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Not on the agenda

A proof of P D P:

.(POD(PDP)DP)D((PD(PDP)D(PDP))
by AX2taking A=P,B=PD>P,C =P
2.PD>((P>P)DP)
by AX1taking A=P,B=FP DO P
3.(P>(PDP)D(PDP)
applying MP to (1) and (2)
4. P> (P> P)
by AX1 taking A =P, B =P
5, PO P
applying MP on (3) and (4)




Structural proof theory

Studies proofs, not just provability, exposing
their structure.

Why does structure matter?
Structured proofs are easier to understand.

Programs are proofs! Unstructured
programming considered harmful.

Create new logics/languages by
manipulating structure.
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Why you should know this stuft

To help me!

But also because proof theory led to “linear
logic,” which is expressive enough to represent
many combinatorial problems.

Can use automated theorem provers as an
experimental tool.

Find new solutions suggested by logical
principles?



Talk outline

. Sequent calculus: overview and results
. Linear logic: an introduction

. Encoding graph problems in linear logic

=~ O N =

. Bijections between proofs and various
combinatorial objects
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Talk outline

. Sequent calculus: overview and results
. Linear logic: an introduction

. Encoding graph problems in linear logic
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. Bijections between proofs and various
combinatorial objects

Part 4 intended to spark discussion.
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Talk outline

. Sequent calculus: overview and results
. Linear logic: an introduction

. Encoding graph problems in linear logic

=~ O N =

. Bijections between proofs and various
combinatorial objects

Part 4 intended to spark discussion.
(In other words, it’s sketchy.)

counts EMS 11/04/05 — p.5/4



Logic without axioms

Sequent calculus: Gerhard Gentzen '35
Invented to study “natural deduction”, a
reaction to Principia Mathematica

Basic judgment:
Al, “. ,An — B

N—— ———
hypotheses conclusion

Theoremhood is a special case: - — B

No axioms.
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Primitives

“It Ais a hypothesis, then we may conclude A”:
T A A4 Lt

“If we can show A, we may assume it as a
hypothesis to show C”:
' - A I'N'A->C
T 5 C cut
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Logical rules

Divided into left and right rules.

Right rules explain how to draw a conclusion.
Left rules explain how to use a hypothesis.

Intuitively, right rules define a connective’s

meaning; left rules apply its meaning.



Implication

['A— B P
T SA> B~

'A>B—-A I'A>B,B—C 7
I'ADB—C =

Example: P D P

P— P
- — PDP




Conjunction/disjunction

I'—- A I'— B
' - AANDB

I'ANB,A—C I'"ANB,B—C
I'ANB —-C I'ANB —C

AR

/\L1 /\L2

I'— A I' - B
rSAvB Y TS5 4vE Vi

I'AvB A—-C T©I'AvB B—-C
T AVB—C vi




Unuits

rroctft o7 ik
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Unuits

rFoctl

(No FFR,TL.)

' — T

T'R



Sequent calculus properties

Can restrict to atomic initial sequents:

General init is admissible, e.g.:

PAVE.A— A I AV B.B— B
I'AvB, A—-AvVvB I'"AVB,B— AVDEB
I'"AvB—AVDB

Implies that left rules are “strong enough.”

But more amazingly: can eliminate cut rule.



Cut elimination

(Counter-)intuitively: “Any proof that uses
lemmas can be converted into one that doesn’t.”

Cut-free proofs serve as “normal forms” for
general proofs (cf. values vs. programs).

Cut-elimination implies:

consistency: - /4 F'. Can extend this to FOL,
Peano arithmetic. ..

disjunction property: if - — AV Bthen- — A
or - — B.
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Cut elimination

(Counter-)intuitively: “Any proof that uses
lemmas can be converted into one that doesn’t.”

Cut-free proofs serve as “normal forms” for
general proofs (cf. values vs. programs).

Cut-elimination implies:

consistency: - /4 F'. Can extend this to FOL,
Peano arithmetic. ..

disjunction property: if - — AV Bthen- — A
or - — B. Now wait a sec...
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Classical logic

New judgment:
Al,...,An — Bl,...,Bk
N—— —— N—— ——
hypotheses possible conclusions

Symmetrize intuitionistic logic by allowing
multiple conclusions (growing monotonically).



Classical logic

New judgment:
Al,...,An — Bl,...,Bk
N—— —— N—— ——
hypotheses possible conclusions

Symmetrize intuitionistic logic by allowing

multiple conclusions (growing monotonically).
... I'—-A T'’'A-C

T A4 4wt T A cut




Classical logic

New judgment:
Al,...,An — Bl,...,Bk
N—— —— N—— ——
hypotheses possible conclusions

Symmetrize intuitionistic logic by allowing

multiple conclusions (growing monotonically).
o ['—AA T'"A— A

T A AA 1t T 5 A cut




Classical logic

New judgment:
Al,...,An — Bl,...,Bk
N—— —— N—— ——
hypotheses possible conclusions

Symmetrize intuitionistic logic by allowing
multiple conclusions (growing monotonically).
I'A— B
[ —A>5Bn
' ’AoB—-A I''ADB,B—-C
''"ADB—-C oL




Classical logic

New judgment:
Al,...,An — Bl,...,Bk
N—— —— N—— ——
hypotheses possible conclusions

Symmetrize intuitionistic logic by allowing
multiple conclusions (growing monotonically).
I'A— B, ADB,A

' - ADBA

' A>D>B—-AA TI'ADB,B— A I
''ADB—A -

DR




Classical logic

New judgment:
Al,...,An — Bl,...,Bk
N—— —— N—— ——
hypotheses possible conclusions

Symmetrize intuitionistic logic by allowing
multiple conclusions (growing monotonically).
|et cetera]



Classical logic

New judgment:

Al,...,An — Bl,...,Bk
N —— e’ N ——

hypotheses possible conclusions

Proof of excluded middle: o
ASAADFAV(ADF) M
- — A ADF,AV(ADF) \/D]f
.HA,A\/(ADF)\/R .

- — AV(ADF) !




Sequent calculus: conclusions
Exposes the nature of logic as reasoning under
hypotheses.

Cut-free proofs provide interesting objects of
study; justified by cut-elimination.

Philosophical arguments over axioms become
concrete differences in proof structure.

But are there still unquestioned assumptions in

the structure of the sequent calculus?
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Logic without eternity

Linear logic: Jean-Yves Girard "87

Linear hypothetical judgment:
Al, Cee A, = B

Must use hypotheses A;, ... A, exactly once.
No longer maintain structural properties of:
1. Weakening: if ' — C thenI'; A — C

2. Contraction: if ' A, A — C thenI' A — C



New primitives

... I'—-A T'’'A-C
F,AﬁAzmt T = O cut




New primitives

... I'—-A T'’'A-C
A:>Almt T = O cut




New primitives

. I'=A AA=C
A:>A7’mt TA=C cut




Linear implication

'Aa>oB—-A I'AD>DB,B—-C 7
I'ADB—-C =




Linear implication

' — A T B —C
I'ADB—-C

DL



Linear implication

' - A I'B—-C 7
I'ADB—-C =




Linear implication

' A AB—->C 7
ITAASB -C -




Linear implication

I'=A A B=C
I'AA-wB=C °L




Linear implication

I'=A A B=C
I'AA-wB=C °L

Can consume A to produce B.

Right rule confirms this meaning:
I'"A= B
[ A—-B °f




Linear conjunction

I'"ANB,A—C
'AANB —C

I'"ANB,B—C
'AANB —C

AL

AL



Linear conjunction

I’ ,A%C’/\L [' B—C
'AANB —C : 'AANB —C

AL



Linear conjunction

I'A—C AL I'B—C
FA/\B%C FA/\B—>C




Linear conjunction

['A=C oL I'B=C
[''AB=C FA&B:>C




Linear conjunction

['A=C oL I'B=C
[''AB=C FA&B:>C

Choice between A and B.

Justitied by right rule:

I'=A I'= 0B
['= A&B

&R



Linear conjunction, version two

But consider alternative left rule for A:

I'ANB, A B—C
'ANB —C AL




Linear conjunction, version two

But consider alternative left rule for A:

[' A B — C
'ANB —C AL




Linear conjunction, version two

But consider alternative left rule for A:

['A, B=C
FA@B:>C

XL



Linear conjunction, version two

But consider alternative left rule for A:

['A, B=C
FA@B:>C

XL

Both A and B.

Corresponding right rule:

'= A A=20H
' A= A®B

QR



Linear disjunction

P AVB.A—C T,AVB.B—C
T AVB—C VL




T .
inear disjunction

'A=C I'B=C
A B=C

DSL



Linear disjunction

'A=C I'B=C
A B=C

DSL

Choice of A or B: but not your choice!



Linear disjunction

'A=C I'B=C
A B=C

DSL

Choice of A or B: but not your choice!

Right rules:
= A I'= B
F:>A@B@R1 F:>A€BB@R2



LLinear units

rFoctl

I' =T

T'R



LLinear units

r0=

COL

I'=T

TR



LLinear units

C OL TR

[0 = I'= T

['=C
riscil S lR




LLinear units

COL TR

[0 = I'= T

['=C
riscil S lR

AP0 A AT A Ale A



Summary of connectives

A — B consume A to produce B
A & B your choice between A and B
A®B both Aand B
A® B adversary’s choice of A or B
T something
1 nothing
0 anything



Summary of connectives

A — B consume A to produce B
A & B your choice between A and B
A®B both Aand B
A® B adversary’s choice of A or B
T something
1 nothing
0 anything

But what about our old friends D, A, and V?



Regaining ordinary logic

Use notion of persistent resource.

Rules now carry persistent context II:
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Regaining ordinary logic

Use notion of persistent resource.

Rules now carry persistent context II:

1= A it
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Regaining ordinary logic

Use notion of persistent resource.

Rules now carry persistent context II:

T A= At
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Regaining ordinary logic

Use notion of persistent resource.

Rules now carry persistent context II:

I'=A A B=C
TAA-wB=C L

A= B
['= A-—oB

—o R




Regaining ordinary logic

Use notion of persistent resource.

Rules now carry persistent context II:

ILI'=A II;A,B=C
T AA—-wB=C L

T, A = B
Il = A —- B

—o R



Regaining ordinary logic

Use notion of persistent resource.

Rules now carry persistent context II:

|et cetera]
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Regaining ordinary logic

Use notion of persistent resource.

Rules now carry persistent context II:

Additional rule:
ILAT A=C
IILAI' = C

copy
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Regaining ordinary logic (cont.)

Internalize persistence with | modality:

LA T = C II;- = A
OriAasc'l m =14l




Regaining ordinary logic (cont.)

Internalize persistence with | modality:

LA T = C II;- = A
OriAasc'l m =14l

Can decompose ordinary connectives:
“ADB"=1A—0B
“"ANB” =1A®!B =1(A&DB)
“AVB"=1A®!'B



A delicious proposition

“trick or treat!”
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A delicious proposition

“trick or treat!”




A delicious proposition

“trick or treat!”

—0



A delicious proposition

“trick or treat!”

P counts EMS 11/04/05 — p.26/4



Euler tours




Euler tours

\\\b/




Euler tours
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Euler tours

L 7]

a” means | am at a
“a —o ¢” means I will go from a to ¢

“(a —o ¢) & (¢ — a)” means I can go either way

Proof counts EMS 11/04/05 — p.27/4



Euler tours: encoding

Buler(G) = @ s ypecs (v = ¥) & (y = 0)

GG has an Euler tour starting at s € Gy iff:

Fuler(G) = s — s

(Compare deducing s D s in ordinary logic.)



Euler tours: derivation

a=a b=0
a—oba=0b c=c

a—obb-—oca=c a=a

a—obc—oab-—oca=a c=c
a—obc—oaa-—ocb—oca=c d=d

a—obc—oaa—ocb-—occ—oda=d a=a

a—obc—oaa—ocd-—oab-—occ—oda=a

Fuler(G),a = a
Fuler(G) = a — a

&L*

—o R
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Hamailtonian tours




Hamailtonian tours

<>




Hamailtonian tours

T
S~

Resource interpretation:

d
b

Fact u, holds while node = remains unvisited

Visiting « “consumes” the fact u,
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Hamailtonian tours

Interpretation of an edge?
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Hamailtonian tours

Interpretation of an edge: (a ® u,.) —o ¢?
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Hamailtonian tours

Interpretation of an edge: ((a ® u.) —o c) &1

An edge is an “affine” resource.
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Hamiltonian tours: encoding

Hamilton(G) =
(R, Uz) @ (®(x,y)€GE((x R Uy) —o Y) & 1)

G has a Hamiltonian tour starting at s € Gy iff:

Hamilton(G) = s —o s

(Thanks to Jason Reed for this encoding.)



Hamiltonian tours: derivation

bu,o, = bQu, a=a

C,Uup = CRUY Ug,b, (bR uy) —a=a

d,ue = d @ Ue  Ug, Up, ¢, (cRUp) — b, (bR U,) —a=a

A, Ug = @R Uy Ug, Up, Ue, dy (AR Ue) —0 ¢, (cRup) — b, (bR uy) —oa=a

Ug, Up, Ue, Ug, (@ R Ug) —o d, (d R ue) —o ¢, (c@up) —o b, (bR u,) —o a,a = a

Hamilton(G),a = a
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Graph colorings
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Graph colorings
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Graph colorings

/
\

Key to linear logic interpretatlon.

A node’s color doesn’t change (!)

But we can assign it a color only once (&)



Graph colorings: encoding

color,, 2, &l &lay

okay, Ty @ ® (Yg D) | @

{xay}EGE



Graph colorings: encoding

Graph is 3-colorable iff:

® color, = ® okay,

reGy reGy



Counting proofs

Since linear logic is constructive, proots of
propositions correspond to actual Euler tours,
Hamiltonian tours, graph colorings, etc.

But is there a bijection (with cut-free proots)?

Not quite:
b=b c=c a=a b=0
a=a bb—oc=c a—oba=0b c=c
a—obb-—oca=c a—obb-—oca=rc
a—obb-—oc=a-—oc a—obb-—oc=a-—oc
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Counting proofs

Since linear logic is constructive, proots of
propositions correspond to actual Euler tours,
Hamiltonian tours, graph colorings, etc.

But is there a bijection (with cut-free proots)?

Not quite:
b=b c=c a=a b=0
a=a bb—oc=c a—oba=0b c=c
a—obb-—oca=c a—obb-—oca=rc
a—obb-—oc=a-—oc a—obb-—oc=a-—oc

Problem: left rules “commute.”

Proof counts EMS 11/04/05 — p.35/4



A more pertfect syntax

Natural deduction: Gentzen '35

Connectives defined via “introduction” and
“elimination” rules.

Instead of applying hypotheses to draw new
hypotheses, elimination rules apply conclusions
to draw new conclusions.

(Removes distinction hypothesis/conclusion.)
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Natural deduction

Right rules become introduction rules:
['"A= B P
= A—oB "

'=A I'= 2B I'=A A=205

Fr>A&B & T A AgB ®f
['= A I'= B
F:>A@B@R1 F:>A€BB@R2

F:>TTR -:>11R



Natural deduction

Right rules become introduction rules:
AR B I
FA—B
'FA T'HEB 'FA AFB
r-4aeB ¢ T ArFAeB &

I'FA I'-B5
'FA® B I'FA® B

ret 'Rt

D1 D1l




Natural deduction

Right rules become introduction rules:

“Flip” lett rules to make elimination rules:

I'=A A B=C
IANA—-oB=(C °

[''A=C oL I'B=C oL,
I'AB=C ' A B=C




Natural deduction

Right rules become introduction rules:

“Flip” lett rules to make elimination rules:
'-A-—-oB AFA

I AFB —L
I A& B I~ A& B
A & rFp S



Natural deduction

Right rules become introduction rules:

“Flip” lett rules to make elimination rules:
'-A-—-oB AFA

I AFB —L
I A& B I~ A& B
A & rFp S

QE,1E,&F,0E complicate the picture.



Counting proofs, revisited

Only “normal” proots: elims followed by intros.
Corresponds to restriction to cut-free proofs.

But different cut-free proofs give same normal
proof:

a—oblFa-—ob al—a_oE
b—ochkHb—oc a—obalkb

a—obb-—ocaltc
a—obb—oclka-—oc

—0

—o]



Proof counts

Bijective correspondence between normal proofs
and solutions to combinatorial problems.

Let #|I' - A] = # normal proofs of I' - A.
#|Fuler(G) F s —o s| = # Euler tours in G
(21D...0x,)" F (11D...0x,)"QT] = ]{;'(Z)
(H&T)"-(HaeT)"]| =n!-2"

(H&T)" - HY @ T" % = El(n — k)! - (%)

= F*= H



Future possibilities

Use linear logic theorem provers to enumerate
solutions to combinatorial problems.

New theoretical approaches suggested by logical
principles:

Duality?

Dynamic interpretation of non-normal
proofs?

counts EMS 11/04/05 — p.40/4



Future possibilities

Use linear logic theorem provers to enumerate
solutions to combinatorial problems.

New theoretical approaches suggested by logical
principles:

Duality?

Dynamic interpretation of non-normal
proofs?

Is there a new logic waiting to be discovered by
combinatorists?

counts EMS 11/04/05 — p.40/4
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