Proof counts

Noam Zeilberger
Carnegie Mellon University

Rutgers Experimental Math Seminar November 4, 2005

Not on the agenda

A proof of $P \supset P$:

- 1. $(P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P)) \supset (P \supset P))$ by AX2 taking A = P, $B = P \supset P$, C = P
- 2. $P \supset ((P \supset P) \supset P)$ by AX1 taking A = P, $B = P \supset P$
- 3. $(P \supset (P \supset P)) \supset (P \supset P)$ applying MP to (1) and (2)
- 4. $P \supset (P \supset P)$ by AX1 taking A = P, B = P
- 5. $P \supset P$ applying MP on (3) and (4)

Structural proof theory

Studies proofs, not just provability, exposing their structure.

Why does structure matter?

- Structured proofs are easier to understand.
- Programs are proofs! Unstructured programming considered harmful.
- Create new logics/languages by manipulating structure.

Why you should know this stuff

To help me!

But also because proof theory led to "linear logic," which is expressive enough to represent many combinatorial problems.

- Can use automated theorem provers as an experimental tool.
- Find new solutions suggested by logical principles?

Talk outline

- 1. Sequent calculus: overview and results
- 2. Linear logic: an introduction
- 3. Encoding graph problems in linear logic
- 4. Bijections between proofs and various combinatorial objects

Talk outline

- 1. Sequent calculus: overview and results
- 2. Linear logic: an introduction
- 3. Encoding graph problems in linear logic
- 4. Bijections between proofs and various combinatorial objects

Part 4 intended to spark discussion.

Talk outline

- 1. Sequent calculus: overview and results
- 2. Linear logic: an introduction
- 3. Encoding graph problems in linear logic
- 4. Bijections between proofs and various combinatorial objects

Part 4 intended to spark discussion. (In other words, it's sketchy.)

Logic without axioms

Sequent calculus: Gerhard Gentzen '35 Invented to study "natural deduction", a reaction to Principia Mathematica

Basic judgment:

$$\underbrace{A_1, \dots, A_n} \rightarrow B$$
 hypotheses conclusion

Theoremhood is a special case: $\cdot \rightarrow B$

No axioms.

Primitives

"If A is a hypothesis, then we may conclude A":

$$\overline{\Gamma, A \to A}$$
 init

"If we can show A, we may assume it as a hypothesis to show C":

$$\frac{\Gamma \to A \quad \Gamma, A \to C}{\Gamma \to C} cut$$

Logical rules

Divided into left and right rules.

Right rules explain how to draw a conclusion. Left rules explain how to use a hypothesis.

Intuitively, right rules define a connective's meaning; left rules apply its meaning.

Implication

$$\frac{\Gamma, A \to B}{\Gamma \to A \supset B} \supset R$$

$$\frac{\Gamma, A \supset B \to A \quad \Gamma, A \supset B, B \to C}{\Gamma, A \supset B \to C} \supset L$$

Example: $P \supset P$

$$\frac{\overline{P \to P}}{\cdot \to P \supset P}$$

Conjunction/disjunction

$$\frac{\Gamma \to A \quad \Gamma \to B}{\Gamma \to A \land B} \land R$$

$$\frac{\Gamma, A \land B, A \to C}{\Gamma, A \land B \to C} \land L_1 \qquad \frac{\Gamma, A \land B, B \to C}{\Gamma, A \land B \to C} \land L_2$$

$$\frac{\Gamma \to A}{\Gamma \to A \lor B} \lor R_1 \qquad \frac{\Gamma \to B}{\Gamma \to A \lor B} \lor R_2$$

$$\frac{\Gamma, A \lor B, A \to C \quad \Gamma, A \lor B, B \to C}{\Gamma, A \lor B \to C} \lor L$$

Units

$$\frac{1}{\Gamma, F \to C} FL \qquad \frac{1}{\Gamma \to T} TR$$

Units

$$\frac{1}{\Gamma, F \to C} FL \qquad \frac{1}{\Gamma \to T} TR$$

(No FR, TL.)

Sequent calculus properties

Can restrict to atomic initial sequents:

$$\overline{\Gamma, P \to P} \ init'$$

General *init* is admissible, e.g.:

Implies that left rules are "strong enough."

But more amazingly: can eliminate *cut* rule.

Cut elimination

(Counter-)intuitively: "Any proof that uses lemmas can be converted into one that doesn't."

Cut-free proofs serve as "normal forms" for general proofs (cf. values vs. programs).

Cut-elimination implies:

- consistency: $\cdot \not\rightarrow F$. Can extend this to FOL, Peano arithmetic...
- disjunction property: if $\cdot \to A \vee B$ then $\cdot \to A$ or $\cdot \to B$.

Cut elimination

(Counter-)intuitively: "Any proof that uses lemmas can be converted into one that doesn't."

Cut-free proofs serve as "normal forms" for general proofs (cf. values vs. programs).

Cut-elimination implies:

- consistency: $\cdot \not\rightarrow F$. Can extend this to FOL, Peano arithmetic...
- disjunction property: if $\cdot \to A \vee B$ then $\cdot \to A$ or $\cdot \to B$. Now wait a sec...

New judgment:

$$A_1, \ldots, A_n \rightarrow B_1, \ldots, B_k$$

hypotheses possible conclusions
Symmetrize intuitionistic logic by allowing
multiple conclusions (growing monotonically).

New judgment:

$$\underbrace{A_1,\ldots,A_n} \rightarrow \underbrace{B_1,\ldots,B_k}$$
 hypotheses possible conclusions

$$\frac{\Gamma}{\Gamma, A \to A} init \quad \frac{\Gamma \to A \quad \Gamma, A \to C}{\Gamma \to A} cut$$

New judgment:

$$\underbrace{A_1, \ldots, A_n} \rightarrow \underbrace{B_1, \ldots, B_k}$$
 hypotheses possible conclusions

$$\frac{\Gamma}{\Gamma, A \to A, \Delta} init \quad \frac{\Gamma \to A, \Delta}{\Gamma \to \Delta} \frac{\Gamma, A \to \Delta}{\Gamma \to \Delta} cut$$

New judgment:

$$\underbrace{A_1, \ldots, A_n} \rightarrow \underbrace{B_1, \ldots, B_k}$$
 hypotheses possible conclusions

$$\frac{\Gamma, A \to B}{\Gamma \to A \supset B} \supset R$$

$$\frac{\Gamma, A \supset B \to A \quad \Gamma, A \supset B, B \to C}{\Gamma, A \supset B \to C} \supset L$$

New judgment:

$$\underbrace{A_1, \ldots, A_n} \rightarrow \underbrace{B_1, \ldots, B_k}$$
 hypotheses possible conclusions

$$\frac{\Gamma, A \to B, A \supset B, \Delta}{\Gamma \to A \supset B, \Delta} \supset R$$

$$\frac{\Gamma, A \supset B \to A, \Delta}{\Gamma, A \supset B, \Delta} \supset L$$

$$\frac{\Gamma, A \supset B \to A, \Delta}{\Gamma, A \supset B \to \Delta} \supset L$$

New judgment:

$$A_1, \dots, A_n \rightarrow B_1, \dots, B_k$$
hypotheses possible conclusions

Symmetrize intuitionistic logic by allowing multiple conclusions (growing monotonically).

[et cetera]

New judgment:

$$\underbrace{A_1, \ldots, A_n} \rightarrow \underbrace{B_1, \ldots, B_k}$$
 hypotheses possible conclusions

Proof of excluded middle:

$$\frac{A \to A, A \supset F, A \lor (A \supset F)}{\cdot \to A, A \supset F, A \lor (A \supset F)} \stackrel{init}{\supset} R$$

$$\frac{\cdot \to A, A \supset F, A \lor (A \supset F)}{\cdot \to A, A \lor (A \supset F)} \lor R_{1}$$

$$\frac{\cdot \to A, A \lor (A \supset F)}{\cdot \to A \lor (A \supset F)} \lor R_{1}$$

Sequent calculus: conclusions

Exposes the nature of logic as reasoning under hypotheses.

Cut-free proofs provide interesting objects of study; justified by cut-elimination.

Philosophical arguments over axioms become concrete differences in proof structure.

But are there still unquestioned assumptions in the structure of the sequent calculus?

Logic without eternity

Linear logic: Jean-Yves Girard '87

Linear hypothetical judgment:

$$A_1,\ldots,A_n\Rightarrow B$$

Must use hypotheses $A_1, \ldots A_n$ exactly once.

No longer maintain structural properties of:

- 1. Weakening: if $\Gamma \to C$ then $\Gamma, A \to C$
- 2. Contraction: if $\Gamma, A, A \to C$ then $\Gamma, A \to C$

New primitives

$$\frac{\Gamma, A \to A}{\Gamma, A \to A} init \quad \frac{\Gamma \to A \quad \Gamma, A \to C}{\Gamma \to C} cut$$

New primitives

$$\frac{1}{A \Rightarrow A} init \quad \frac{\Gamma \rightarrow A \quad \Gamma, A \rightarrow C}{\Gamma \rightarrow C} cut$$

New primitives

$$\frac{\Gamma \Rightarrow A \quad \Delta, A \Rightarrow C}{\Gamma, \Delta \Rightarrow C} cut$$

$$\frac{\Gamma, A \supset B \to A \quad \Gamma, A \supset B, B \to C}{\Gamma, A \supset B \to C} \supset L$$

$$\frac{\Gamma \qquad \to A \quad \Gamma \qquad , B \to C}{\Gamma, A \supset B \to C} \supset L$$

$$\frac{\Gamma \to A \quad \Gamma, B \to C}{\Gamma, A \supset B \to C} \supset L$$

$$\frac{\Gamma \to A \quad \Delta, B \to C}{\Gamma, \Delta, A \supset B \to C} \supset L$$

$$\frac{\Gamma \Rightarrow A \quad \Delta, B \Rightarrow C}{\Gamma, \Delta, A \multimap B \Rightarrow C} \multimap L$$

$$\frac{\Gamma \Rightarrow A \quad \Delta, B \Rightarrow C}{\Gamma, \Delta, A \multimap B \Rightarrow C} \multimap L$$

Can consume A to produce B.

Right rule confirms this meaning:

$$\frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \multimap B} \multimap R$$

Linear conjunction

$$\frac{\Gamma, A \wedge B, A \to C}{\Gamma, A \wedge B \to C} \wedge L_1 \qquad \frac{\Gamma, A \wedge B, B \to C}{\Gamma, A \wedge B \to C} \wedge L_2$$

$$\frac{\Gamma, A \to C}{\Gamma, A \land B \to C} \land L_1 \qquad \frac{\Gamma, B \to C}{\Gamma, A \land B \to C} \land L_2$$

$$\frac{\Gamma, A \to C}{\Gamma, A \land B \to C} \land L_1 \qquad \frac{\Gamma, B \to C}{\Gamma, A \land B \to C} \land L_2$$

$$\frac{\Gamma, A \Rightarrow C}{\Gamma, A \& B \Rightarrow C} \& L_1 \qquad \frac{\Gamma, B \Rightarrow C}{\Gamma, A \& B \Rightarrow C} \& L_2$$

$$\frac{\Gamma, A \Rightarrow C}{\Gamma, A \& B \Rightarrow C} \& L_1 \qquad \frac{\Gamma, B \Rightarrow C}{\Gamma, A \& B \Rightarrow C} \& L_2$$

Choice between A and B.

Justified by right rule:

$$\frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \& B} \& R$$

But consider alternative left rule for \wedge :

$$\frac{\Gamma, A \wedge B, A, B \to C}{\Gamma, A \wedge B \to C} \wedge L$$

But consider alternative left rule for \wedge :

$$\frac{\Gamma \qquad , A, B \to C}{\Gamma, A \land B \to C} \land L$$

But consider alternative left rule for \wedge :

$$\frac{\Gamma, A, B \Rightarrow C}{\Gamma, A \otimes B \Rightarrow C} \otimes L$$

But consider alternative left rule for \wedge :

$$\frac{\Gamma, A, B \Rightarrow C}{\Gamma, A \otimes B \Rightarrow C} \otimes L$$

Both A and B.

Corresponding right rule:

$$\frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma, \Delta \Rightarrow A \otimes B} \otimes R$$

$$\frac{\Gamma, A \vee B, A \to C \quad \Gamma, A \vee B, B \to C}{\Gamma, A \vee B \to C} \vee L$$

$$\frac{\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C}{\Gamma, A \oplus B \Rightarrow C} \oplus L$$

$$\frac{\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C}{\Gamma, A \oplus B \Rightarrow C} \oplus L$$

Choice of *A* or *B*: but not your choice!

$$\frac{\Gamma, A \Rightarrow C \quad \Gamma, B \Rightarrow C}{\Gamma, A \oplus B \Rightarrow C} \oplus L$$

Choice of *A* or *B*: but not your choice!

Right rules:

$$\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \oplus B} \oplus R_1 \qquad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \oplus B} \oplus R_2$$

$$\overline{\Gamma, F \to C} \ FL \qquad \overline{\Gamma \to T} \ TR$$

$$\overline{\Gamma,0\Rightarrow C} \ 0L \qquad \overline{\Gamma\Rightarrow \top} \ \top R$$

$$\frac{\Gamma, 0 \Rightarrow C}{\Gamma, 1 \Rightarrow C} \stackrel{0L}{1L} \qquad \frac{\Gamma \Rightarrow C}{\Gamma, 1 \Rightarrow C} \stackrel{1L}{1R}$$

$$\overline{\Gamma,0\Rightarrow C} \ 0L \qquad \overline{\Gamma\Rightarrow \top} \ \top R$$

$$\frac{\Gamma\Rightarrow C}{\Gamma,1\Rightarrow C} \ 1L \qquad \overline{\cdot\Rightarrow 1} \ 1R$$

$$A\oplus 0 \Leftrightarrow A \quad A\otimes \top \Leftrightarrow A \quad A\otimes 1 \Leftrightarrow A$$

Summary of connectives

```
A \multimap B consume A to produce B
A \otimes B your choice between A and B
A \otimes B both A and B
A \oplus B adversary's choice of A or B
T something
1 nothing
0 anything
```

Summary of connectives

```
A \multimap B consume A to produce B
A \otimes B your choice between A and B
A \otimes B both A and B
A \oplus B adversary's choice of A or B
T something
1 nothing
0 anything
```

But what about our old friends \supset , \land , and \lor ?

Use notion of persistent resource.

Use notion of *persistent* resource.

$$\overline{A \Rightarrow A}$$
 init

Use notion of *persistent* resource.

$$\overline{\Pi;A\Rightarrow A}$$
 init

Use notion of *persistent* resource.

$$\frac{\Gamma \Rightarrow A \quad \Delta, B \Rightarrow C}{\Gamma, \Delta, A \multimap B \Rightarrow C} \multimap L$$

$$\frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \multimap B} \multimap R$$

Use notion of persistent resource.

$$\frac{\Pi; \Gamma \Rightarrow A \quad \Pi; \Delta, B \Rightarrow C}{\Pi; \Gamma, \Delta, A \multimap B \Rightarrow C} \multimap L$$

$$\frac{\Pi; \Gamma, A \Rightarrow B}{\Pi; \Gamma \Rightarrow A \multimap B} \multimap R$$

Use notion of *persistent* resource.

Rules now carry persistent context Π :

[et cetera]

Use notion of *persistent* resource.

Rules now carry persistent context Π :

Additional rule:

$$\frac{\Pi, A; \Gamma, A \Rightarrow C}{\Pi, A; \Gamma \Rightarrow C} copy$$

Regaining ordinary logic (cont.)

Internalize persistence with! modality:

$$\frac{\Pi, A; \Gamma \Rightarrow C}{\Pi; \Gamma, ! A \Rightarrow C} ! L \qquad \frac{\Pi; \cdot \Rightarrow A}{\Pi; \cdot \Rightarrow ! A} ! R$$

Regaining ordinary logic (cont.)

Internalize persistence with! modality:

$$\frac{\Pi, A; \Gamma \Rightarrow C}{\Pi; \Gamma, ! A \Rightarrow C} ! L \qquad \frac{\Pi; \cdot \Rightarrow A}{\Pi; \cdot \Rightarrow ! A} ! R$$

Can decompose ordinary connectives:

$$"A \supset B" = !A \multimap B$$

$$"A \land B" = !A \otimes !B = !(A \otimes B)$$

$$"A \lor B" = !A \oplus !B$$

a

"a" means I am at a" $a \multimap c$ " means I will go from a to c" $(a \multimap c) \otimes (c \multimap a)$ " means I can go either way

Euler tours: encoding

$$Euler(G) = \bigotimes_{\{x,y\} \in G_E} (x \multimap y) \& (y \multimap x)$$

G has an Euler tour starting at $s \in G_V$ iff:

$$Euler(G) \Rightarrow s \multimap s$$

(Compare deducing $s \supset s$ in ordinary logic.)

Euler tours: derivation

$$\frac{a \Rightarrow a \quad b \Rightarrow b}{a \multimap b, a \Rightarrow b} \quad c \Rightarrow c$$

$$\underline{a \multimap b, b \multimap c, a \Rightarrow c} \quad a \Rightarrow a$$

$$\underline{a \multimap b, c \multimap a, b \multimap c, a \Rightarrow a} \quad c \Rightarrow c$$

$$\underline{a \multimap b, c \multimap a, a \multimap c, b \multimap c, a \Rightarrow c} \quad d \Rightarrow d$$

$$\underline{a \multimap b, c \multimap a, a \multimap c, b \multimap c, c \multimap d, a \Rightarrow d} \quad a \Rightarrow a$$

$$\underline{a \multimap b, c \multimap a, a \multimap c, d \multimap a, b \multimap c, c \multimap d, a \Rightarrow a}$$

$$\underline{Euler(G), a \Rightarrow a}$$

$$\underline{Euler(G) \Rightarrow a \multimap a} \multimap R$$

Resource interpretation:

- Fact u_x holds while node x remains unvisited
- Visiting x "consumes" the fact u_x

Interpretation of an edge?

Interpretation of an edge: $(a \otimes u_c) \multimap c$?

Interpretation of an edge: $((a \otimes u_c) \multimap c) \otimes 1$ An edge is an "affine" resource.

Hamiltonian tours: encoding

$$Hamilton(G) = \left(\bigotimes_{x \in G_V} u_x\right) \otimes \left(\bigotimes_{(x,y) \in G_E} ((x \otimes u_y) \multimap y) \otimes 1\right)$$

G has a Hamiltonian tour starting at $s \in G_V$ iff:

$$Hamilton(G) \Rightarrow s \multimap s$$

(Thanks to Jason Reed for this encoding.)

Hamiltonian tours: derivation

$$\underbrace{c, u_b \Rightarrow c \otimes \mathbf{u_b}}_{\mathbf{u_a}, b, (b \otimes u_a) - o a \Rightarrow a} \underbrace{\frac{b, u_a \Rightarrow b \otimes \mathbf{u_a}}{u_a, b, (b \otimes u_a) - o a \Rightarrow a}}_{\mathbf{u_a}, u_b, c, (c \otimes u_b) - o b, (b \otimes u_a) - o a \Rightarrow a}$$

$$\underbrace{a, u_d \Rightarrow a \otimes \mathbf{u_d}}_{\mathbf{u_a}, u_b, u_c, d, (d \otimes u_c) - o c, (c \otimes u_b) - o b, (b \otimes u_a) - o a \Rightarrow a}_{\mathbf{u_a}, u_b, u_c, u_d, (a \otimes u_d) - o d, (d \otimes u_c) - o c, (c \otimes u_b) - o b, (b \otimes u_a) - o a, a \Rightarrow a}_{\mathbf{Hamilton}(G), a \Rightarrow a}$$

Graph colorings

Graph colorings

Graph colorings

Key to linear logic interpretation:

- A node's color doesn't change (!)
- But we can assign it a color only once (&)

Graph colorings: encoding

$$color_{x} = !x_{r} \otimes !x_{g} \otimes !x_{b}$$

$$okay_{x} = \left(x_{r} \otimes \bigotimes_{\{x,y\} \in G_{E}} (y_{g} \oplus y_{b})\right) \oplus \left(x_{g} \otimes \bigotimes_{\{x,y\} \in G_{E}} (y_{r} \oplus y_{b})\right) \oplus \left(x_{g} \otimes \bigotimes_{\{x,y\} \in G_{E}} (y_{r} \oplus y_{g})\right)$$

$$\left(x_{g} \otimes \bigotimes_{\{x,y\} \in G_{E}} (y_{r} \oplus y_{g})\right)$$
Proof.

Proof counts FMS 11/04/05 - p. 34/4

Graph colorings: encoding

Graph is 3-colorable iff:

$$\bigotimes_{x \in G_V} color_x \Rightarrow \bigotimes_{x \in G_V} okay_x$$

Counting proofs

Since linear logic is constructive, proofs of propositions correspond to actual Euler tours, Hamiltonian tours, graph colorings, etc.

But is there a bijection (with *cut-free* proofs)? Not quite:

$$\frac{b \Rightarrow b \quad c \Rightarrow c}{b, b \multimap c \Rightarrow c} \qquad \frac{a \Rightarrow a \quad b \Rightarrow b}{a \multimap b, a \Rightarrow b} \qquad c \Rightarrow c
\hline
 a \multimap b, b \multimap c, a \Rightarrow c} \qquad \frac{a \Rightarrow a \quad b \Rightarrow b}{a \multimap b, a \Rightarrow b} \qquad c \Rightarrow c
\hline
 a \multimap b, b \multimap c, a \Rightarrow c} \qquad a \multimap b, b \multimap c, a \Rightarrow c}
\hline
 a \multimap b, b \multimap c \Rightarrow a \multimap c}$$

Counting proofs

Since linear logic is constructive, proofs of propositions correspond to actual Euler tours, Hamiltonian tours, graph colorings, etc.

But is there a bijection (with *cut-free* proofs)? Not quite:

$$\frac{b \Rightarrow b \quad c \Rightarrow c}{b, b \multimap c \Rightarrow c} \qquad \frac{a \Rightarrow a \quad b \Rightarrow b}{a \multimap b, a \Rightarrow b} \qquad c \Rightarrow c
a \multimap b, b \multimap c, a \Rightarrow c
\hline
 a \multimap b, b \multimap c \Rightarrow a \multimap c
 a \multimap b, b \multimap c \Rightarrow a \multimap c$$

Problem: left rules "commute."

A more perfect syntax

Natural deduction: Gentzen '35

Connectives defined via "introduction" and "elimination" rules.

Instead of applying hypotheses to draw new hypotheses, elimination rules apply conclusions to draw new conclusions.

(Removes distinction hypothesis/conclusion.)

Right rules become introduction rules:

$$\frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \multimap B} \multimap R$$

$$\frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \otimes B} \otimes R \qquad \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma, \Delta \Rightarrow A \otimes B} \otimes R$$

$$\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \oplus B} \oplus R_1 \quad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \oplus B} \oplus R_2$$

$$\frac{\Gamma \Rightarrow \Gamma}{\Gamma \Rightarrow \Gamma} \uparrow R \quad \overline{\cdot \Rightarrow 1} 1R$$

Right rules become introduction rules:

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \multimap I$$

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \otimes B} \otimes I \qquad \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes I$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B} \oplus I_1 \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B} \oplus I_2$$

$$\frac{\Gamma \vdash T}{\Gamma \vdash T} \top I \quad \overline{\cdot \vdash 1} \ 1I$$

Right rules become introduction rules:

"Flip" left rules to make elimination rules:

$$\frac{\Gamma \Rightarrow A \quad \Delta, B \Rightarrow C}{\Gamma, \Delta, A \multimap B \Rightarrow C} \multimap L$$

$$\frac{\Gamma, A \Rightarrow C}{\Gamma, A \otimes B \Rightarrow C} \otimes L_1 \qquad \frac{\Gamma, B \Rightarrow C}{\Gamma, A \otimes B \Rightarrow C} \otimes L_2$$

Right rules become introduction rules:

"Flip" left rules to make elimination rules:

$$\frac{\Gamma \vdash A \multimap B \quad \Delta \vdash A}{\Gamma, \Delta \vdash B} \multimap E$$

$$\frac{\Gamma \vdash A \otimes B}{\Gamma \vdash A} \otimes E_1 \qquad \frac{\Gamma \vdash A \otimes B}{\Gamma \vdash B} \otimes E_2$$

Right rules become introduction rules:

"Flip" left rules to make elimination rules:

$$\frac{\Gamma \vdash A \multimap B \quad \Delta \vdash A}{\Gamma, \Delta \vdash B} \multimap E$$

$$\frac{\Gamma \vdash A \otimes B}{\Gamma \vdash A} \otimes E_1 \qquad \frac{\Gamma \vdash A \otimes B}{\Gamma \vdash B} \otimes E_2$$

 $\otimes E, 1E, \oplus E, 0E$ complicate the picture.

Counting proofs, revisited

Only "normal" proofs: elims followed by intros.

Corresponds to restriction to cut-free proofs.

But different cut-free proofs give same normal proof:

$$\frac{b \multimap c \vdash b \multimap c}{a \multimap b, a \vdash b} \multimap E \xrightarrow{a \multimap b, b \multimap c, a \vdash c} \multimap E$$

$$\frac{a \multimap b, b \multimap c, a \vdash c}{a \multimap b, b \multimap c \vdash a \multimap c} \multimap I$$

Proof counts

Bijective correspondence between normal proofs and solutions to combinatorial problems.

Let $\#[\Gamma \vdash A] = \#$ normal proofs of $\Gamma \vdash A$.

- $\#[Euler(G) \vdash s \multimap s] = \#$ Euler tours in G
- $\#[(x_1 \oplus \ldots \oplus x_n)^n \vdash (x_1 \oplus \ldots \oplus x_n)^k \otimes \top] = k! \binom{n}{k}$
- $\#[(H \& T)^n \vdash (H \oplus T)^n] = n! \cdot 2^n$
- $\#[(H \otimes T)^n \vdash H^k \otimes T^{n-k}] = k!(n-k)! \cdot \binom{n}{k}$

Future possibilities

Use linear logic theorem provers to enumerate solutions to combinatorial problems.

New theoretical approaches suggested by logical principles:

- Duality?
- Dynamic interpretation of non-normal proofs?

Future possibilities

Use linear logic theorem provers to enumerate solutions to combinatorial problems.

New theoretical approaches suggested by logical principles:

- Duality?
- Dynamic interpretation of non-normal proofs?

Is there a new logic waiting to be discovered by combinatorists?