
A Broker for OWL-S Web services 

Massimo Paolucci, Julien Soudry, Naveen Srinivasan and Katia Sycara 
 

The Robotics Institute, Carnegie Mellon University 
 
 
 

Abstract 
Brokers are widely used in distributed information systems 
such as Multi-agent systems and distributed databases.  Yet, 
there has not been a detailed analysis of Brokers’ 
architecture and no general solution has been proposed on 
how the Brokers’ tasks have to be accomplished.  In this 
paper, we provide a detailed analysis of these tasks, and an 
implementation based on OWL-S.  We show that while 
OWL-S is adequate to provide all the information that is 
needed by the Broker, the straightforward implementation of 
the Broker using OWL-S results in a paradoxical situation.  
We solve this paradox by extending the Process Modeling 
language of OWL-S.  Finally, we propose a solution to a 
number of issues that arise in the brokered management of 
the interaction between Web services such as the abstraction 
from queries to capabilities required to solve that query, and 
management of the knowledge required by the Broker to 
control the multi-party interaction. 

1. INTRODUCTION  

Brokers facilitate the interaction between two or more 
parties.  For example, if two parties want to communicate, 
but they do not share a common language, Brokers may 
provide translation services, or if the two parties do not 
trust each other, a Broker may provide a trusted 
intermediary (e.g. an escrow service for e-commerce 
transactions).  Furthermore, Brokers may provide 
anonymization for one (or both) of the parties, by 
mediating the transaction. 

Not surprisingly, Brokers are one of the main discovery 
and synchronization mechanisms among autonomous 
agents [9][26]. Examples include the OAA Facilitator [18] 
which Brokers between OAA agents that collaborate 
toward the solution of a problem.  Furthermore, Brokers 
have been widely used in many agents applications such as 
integration of heterogeneous information sources and Data 
Bases [16], e-commerce [14] [11], pervasive computing [6] 
and more recently in coordinating between Web services in 
the IRS-II framework [20].  Finally, theoretical studies [9] 
[26] show that Brokers can perform a range of coordination 
activities such as load balancing between different agents, 
or anonymizing between requesters and providers.  

Because of its properties and its wide applicability, a 
Broker would be a natural candidate component for the 
Web Services infrastructure. However, the current Web 
services architecture [4] does not include Brokers with rich 

functionality of discovery and mediation, as part of the 
Web Services infrastructure.  

In this paper, we provide an analysis of the requirements 
of a Broker that performs both discovery and mediation 
between agents and Web services.  We show that such a 
Broker performs very complex reasoning tasks that include 
(1) the interpretation of the capability advertisements of 
service providers; (2) the interpretation of the requesters’ 
queries that must be fulfilled by a service provider; (3) 

finding the best provider based on the requester’s query; 

(4) invocation of the selected provider on behalf of the 

requester, interacting with the provider as necessary to 

fulfill the query, and (5) returning the query results to the 
requester.   The accomplishment of these tasks requires 

ontologies to describe capabilities of Web services, their 

interaction patterns and the domain they operate on, and a 

logic that allows reasoning on those ontologies.  

Furthermore, we will provide a description of our 

implementation of a Broker using OWL-S [21].  

 
The rest of the paper is organized as follows. In section 2, 

we present an overview of OWL-S. In section 3, we 

provide a detailed analysis of the Broker, exploring its 

interaction protocol and the reasoning tasks it has to 

accomplish. In section 4, we show how the current OWL-S 

specification supports the reasoning of the Broker and 

where this specification falls short.  In section 5, we 
provide extensions to OWL-S to address some of the 

shortcomings of the current specification as regards support 

for Broker’s reasoning tasks. In particular, we describe the 

exec extension of OWL-S.  In section 6, we describe the 

basic features of our implementation and provide details on 
how we address the reasoning problems of the Broker.  In 

section 7, we conclude. 

2. OWL-S   

OWL-S [21] is a Semantic Web Services description 

language that enriches Web Services descriptions with 

semantic information from OWL [8] ontologies and the 
Semantic Web [3].  OWL-S is organized in three modules: 

a Profile that describes capabilities of Web Services as well 

as additional features that help to describe the service. A 

Process Model that provides a description of the activity of 

the Web Service provider from which the Web Service 



 2

requester can derive information about the service 
invocation.  A Grounding that is a description of how 
abstract information exchanges described in the Process 
Model are mapped onto actual messages that the provider 
and the requester exchange. 
A Web Service capability is the description of the service 
functionality, i.e. what the service does. For example, the 
capability of Barnes and Noble, a bookseller, is to sell 
books. The capability of a Web Service can be viewed in 
two ways: first as a service category within an ontology of 
services (e.g. selling books is-a selling products) or as a 
transformation of a set of inputs to a set of outputs (e.g. 
selling books transforms the inputs “book title” and “book 
author” to the output “book invoice”). The OWL-S Profile 

describes capabilities of Web Services by the 

transformation that they produce. In order to make its 

capabilities known to service requesters, a service provider 

advertises its capabilities with infrastructure registries, or 
more precisely middle agents [26], that record which 

agents are present in the system.  UDDI [25] is an example 

of a middle agent, that can make only limited use of the 

information provided by the OWL-S Profile.  The OWL-

S/UDDI Matchmaker [22] [23] is another example, which 
combines UDDI and OWL-S.  Finally, the Broker defined 

in this paper is another example of a middle agent that 

performs both discovery and mediation. 

The second module of OWL-S is the Process Model. The 

Process Model has two aims: the first one is to show how 
the provider achieves its goals, and the second to provide 

the requester-provider interaction protocol.  The first goal 

is achieved by allowing the provider to make public a 

description of its computation, to the extent that the 

provider feels comfortable to do so. OWL-S distinguishes 
between two types of processes: composite processes and 

atomic processes.  Atomic processes correspond to 

operations that the provider can perform directly.  

Composite processes are used to describe collections of 

processes (either atomic, or composite) organized on the 

basis of some control flow structure. For example, a 

sequence of processes is defined as a composite process 

whose processes are executed one after the other.  Other 

control constructs supported by OWL-S are cond for 

conditional expressions, choice for non-deterministic 

choices between alternative control flows, and spawn for 

spawning a new concurrent thread. Finally, OWL-S 

includes looping constructs like while and repeat-until.  
The execution of a process produces a state transition 

where either some information is exchanged with some 

partner, or the agent produces a change in the environment.  

A state is defined as a tuple (ϕ,Π) where Π represents the 

set of concurrent threads, and ϕ the state of the thread the 

process is executed in [1]
2
.  Processes modify the state by 

either changing the state of their thread ϕ, for instance, an 

atomic process may read a message from a port, or modify 

the set of concurrent threads Π through the spawning of 

new threads or the closing of other threads.  The formal 

semantics of the OWL-S composite and atomic processes is 
shown here in Table 1

3
. Looping constructs are 

implemented as combinations of sequences and conditions. 

Each rule in Table 1. specifies how the execution of a 

process changes the overall state. Sequences of processes, 

expressed here by the temporal constraint return v >>=e, 
applies e to the results v of the previous step. The execution 

of a spawn operation, results in the beginning of the 

execution of a new thread (e,∅ ), while it returns no value 

in the current thread (return ()).  The other rules specify the 
result of executing other types of control constructs, 

CondTrue specifies the results of the execution of a 

conditional statement if the condition is true; a similar rule 

would be used for a false condition. ChoiceLeft specifies the 

results of the execution of a non-deterministic selection of 
the first process of a list; a similar rule would be used for 

other choices. Finally, Atomic describes the results of 

executing an atomic process, which has an effect on the 

state of the current thread ϕ but it does not modify the set 

of concurrent processes ∏. 

The last module of OWL-S is the Grounding that describes 

how atomic processes which provide abstract descriptions 

of the information exchanges with the requesters, are 
transformed into concrete messages or remote procedure 

calls over the net. Specifically, the OWL-S Grounding is 

defined as a one to one mapping from atomic processes to 

WSDL [5] input and output message specifications 

The Web Services philosophy of interaction between a 
service requester and a service provider is that a requester 

would need to know the information that a service provider 

requires at different stages of the interaction. For example, 

                                                           
1
 The execution semantics presented in [1] does not include 

an explicit notion of atomic process, rather atomic 

processes are constructed as a combination of operations 

that receive messages, send messages, and apply functions. 
2
 The execution semantics that we use was originally 

proposed for DAML-S 0.6.  While many aspects of the 
language changed in the evolution to OWL-S 1.0 that we 

use here,  the execution semantics of the basic constructs of 

the Process Model is still valid. 
3
 We provide here a very brief explanation of the OWL-S 

execution semantics.  A complete presentation is in [1]. 

Seq 
- 

Π,E[return v >>=e],ϕ)→Π,(E[(e v)],ϕ)  

Spawn 
- 

Π,(E[spawn e],ϕ)→Π,(E[return()],ϕ),(e,∅ )  

CondTrue - 
Π,(E[cond C e1 e2],ϕ)→Π,(E[e1],ϕ)  

ChoiceLeft Π,(E[e1],ϕ)→Π′ ,(E[e1′],ϕ′ ) 
Π,(E[choice e1 e2],ϕ)→Π′ ,(E[e1′],ϕ′ )  

Atomic1 
- 

Π,(E[atomic e],ϕ)→Π,(E[return ()],ϕ′ ) 
 

Table-1. Execution Semantics of OWL-S control structures 
 



 3

in industrial standards, the requester-provider interaction 
is governed by knowledge of the provider’s Web 

Services Description (WSD) given in WSDL, and in 

Semantic Web Services, the requester-provider 

interaction presupposes knowledge on the part of the 

requester of the Process Model (plus WSD) of the 

provider.   

3. OVERVIEW OF THE 
BROKER 

 Any transaction involving a Broker requires three 
parties.  (Figure 1). The first party is a requester that 

initiates the transaction by requesting information or a 

service to the Broker.  The second party is a provider 

which is selected among a pool of provider as the best 

suited to resolve the problem of the requester.  The last 
party is the Broker itself.   

The protocol in Figure 1 can be divided in two parts: the 

advertisement protocol, and the mediation protocol.  In 

the advertisement protocol, the Broker first collects the 

advertisements of Web services that are available to 
provide their services.  These advertisements, shown in 

Figure 1 by straight thin lines, are used by the Broker to 

select the best provider during the interaction with the 

requester. The mediation protocol, shown in Figure 1 using 

thick curve lines, requires (1) the requester to query the 
Broker and wait for a reply while the Broker uses its 

discovery capabilities to locate a provider that can answer 

the query. Once the provider is discovered, (2) the Broker 

reformulates the query for that provider, and finally queries 

it.  Upon receiving the query, (3) the provider computes the 
reply to the Broker and finally (4) the Broker replies to the 

requester.  
The protocol described above shows that the Broker needs 

to perform a number of complex reasoning tasks for both 

the discovery and mediation part of its interaction.  The 
discovery process requires two different reasoning tasks.  

The first one is to abstract from the query of the requester 
to the capabilities required by a provider in order to 

answer that query.  The second process is to 
compare/match the capabilities required to answer the 
query with the capabilities of the providers to find the best 

provider for the particular query. 

The mediation task of the Broker requires that the Broker 

must transform the query of the requester into a query to 

send to the provider.  This process of mediation has two 

aspects.  The first one is the efficient use of the information 

provided by the requester to the Broker, the second one is 

the mapping from the messages of the requester to 

messages to the provider and vice versa. 

Since the requester does not know which is the relevant 
provider, the (initial) query it sends to the Broker and the 

query input that the (selected) provider may need in order 

to provide the service may not correspond exactly.   

Consider the example of a requester that asks to book the 

cheapest flight from Pittsburgh to New York.  Besides the 

trip origin and destination, the selected provider may 

expect date and time of departure.  In the example, the 

requester never provided the departure time, and the 
provider has no use for the “cheaper” qualifier.  It is the 

task of the Broker to reconcile the difference between the 

information that the requester provided and the information 

that the provider expects, by (1) recognizing that the 

departure time was not provided, and therefore it should be 
asked for, and (2) finding a way to select the cheapest flight 

among the ones that the provider can find. 

Moreover, the Broker may have  tohave to perform  the 
mapping between ontologies and terms used by the two 

parties. For example, the requester may have asked for 
information on IBM whereas the provider expects inputs in 

terms of International Business Machine Corporation. 

Another, more complicated mismatch may be at the level of 

concepts and their relations in the ontologies used for 

inputs and outputs of the provider vis a vis the ontological 
information used by the requester. For example, the 

requester may have asked for the weather in Pittsburgh, but 

instead the provider can report only the weather at major 

airports.  The task of the Broker in this case is to infer 

which is the most appropriate airport, and use it in the 
query to the provider.  Therefore, instead of asking for the 

weather in Pittsburgh, the Broker asks the provider for the 

weather at PIT, where PIT is the code of the Pittsburgh 

International Airport. 

Finally, the Broker has the non-trivial task of translating 
between the different syntactic forms of the queries and 

replies.  The examples that we discussed above assume 

semantic mismatches between the different messages that 

the Broker has to interpret and send.  These messages have 

to be compiled in an appropriate syntactic form, and 

 

Figure-1. The Broker’s Protocol 



 4

despite their semantic similarity, the messages would be 
realized in very different ways.  The task of the Broker is to 
resolve syntactic differences, and to formulate messages 
that all the parties can understand. 
In conclusion, the Broker performs a number of complex 
reasoning tasks that range from discovery to the 
interpretation, translation and compilation of messages.  To 
accomplish these tasks, the Broker needs the support of a 
formal framework that allows complex reasoning about 
agents, what they do and how to interact with them.   
 

4. OWL-S SUPPORT FOR THE 
BROKER 

The OWL-S language and ontology provides constructs to 
support the Broker in both discovery and mediation 
between Web services.  The OWL-S Profile supports the 
discovery process by providing a representation of 
capabilities of Web services and agents.  The OWL-S 
Process Model and Service Grounding provide support for 
the interaction between the Broker and the requester and 
provider of the service. 
 
The Service Grounding provides a mapping from the 
semantic form of the messages exchanged as defined in the 
Process Model, to the syntactic form as defined in the 
WSDL input and output specifications. The Grounding 
provides to the Broker the mapping from the abstract 
semantic representation of the messages to the syntactic 
form that these messages adopt when they become concrete 
information exchanges.  The Broker uses this mapping to 
interpret the messages that it receives and compile the 
messages that it sends to the requester or to the provider. 
 
A number of capability matching algorithms for OWL-S 
based Web services have been proposed (see 
[2][10][15][22]) which exploit OWL ontologies and the 
related logics to infer which advertisements satisfy a 
request for capabilities.  These algorithms can be used to 
solve the problem of matching from the capabilities 
required for the query to the capabilities of the available 
providers. 
 
 The abstraction from the requester’s query to the 

capabilities recquiredrequired, is more complicated.  First 

of all, there is no explicit support in OWL-S for queries, 
nevertheless, it is easy to use the OWL Query Language 

(OWL QL) [7][12] which relies on the same logics 

required by OWL-S.  The transformation is still an open 

problem, which, to our knowledge, has never been 

addressed. In section 6.1, we will propose an abstraction 
algorithm to transform queries into capabilities.  

 

After selecting a provider, the Broker has access to the 

provider’s Process Model from which it can derive the 

provider’s interaction protocol by extracting what 

information the provider will need, in what order, and what 

information it will return.  For the rest of the interaction the 

Broker acts as the provider’s direct requester. However, 

this relation is not straightforward. Since the Broker acts on 

behalf of the requester, it must somehow transform the 
requester’s initial query (and all subsequent messages) into 

a query (or a sequence of queries) to the provider. This 

transformation is necessary since the requester cannot “see” 

directly the Process Model of the provider, but interacts 

with the provider only through the Broker. We show how 
this transformation can be done in section 6.2.   

 

Furthermore, since the requester initiated its query 

without having access to the provider’s Process Model 

(since the provider was not known at the time of the 
requester’s query initiation), the Broker needs to infer what 

additional information it needs from the requester. Once it 

has done that, it then uses this knowledge to construct a 

new Process Model. This new Process Model is presented 

by the Broker to the requester, not as the Process Model of 
the selected provider but as the process Model of the 

Broker. This makes sense since the requester interacts only 

with the Broker. The new Process Model indicates to the 

requester what information is needed and in what order. 

How the Broker infers the additional information it needs 
from the provider and how it constructs the new Process 

Model is presented in section 6.2. 

 

Since, to the requester, the Broker is a (representative of) 

the provider, the Process Model of the Broker should 
contain the crucial elements of the Process Model of the 

provider. However, since the Broker is unaware of the 

provider until it has discovered and selected the provider 

based on a requester’s query, the Broker is faced with a 

challenge: it must publish a Process Model that depends on 
the provider’s Process Model, but the provider is not 

known until the requester reveals its query.  On the other 

hand, the requester cannot query (interact with) the Broker 

until the Broker publishes its Process Model.  The result is 

a paradoxical situation in which the Broker cannot reveal 
its Process Model until it receives the query of the 

requester, but cannot receive the query from the requester 

until it publishes its Process Model. 

 

Essentially, the Broker paradox results from an 
inflexibility of the OWL-S specification of service 

invocation, which requires the specification of the Process 

Model before the interaction, and it does not allow any 

means to modify the Process Model during the interaction.
1
 

                                                           
1
 The current industry proposed standards have the same 

inflexibility, since the Web services Description must be 

specified  once and for all with no provisions for on-the-fly 

loading or modification. 



 5

 

5. EXTENDING OWL-S 

The solution of the Broker’s Paradox that we propose 

requires an extension of the specification of the OWL-S 

Process Model to allow the flexibility to dynamically 
modify an agent’s Process Model during the interaction. As 

a result, the Broker can provide an initial, provider-neutral, 

Process Model to the requester, and then modify it 

consistently with the requirements of the Process Model of 

the provider. This results in the New Process Model, which 
the requester uses in its interactions with the Broker.   

 

To implement this solution, we propose to extend the 

OWL-S Model Processing language by adding a new 

statement, that we call exec. The exec statement takes as 
input a Process Model and executes it.  Therefore, the 

Broker can compile a new Process Model, return it as an 

output of one of its processes, and then use the exec  to turn 

the new Process Model into executable code that specifies 

the Broker’s new interaction protocol. 

The provider-neutral Process Model of the Broker is shown 

in Figure 2. It shows that the Broker performs a sequence 

of three operations. The first operation is GetQuery in 

which the Broker gets the query from the requester.  The 

second operation is Discover in which the Broker uses 
its discovery capabilities to find the best provider.  The 

result of the Discover process is a new Process Model that 

depends on the provider found.  Finally, the Broker 

performs the exec operation which passes control to a new 

Process Model.  This change of control is shown in the 

figure by the three small rectangles that display processes 

that will be run as a consequence of the exec.  

The use of the exec solves the Broker’s Paradox by 

removing the inflexibility of the OWL-S Process Model. 
The exec operation allows the separation of service 

discovery from service invocation and interaction.  First the 

discovery is completed, then the interaction, which depends 

on the discovered provider, is initiated through the exec.  

One important question that is left unanswered is whether 
there is a clever way to use OWL and OWL-S that does not 

require the extension of the language that we propose.  

Unfortunately, such an extension does not exist, because 

neither OWL nor OWL-S provideprovides a way to 
transform a term into a predicate of the logic, which is the 
essential step that is performed by the exec. 

5.1 Formal Semantics of exec 

Intuitively, the semantics of the exec operation is to 

execute the processes that it contains as arguments.  In 

other words, the state transformation produced by exec(P) 

is equivalent to the state transformation produced by the 

direct execution of P.  This intuition is captured by the 
axiomatic semantics of exec, described in Table 2,    which 

is  a natural extension of the axiomatic execution semantics 

of OWL-S shown in Table 1. 
 

Π,(E[P],ϕ)→Π′ ,(E[P′],ϕ′ ) 
exec(P) 

Π,E[exec(P)],ϕ)→ Π′ ,(E[P′],ϕ′ ) 

Table-2. The execution semantics of the exec statement 
 

The execution of an exec statement is shown in Table 2.  

This rule specifies that the execution of exec(P) in the state 

(∏,ϕ) should produces the same results that are produced 

by the execution of P in the same state in the state (∏,ϕ).  

This definition allows us to transform the specification of a 

process P into the execution of the process, which is 

exactly what we are seeking with the definition of exec.  

6. BROKER IMPLEMENTATION 

We have implemented a prototype of a Broker that makes 

use of OWL-S with the exec extension described above to 

mediate between agents and Web services.  We based our 

implementation of the Broker on the OWL-S Virtual 

Machine (OWL-S VM) [24], which is a generic OWL-S 

processor that allows Web services and agents to interact 

on the basis of the OWL-S description of the Web service 

and OWL ontologies.  In the implementation of the Broker, 

we extended the OWL-S VM to include the semantics of 

the exec.  Furthermore, we developed the reasoning that 
allows the Broker to perform discovery and to mediate the 

interaction between the provider and the requester. 

6.1 Broker-based   discovery 

The Broker expects from the requester a query in OWL-QL 

format [12], where the predicate corresponds to a property 

in the ontology, the terms in the query are either variables, 

or instances that are consistent with the semantic type 
requirements of the predicate. 

The discovery process takes as input the query of the 

requester and generates as output the advertisement of a 

provider (if any is known to the Broker) that can answer the 

 

6 H T X H Q F H �

* H W 4 X H U \ � H [ H F �' L V F R Y H U �

 

Figure-2. Broker's Process Model 
 



 6

query.  The discovery process has three steps. First the 
Broker abstracts from the query to the capabilities that are 
required to answer that query, thus constructing a service 
request. Second, the Broker finds appropriate providers by 
matching the capabilities required to solve the query (the 
service request) with the capability advertisements of 
providers.  Third, the Broker uses similarity of the match of 
the service request and the returned advertisements as well 
as other parameters in the returned Service Profiles to 
select the most appropriate provider. The matching of the 
service request against the advertised capabilities was 
implemented using the OWL-S matching engine reported in 
[22] and [23].   
The automatic abstraction from the requester’s query to a 

service request is, to our knowledge, an unexplored 

problem.  The abstraction process must respect the 
constraints of the OWL-S discovery process, namely 
generation of an OWL-S service profile with the 
appropriate required service inputs and outputs that (1) 

reflected the semantic content of the query and (2) reflected 

the requirements of the generated service request.  

1. set V = set of variables in the query 
2. set T= set of instantiated terms in the query 
3. set I= abstraction of each term in T to its immediate class 

4. use predicate definition in the ontology to abstract  

variables in V to their class 

5. set O= abstraction of each variable in V to its class 
6. generate a service request  with input I and outputs O 

Figure 3: The abstraction algorithm 
 

The instantiation algorithm follows the 6 steps listed in 
Figure 3. In the steps 1 and 2, terms from the query are 

extracted distinguishing between variables and instantiated 

terms.  In step 3, the set of inputs of the service request is 

derived by abstracting the instantiated terms to their 

immediate class.  For instance, if one term were Pittsburgh, 
it would be abstracted to City (assuming the presence of a 

location ontology).  Step 4 is needed to handle variables.  

In OWL-QL variables are of class Variable, but there is no 

constraint on the type that they have to assume.  We use the 

definition of the predicate in the ontology to constrain the 
type of the values of the variable to the most restrictive 

class of values that they can be assigned to.  In step 5, we 

use the abstraction in step 4 to generate the set of outputs 

O.  Finally, in step 6, the service request is generated by 

specifying the inputs and the outputs
1
.  

6.2 Broker-based   mediation 

After the Broker has selected a provider, it must mediate 
between the provider and the requester.  The mediation 

                                                           
1
 Inputs and outputs are the most important information for 

matching; if the query includes additional information, this 

could also be abstracted. Currently, we did not concern 
ourselves with this issue.  

process depends on the Process Model of the provider 

which specifies what information is required and when. In 

theory, the Broker may just present to the requester the 
Process Model of the provider and limit mediation to 

message forwarding. But this solution is very inefficient, 

since it ignores the information that the requester already 

provided to the Broker. For example, the requester may ask 

the Broker to book a trip to Pittsburgh.  The Broker may 
find a Travel Web service that asks for departure and 

arrival location.  The task of the Broker is to recognize that 

arrival location information has already been specified so 

the Broker needs to ask the requester for the departure 

location only. 
 

1. KB= knowledge from query 
2. I= input of process 
3. for i∈ I 
4. select k from KB with the same semantic type of I 
5. if  k exists 
6. remove i from I 

Figure-4. Algorithm for pruning redundant information 
 
The algorithm for pruning redundant information is shown 

in Figure 4.  First, the Broker records the information 

provided by the query in a KB (step 1), and the inputs of 
the process (step 2).  Next for each input i, the Broker 

looks in the KB for information that it can use in place of i.  

If any is found, i is removed from the inputs of a process.  

6.3 Broker-based Interaction 

The architecture of the Broker is shown in Figure 5.  To 

interact with the provider and the requester the Broker 

instantiates two ports: a server port for interaction with the 
requester (since the Broker acts as a provider vis a vis the 

requester) and a client port for interaction with the provider 

(since the Broker acts as a client vis a vis the provider).  

The functionalities of the server port are described using 

OWL-S.  Specifically, the Broker exposes to the requester 
its Process Model, Grounding and WSDL specification.   

The client (requester) uses these descriptions to instantiate 

an OWL-S Virtual Machine to interact with the Broker.  

Since the provider-neutral Process Model exposed by the 

Broker makes use of the exec extension described in 
section 5, the OWL-S Virtual Machine used by the 

requester also includes an implementation of the axioms for 

exec that we presented in section 5.1.  The client port is 

also implemented as an OWL-S Virtual Machine that uses 

the Process Model, Grounding and WSDL description of 
the provider to interact with it.   



 7

The reasoning of the Broker happens in the Query 
Processor (see Figure 5) that is responsible for the 
translation of the messages between the two parties and for 
the implementation of the algorithms in Figures 3 and 4.  
Specifically, the Query Processor stores information 
received from the query in a Knowledge Base to be used as 
needed during the execution.  Furthermore, the Query 
Processor interacts with the Discovery Engine, which 
provides the storage and matching of capabilities, when it 
receives a capability advertisement and when it needs to 
find a provider that can answer the query of the requester.   

7. CONCLUSION 

Despite the wide use of Brokers in different aspects of 
distributed systems, and despite the many uses Brokers can 
have in the discovery and mediation of Web Services, no 
detailed analysis of what tasks a Broker should carry on has 
been proposed.  One contribution of this paper is to provide 
such as analysis.  In the course of this analysis, a few 
challenges were uncovered, and solutions for these 
challenges were presented.  
The first of the challenges is the “Broker’s paradox”, 

namely that the Broker cannot publish a Process Model that 

is based on a yet unknown provider before it receives a 
request query but the requester cannot send a query until it 

knows the Broker’s process Model. This paradox arises 

from the OWL-S (and WSDL among others) Web Service 

interaction specification that is based on the declarative 

specification of a process model that guides the requester 
and provider interaction. To address the Broker paradox, 

we extended the OWL-S Process Modeling language with 

an exec operation that allows the dynamic modification of 

the Broker’s Process Model during its execution to include 

Process Models of dynamically discovered new parties. We 

provide a formal semantics for the exec operator that is 

grounded in the formal execution semantics of OWL-S, and 

we show how it can be used as a basis for the use of OWL-
S to represent the interactions of more than two parties.  

A second set of challenges derives from the management of 

the mediation between the provider and the requester.  To 

address these challenges, we developed a method for 

abstracting from a service query to a service request. We 
proposed an algorithm to address this issue.  Furthermore, 

we provided an algorithm for the Broker to make efficient 

use of the knowledge provided by the requester during the 

interaction with the provider.   

Crucially, the issues emerging with the mediation between 
the provider and the requester are not unique to Web 

services Brokering, rather they comes up in web services 

composition as well.  In the context of Web service 

composition, a planner may issue a goal that it wants to 

subcontract.  The task of the Web service is first to abstract 
from the specific goal to a capability description of a 

provider that can solve the goal, then use its current 

knowledge, and the goal, to interact with the provider. In 

current research, we are looking to integrate our work in 

the context of Brokering to automated composition.  

8. ACKNOWLEDGEMENTS 

We would like to thank Khalid El-Arini for his contribution 

to early development of this work.  This work has been was 

funded by the Defense Advanced Research Projects 

Agency as part of the DARPA Agent Markup Language 

(DAML) program under Air Force Research Laboratory 

contract F30601-00-2-0592 to Carnegie Mellon University. 

References 

[1] Ankolekar, A, Huch, F, and Sycara, K. "Concurrent 
Execution Semantics for DAML-S with Subtypes." In The 
First International Semantic Web Conference, 2002. 

[2] Benatallah, B, Hacid, M, Rey, C, and Toumani F. ”Towards 

Semantic Reasoning for Web Services Discovery”, In Proc. 
of the International Semantic Web Conference (ISWC’03), 
Springer Verlag, Sanibel Island, Florida, USA Oct 2003. 

[3] Berners-Lee, T, Hendler, J, and Lassila, O. “The semantic 

web” Scientific American, 284(5):34--43, 2001. 

[4] Booth, D., Haas, H., McCabe F., Newcomer, E., Champion, 

M., Ferris, C., Orchard. D. “Web Services Architecture, 

W3C Working Draft 8 August 2003”, 

http://www.w3.org/TR/2003/WD-ws-arch-20030808/ 

[5] Christensen, E, Curbera, F, Meredith, G, and Weerawarana, 

S.: Web Services Description Language: 

http://www.w3.org/TR/2001/NOTE-wsdl-20010315  2001. 

[6] Chen, H, Finin, T, and Joshi, A. “Semantic Web in the 

Context Broker Architecture”, In Proceedings of the IEEE 
Conference on Pervasive Computing and Communications 
(PerCom), Orlando, March, 2004. 

BrokerBroker

OWL_S VM

Advertisement DB

Matching 
Engine

Query 
Processor

KB

ProcessModel
Grounding
WSDL

Client 
Port

RequesterRequester ProviderProvider
Server PortOWL_S VM

Client 
Port

ProcessModel
Grounding
WSDL

Server Port

Discovery Engine

 

Figure-5. Broker’s Architecture 



 8

[7] DAML Joint Committee, “DAML Query Language (DQL) 

Abstract Specification”, August 2002, 

http://www.daml.org/2002/08/dql/dql  

[8] Dean, M, Schreiber, G, Bechhofer, S, van Harmelen, F, 

Hendler, J, Horrocks, I, McGuinness, D. L., Patel-Schneider 

P. F. and Stein, L. A. “OWL Web Ontology Language 

Reference”, W3C Candidate Recommendation 18 August 

2003 http://www.w3.org/TR/owl-ref/  

[9] Decker, K, Sycara, K, and Williamson, M. “Matchmaking 

and Brokering.” In Proceedings of the Second International 
Conference on Multi-Agent Systems (ICMAS-96), The AAAI 

Press, 1996 

[10] Di Noia, T, Di Sciascio, E, Donini, F, and Mongiello, M. ”A 

system for principled matchmaking in an electronic 

marketplace.” In Proceedings of the twelfth international 
conference on World Wide Web. ACM Press, 2003. 

[11] Faisst, W. “Information Technology as an Enabler of Virtual 

Enterprises: A Life-CycleOriented Description.” In 

Proceedings of the European Conference on Virtual 
Enterprises and Networked Solutions, Paderborn, Germany, 

April 1997  

[12] Fikes, R., Hayes, P., and Horrocks, I. “OWL-QL - A 

Language for Deductive Query Answering on the Semantic 

Web.” Technical Report Knowledge Systems Laboratory, 
Stanford University, Stanford, CA, KSL-03-14, 2003.  

[13] Foundation for Intelligent Physical Agents (FIPA). “FIPA 
Communicative Act Library Specification.” 
www.fipa.org/specs/fipa00037/SC00037J.html 

[14] Jennings, N. R, Faratin, P, Norman, T. J, O’Brien, P. and 
Odgers, B. “Autonomous Agents for Business Process 

Management” Int. Journal of Applied Artificial Intelligence 

14 (2) 145-189, 2000. 

[15] Li, L, and Horrocks, I. “E-commerce: A software framework 

for matchmaking based on semantic web technology.” In 

Proceedings of the twelfth international conference on 
World Wide Web, pages 331-339. ACM Press, 2003. 

[16] Lu, J, Mylopoulos, J. “XIB: eXtensible Information Broker.” 

International Journal on Artificial Intelligence Tools, Vol. 

11, No. 1, March 2002.  

[17] Drew McDermott. “Estimated-Regression Planning for 

Interactions with Web Services.” In Proceedings of the AI 
Planning Systems Conference, 2002. 

[18] Martin, D. L., Cheyer, A. J, and Moran, D. B. “The Open 

Agent Architecture: A Framework for Building Distributed 

Software Systems”. Applied Artificial Intelligence, vol. 13, 

no. 1-2, pp. 91-128, January-March 1999  

[19] Mitra, N. “SOAP Version 1.2 Part0: Primer” W3C 
Recommandation 24 June 2003. url: 

www.w3c.org/TR/2003/REC-soap12-part0-20030624 

[20] Motta, E, Domingue, J, Cabral, L, and Gaspari, M. “IRS-II: 

A Framework and Infrastructure for Semantic Web Services” 

In Proc. of the International Semantic Web Conference 
(ISWC’03), Springer Verlag, Sanibel Island, Florida, USA 

Oct 2003. 

[21] The OWL Services Coalition: Semantic Markup for Web 
Services (OWL-S): http://www.daml.org/services/owl-s/1.0/  

[22] Paolucci, M,, Takahiro Kawamura, Payne, T. R, Sycara, K.; 

“Semantic Matching of Web Services Capabilities” In In 

Proc. of the International Semantic Web Conference 
(ISWC’02), Springer Verlag, Sardegna, Italy, June 2002. 

[23] Paolucci, M, Sycara, K., and Kawamura, T. “Delivering 

Semantic Web Services.” In Proceedings of the 12Th 
international conference on World Wide Web. ACM Press, 

2003. 

[24] Paolucci, M,, Ankolekar, A, Srinivasan, N, and Sycara, K., 

"The DAML-S Virtual Machine," In Proceedings of the 
Second International Semantic Web Conference (ISWC), 
2003, Sandial Island, Fl, USA, October 2003, pp 290-305. 

[25] UDDI.org “UDDI Technical White Paper”, 2000, 

http://www.uddi.org/whitepapers.html 

[26] Wong, H. C, and Sycara, K. "A Taxonomy of Middle-agents 

for the Internet." In Proceedings of the fifth International 
Conference on Multia-Agent Systesms (ICMAS'2000), 2000 

 
 


