parameter descriptions store descriptions of parameters that are used to define
the semantics of the parameter in the restrictedTo element as well as the data
types of the information in the datatype element, as shown in the example below.

Moreover, we offer the possibility to add constraints to the inputs and outputs
of the web service. Doing so we give the possibility to represent the web service



Semantic Service Matchmaker 9

Fig. 6. Relationship between UDDI, WSDL and WSSP

more accurately, and we allow the search engine to perform a more accurate
search. Constraints are added to the WSDL specification through the element
constrainedBy which specifies the URI of a fact or rule written in an RDF-
RuleML file [7].

The relation between the facts and rules and the WSSP are simple: each
parameter of an input or output of the web service corresponds to a variable
which can be used in facts and rules. It means that if a web service has “n”
inputs parameters and “m” output parameters, the number of available variables
will be “n+m”. Thus we can write constraints using the inputs and outputs of
the web service. Note that facts and rules are not bound to any input/output of
the web service, they just uses them.

An example of an input message of a WSSP is given below. It presents
examples of use of all the elements described above, and it also shows the relation
to the original WSDL file through xPointer links [6].

<profile:input>
<profile:message rdf:ID="1st_INPUTMessage">

<profile:parameter>
<profile:ParameterDescription rdf:ID="1st_INPUTMessage_Param_1">

<profile:parameterName>Param_1</profile:parameterName>
<profile:restrictedTo rdf:resource="http://ont.com/Onto.owl#Item1"/>
<profile:wsdlParam>xPointer to wsdl parameter</profile:wsdlParam>
<profile:datatype>XMLSchema.xsd#String</profile:datatype>

</profile:ParameterDescription>
</profile:parameter>

<profile:constrainedBy rdf:resource="http://rule.com/rules.rdf#1"/>
<profile:constrainedBy rdf:resource="http://rule.com/rules.rdf#2"/>

<profile:wsdlMessage>xPointer to wsdl message</profile:wsdlMessage>

</profile:message>
</profile:input>

In Fig. 6, we describe the relation between UDDI, WSDL and WSSP. A Web
Service is completely described by three entities, the WSDL interface and binding



10 Kawamura et al.

(implementation) and the WSSP. This architecture provides a clear separation
between how the Web Service works and what it does. Moreover, as we mention
later, there is no redundancy between the data recorded in the UDDI description
of the Web Service and a WSSP.

5 Supporting Tools

In this section, we introduce our client tools for the registration and search
of services through an example. These tools allow human users to register Web
services with the Matchmaker and UDDI, as well as search for Web services. The
example we use concerns a web service that can tell a requester in how many
days a given manufacturer can deliver a certain type of material (called parts in
our example). This web service has first been described via a WSDL file which
may have been generated automatically from Java source code. In this example,
the user will first import the WSDL interface in Matchmaker Client and then add
semantic annotations to input and output parameters using Ontology Viewer.
Furthermore, the user adds facts and rules in order to add input constraints by
using Rule Editor

The following is the part of the WSDL interface containing the description
of the input and output messages of the web service.

<message name="PartsRequest">
<part name="part" type="xsd:string"/>
<part name="numberParts" type="xsd:int"/>
<part name="manufacturer" type="xsd:string"/>
<part name="country" type="xsd:string"/>

</message>

<message name="DeliveryResponse">
<part name="deliveryDays" type="xsd:int"/>

</message>

<portType name="PartsService">
<operation name="getQuote">

<input message="sq:PartsRequest"/>
<output message="sq:DeliveryResponse"/>

</operation>
</portType>

5.1 Matchmaker Client

The following steps illustrates a typical use of the Matchmaker Client. Note that
because the Matchmaker has the same API as the UDDI registry, the Match-
maker Client can be used as a UDDI client tool, and also other UDDI client
tools can be used to register and search to the Matchmaker, but in this case
they require the creation of WSSP with the appropriate semantic information.

Creation of a Business Service The tools for the creation of the Business
Service are shown in Fig. 7,8. To create a Business Service the user can import
the WSDL file in the Matchmaker Client, completing automatically some of the



Semantic Service Matchmaker 11

fields. The user can add the ontology annotations using the Ontology Viewer,
which parses ontology files written by RDFS, DAML+OIL, or OWL, then show
them as graphical trees. The user can specify any ontology class to be annotated
to each parameter by clicking a node in the trees (see Fig. 9). Finally, the user
can add facts and rules using the Rule Editor, described in details below.

Fig. 7. Service registration - part1

Registration of the Business Service After creating a Business Service, the
user can register it with the Matchmaker and UDDI as a consequence. Fig. 10
shows that the WSSP is created automatically as part of the registration. The
WSSP is then uploaded on the Matchmaker with all the ontology files and the
definitions of the rules.

An example of WSSP generated by the Matchmaker Client is shown below.
There one of the inputs is a part that is described semantically by the concept
Parts.owl#Part and syntactically specified as a XSD:String. Furthermore, the
example shows a set of rules that provides additional properties that we want
that part to hold. As pointed out above, xPointers are used to relate the WSSP
to the WSDL. The precise definition has been omitted here to make the code
more readable.

<profile:input>
<profile:Message rdf:ID="PartsRequest">

<profile:parameter>
<profile:ParameterDescription rdf:ID="PartsRequest_part">

<profile:parameterName>part</profile:parameterName>
<profile:restrictedTo rdf:resource="http://example.com/onto/Parts.owl#Part"/>
<profile:wsdlParam>xPointer to this parameter in the WSDL file</profile:wsdlParam>



12 Kawamura et al.

Fig. 8. Service registration - part2

<profile:datatype>http://www.w3.org/2001/XMLSchema#string</profile:datatype>
</profile:ParameterDescription>

</profile:parameter>

[other input parameters...]

<profile:constrainedBy rdf:resource=http://bb.net/rules.rdf#ManufacturerOf(Part,Acme)/>
<profile:constrainedBy rdf:resource=http://bb.net/rules.rdf#ManufacturerOf(Toshiba,Computers)/>
<profile:constrainedBy rdf:resource=http://bb.net/rules.rdf#CountryManufacturer(Toshiba,JAPAN)/>
<profile:constrainedBy rdf:resource=http://bb.net/rules.rdf#ManufacturerOf(Ford,Cars)/>
<profile:constrainedBy rdf:resource=http://bb.net/rules.rdf#CountryManufacturer(Ford,USA/>
<profile:wsdlMessage>xPointer to this message in the WSDL file</profile:wsdlMessage>

</profile:Message>
</profile:input>

Search of the business service Finally, Fig. 11 specifies the search tools that
we defined. They allow to specify the number of inputs and output of the desired
service, to choose ontologies for each parameter through the Ontology Viewer,
and finally, to select facts and rules with the Rule Editor.

5.2 Rule Editor

The writing of RuleML rules is a difficult and wordy process even for logic ex-
perts. The example of fact below, shows a very simple statement: CountryManufacturer(Toshiba,JAPAN)
takes 16 lines of XML code to be expressed. While RuleML adds value and ex-
pressive power to WSSP, it is bound to be unusable unless we facilitate the
process of creating rules. To address this problem, we developed a tool called



Semantic Service Matchmaker 13

Fig. 9. Ontology Viewer

Fig. 10. Service registration - part3

the Rule Editor which allows anyone to easily write facts and rules, as if they
were writing natural sentences.

The Rule Editor is invoked by the user by pressing the “edit” button when
registering a service or searching for one. The invocation of the Rule Editor
will result in the interface shown in Fig. 12 and the user will be able to easily
create facts and rules. He will then choose one of the fact or rule and click on
the “Send to WSMM” button. Thus doing, the id of fact or rule will appear in
the “Rule” text field of the Matchmaker Client, and a RDF-RuleML file will be
automatically generated.

The variables used in the facts and rules correspond to the input and output
parameters of a WSDL file. Following is a part of the file generated by the Rule
Editor (the part corresponds to the selected fact on the snapshot). Note the
difference between how the fact is represented in the Rule Editor and how it is
actually written in the RDF-RuleML file. The correspondence between the two is
realized via an external file that tells the Rule Editor how to read predicates. For



14 Kawamura et al.

Fig. 11. Service Search

instance there would be, in this definition file, a line stating that the predicate
“CountryManufacturer” is read “has its main factory in” and that it has two
terms. This file would have been created by an expert. Eventually, creating facts
and rules will become easy to any user, because writing those using our Rule
Editor will be as natural as to write simple English sentences.

<ruleml:Fact ruleml:label="CountryManufacturer(Toshiba,JAPAN)">
<ruleml:head>

<ruleml:Atom ruleml:rel="http://example.com/preds/Predicates.owl#CountryManufacturer">
<ruleml:args>

<rdf:Seq>
<rdf:li>
<ruleml:Ind ruleml:name="http://example.com/onto/Manufacture.owl#TOSHIBA" />

</rdf:li>
<rdf:li>
<ruleml:Ind ruleml:name="http://example.com/onto/World.owl#JAPAN" />

</rdf:li>
</rdf:Seq>

</ruleml:args>
</ruleml:Atom>

</ruleml:head>
</ruleml:Fact>



Semantic Service Matchmaker 15

Fig. 12. Rule Editor

6 Evaluation

The Matchmaker service described in this paper, which provide a semantically-
enhanced UDDI Business Registry has started its operations only recently, there-
fore we can report only a qualitative evaluation of our system design.

At the design and deployment phase of this experiment, we have collected lots
of VoC (Voice of Customer) from system integrators and user companies of Web
Services, by using DFACE (Define-Focus-Analyze-Create-Evaluate) methodol-
ogy, a version of “Design for Six Sigma”[12] developed by Stanford University.

The responses of the users in terms of requirements for Web Services are
as follows. The No.1 request from both of system integrators and users is the
reduction of the cost of development and administration. The second requirement
is interoperability with the current systems running or selling in their companies.
The third one is a track record and security in general. In term of Web Services
search engine itself, the most important thing is ease of use and search speed,
rather than advanced functions.

Those results made us decide to obey the standard technology as much as
possible. This means not only the improvement of the interoperability, but also
the reduction of the cost because it will give users and developers freedom of
choice at the selection of the private UDDI registry product and the client tools.
Besides, we expect this public experiment contributes to the track record. Fur-
ther, we expect that client tools including the Rule Editor and the Ontology
Viewer will lower the threshold of use of semantics.

Here we should note that from the point of the interoperability WSSP is a
weakness of our system since it does not correspond to any existing Web service
description language. However the combination of of Web Services and semantics
is a kind of missing link at this time. Therefore we had to invent it as a glue.
Although we adopted WSSP in this experiment, if any standard will allow the
description the same contents as the WSSP in near future, we will be pleased to
adopt it.



16 Kawamura et al.

As future work, we would like to present the quantitative evaluation of this
whole experiment in terms of usability, accuracy, speed, and so forth.

7 Related Work

As we mentioned above, the Matchmaker is based on the LARKS[1] and the
DAML-S matchmaker[2]. Here we briefly describe other approaches of the match-
making problem.

InfoSleuth[4] is a multi-agent system that supports information discovery and
retrieval application where broker agents provide semantic brokering. Service
provider agents advertise their service capabilities and constraints to the broker
in LDL++, a logical deduction language developed by MCC, the InfoSleuth
company. The requester agents query for the service providers to the broker in the
same language. Then the broker uses constraint-based reasoning to find agents
whose services match the constraints specified by the requester. In contrast,
we prefer to close to Web Services standards such as WSDL and UDDI, then
complement them with Semantic Web standards such as OWL and RuleML.

Horrocks et al.[5] have develped a framework for matchmaking based on
Semantic Web technology like DAML-S[11]. Their matchmaker uses a DL (De-
scripion Logics) reasoner to match service arvertisements and requests based
on the semantics of ontology-based service description. Then, the performance
evaluation shows that DL reasoning technology could cope with large scale e-
commerce application. We can see similarities between their matchmaker and
our work, since their work is based on the LARKS to some extent. Although
their DL reasoner is highly organized, we are using not only the DL technology
but also the information retrieval technique for no semantic information. Beside,
as with the above, our work differs from their system in the aspects of adherence
to Web Services standards.

In terms of the services description language, WSSP has been greatly inspired
by the work done for the DAML-S Profile[11], although our work reflects a
different point of view which is one of our main goals, closer to the industry
needs.

DAML-S is meant to describe everything a web service can do by combining a
Service Profile, a Service Model and a Service Grounding. This approach is very
powerful because all the details about a web service, from the most general down
to the smallest, can be fully described. Yet, because of the relations between the
different modules of DAML-S, it is difficult to use only the Service Profile without
implicitly adopting the Process Model and the Grounding. On the other side, the
industry is fragmented with different standards emerging, so any commitment
to one technology or the other may prove very dangerous at this point. In this
work we adopted the basic ideas of DAML-S, and we imported them directly
in WSDL which is the minimum common denominator of all the Web services
technology.

One of the goals of this search engine was to work as a semantic layer on top
of UDDI. The results of a search would be a list of one or more UDDI Business



Semantic Service Matchmaker 17

Service. The solution proposed for DAML-S to work along with UDDI implied
the mapping of the DAML-S Profile to a UDDI Data Structure[3]. Although
this solution is elegant, we would have redundancy if we map the data of the
DAML-S Profile and WSDL to the UDDI Data Structure. Thus, we decided to
make our profiles “lighter” and avoid repeating descriptions between our profiles
and WSDL.

8 Conclusion and Future Work

In this paper, we provides an initial report on our public experiment imple-
menting the Semantic Service Matchmaker to expand the functionalities of the
NTT-Communications public available UDDI registry. Here we described the ar-
chitecture and the functionalities of the Matchmaker, and specifically the match-
ing process. Furthermore, we provide a description of the WSSP, an extension
of WSDL to describe capabilities of Web services, and the supporting tools im-
plemented guided by business users’ voice.

This is the first step toward the experiment, and that we did it on the bases
on the interaction with the users and their comments. As the future works, we
do need to make the quantitative evaluation after getting some amount of users’
records, then tune the performance and functionality of the Matchmaker, and
usability of the supporting tools. Further, although this is not our own issue, we
should tackle the problem of ontology definition and management to facilitate
the use of ontology.

References

1. K. Sycara, S. Widoff, M. Klusch, J. Lu, “LARKS: Dynamic Matchmaking Among
Heterogeneous Software Agents in Cyberspace”. In Autonomous Agents and Multi-
Agent Systems, Vol.5, pp.173-203, 2002.

2. M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, “Semantic Matching of Web
Services Capabilities”, Proceedings of First International Semantic Web Confer-
ence (ISWC 2002), IEEE, pp. 333-347, 2002.

3. M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, “Importing the Semantic Web
in UDDI”, Proceedings of E-Services and the Semantic Web Workshop (ESSW
2002), 2002.

4. M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and A. Unruh, “Active
information gathering in infosleuth”, International Journal of Cooperative Infor-
mation Systems, pp. 3-28, 2000.

5. L. Li and I. Horrocks, “A software framework for matchmaking based on seman-
tic web technology”, Proceedings of the Twelfth International World Wide Web
Conference (WWW 2003), pp. 331-339, 2003.

6. “XML Pointer Language”,http://www.w3.org/TR/xptr.
7. “The Rule Markup Initiative”, http://www.dfki.uni-kl.de/ruleml/.
8. “Resource Description Framework”, http://www.w3.org/RDF/.
9. “DAML Language”, http://www.daml.org/language/.

10. “Web-Ontology Working Group”, http://www.w3.org/2001/sw/WebOnt/.
11. “DAML Services”, http://www.daml.org/services/.
12. “Six Sigma Academy”, http://www.6-sigma.com/.


