
CALD 10–702

Statistical Approaches to Learning and Discovery

Assignment 1

January 22, 2003

Due in class on Wednesday, January 29.

Instructions: Please submit written answers to each question. We prefer to receive these in
printed (as opposed to handwritten) form. You are encouraged to study in groups; however,
all of your written work that you submit individually, including homework, is taken by us as
your individual effort. If, nonetheless, your written answers reflect collaborative effort, please
indicate that to us in an initial footnote. In addition, you are encouraged to use outside
references in preparing your answers; however, as with all of your work at the University,
you should give citations for your sources.

This assignment includes three problems involving sufficiency, MLE, and a mixture model.
For the third problem you will need to numerically fit models to a data set (a fairly large text
corpus) and generate plots that show the models’ performance. You do not need to hand in
source code for this assignment, but you should include a description of your implementation.

Problem 1. On Sufficiency and MLEs

As a further qualification of sufficiency, consider the notion of a minimal sufficient statistic.

Definition: Let t(X) = Y be a sufficient statistic of the data X for the parameter θ. Y is a
minimal sufficient statistic if, for each sufficient statistics s(X) = Z for θ, Y = h(Z) for some
function h.

The following theorem, due to Lehmann and Scheffe (1950), gives a helpful characterization
of a minimal sufficient statistic:

Let p(X | θ) be the probability distribution for a discrete random variable X, given the
parameter θ. (In the case of continuous data, let it be the probability density function given
θ.) Then, t(X) is minimally sufficient for θ (with respect to X) if and only if it has the
property that: t(X = x′) = t(X = x) precisely when the ratio p(x′ | θ)/p(x | θ) is constant as
a function of θ.

Let X = (X1, . . . , Xn) be a sample of n observations, iid given θ according a statistical
model. In this problem you’ll consider the following three statistical models:

Model 1: Xi ∼ Uniform(0, θ], with θ > 0.

Model 2: Xi ∼ Uniform[θ1, θ2], with θ2 > θ1 and θ1, θ2 ∈ R.

Model 3: Xi ∼ Uniform[θ, θ + 1], with θ > 0.
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For each of the above models,

(a) Identify the MLE(s) for the parameter(s).

(b) Establish which of the following three reductions of X are sufficient for θ:

(a) Y = tmax

(b) W = (tmin, tmax)

(c) Z = (tmin, tmed)

where tmin(X) = mini Xi, tmax(X) = maxi Xi, and tmed(X) = median(X) have the
natural definitions.

(c) Show whether any of these three is minimally sufficient.

Problem 2. On some conjugate and “improper” priors

For each of the following five, one-parameter statistical models we offer the conjugate family
of prior distributions for the parameter of that model.

Statistical model Conjugate family of priors

Bernoulli(θ), 0 ≤ θ ≤ 1 Beta(α, β), α, β > 0

NegBinom(m, θ), with fixed m > 0 and 0 < θ < 1 Beta(α, β), α, β > 0

Poisson(λ), λ > 0 Gamma(α, β), α, β > 0

Normal(µ, k2), with k > 0 fixed and µ ∈ R Normal(θ, τ 2), θ ∈ R, τ > 0

Normal(m,σ2), with m ∈ R fixed and σ > 0 InvGamma(α, β), α, β > 0

You can find brief descriptions of the respective distributions either in the appendix to
chapter 1 of Tanner’s book, or (particularly for the negative Binomial) in the textbooks that
we placed on reserve in the E&S Library. For each of the models, assuming that the data
are a sample of n iid observations from the model:

(a) Calculate the posterior (conditional pbinbetaprobability) for the statistical parameter
of the model and verify the conjugacy of the family.

(b) Explain what happens to the posterior distribution for the parameter as the conju-
gate prior approaches the boundary or boundaries of the family of prior distributions.
Indicate whether or not the limit of the conjugate priors is a “proper” probability
distribution, or whether it is “improper.”
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Problem 3. Beta-Binomial Models for Word Distributions.

Binomial and multinomial distributions are often used in information retrieval and text
processing applications to model word distributions. In this problem you will explore the
use of binomial and beta-binomial models for text.

A simple model to to predict the number of times a specific word w appears in a document is
the binomial, pbin (k |n, θ) =

(
n
k

)
θk(1− θ)n−k for observing k occurrences of w in a document

of size n. However the parameter θ may vary across documents, even those that are on the
same topic. In this case we can use a mixture of binomials, using a beta prior. Given a
collection of documents di with lengths ni and observed counts ki for word w, the evidence
for this data is given by

pbin-beta (~k |~n, αw, βw) =
∏

i

∫ 1

0

pbin (ki |ni, θ) pbeta (θ |αw, βw) dθ

We’ve made available a corpus of news documents in the file /afs/cs/academic/class/

10602-s00/data/a094.tkntext.gz. This is a collection of data from the Topic Detection
and Tracking (TDT) project, containing news stories from a variety of media. The collection
is broken up into “document sets,” each containing stories from a particular source. Many
of the stories are annotated with topic labels, which you will use for this problem. A more
detailed description of the format of the file is given in a README in the same directory.

(a) Estimate and compare binomial and beta-binomial models for specific words. Topic
numbers 1, 2, 13 and 15 contain the most documents. Choose three words that are
representative of each of these topics. Then, estimate the hyperparameters (αw, βw)

for each of the words you chose for a topic by maximizing pbin-beta (~k |n, αw, βw), using
only documents on that topic.

(b) Generate a plot that compares the fit of the beta-binomial model to the maximum
likelihood binomial model for each word you estimate parameters for. What do you
conclude about the binomial versus the beta-binomial models? What models might
give a better fit?

(c) Explain how to use the beta-binomial model in a (Bayesian) classifier for predicting
“on topic” stories. That is, suppose you are given a collection of stories (documents)
that are on a given topic, and another collection of stories that are “off topic.” Show
how the beta-binomial model can be used to construct a classifier to predict whether
future stories are on or off topic.

Note that for (a) you can use any appropriate numerical procedure, such as Newton’s method
or conjugate gradient, to estimate the parameters. If you use Matlab, you may find the
functions minimize and checkgrad useful; these can be found at http://www.gatsby.ucl.
ac.uk/~edward/code
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To carry out the estimation, you may find it useful to use simple properties of the digamma
function Ψ(x) = ∂

∂x
log Γ(x). For example, Ψ(x + 1) = Ψ(x) + 1

x
, and thus

Ψ(k + α)−Ψ(α) =
1

k − 1 + α
+

1

k − 2 + α
+ · · ·+ 1

1 + α
+

1

α

Reference: S. Lowe, “The beta-binomial mixture model for word frequencies in documents
with applications to information retrieval,” Proceedings of EuroSpeech, 1999.
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