15-213
“The Class That Gives CMU lts Zip!”

Introduction to
Computer Systems

Randal E. Bryant
August 29, 2000

Topics:
« Theme
* Five great realities of computer systems
* How this fits within CS curriculum

cl assOla. ppt CS 213 F00

Course Theme

Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
» Abstract data types
« Asymptotic analysi s

These abstractions have limits

» Especially in the presence of bugs
* Need to understand unde rlying implementation s

Useful outcomes
« Become more effectiv e programmers
—Able to find and eliminate bugs efficiently
— Able to tune program performance
* Prepare for later “syste ms” classes
— Compilers, Operating Systems, Networks, Computer Architecture

cl assOla. ppt o CS 213 F ‘00

Great Reality #1

| nt’s are not Integers, Fl oat’s are not Reals

Examples
e Isx2=07
—Float’'s: Yes!
—Int’s:
» 65535 * 65535 --> -131071 (On most machines)
» 65535L * 65535 --> 4292836225 (On Alpha)
e Is(X+y)+z = X+ (y+2)?
—Unsigned & Signed Int’s: Yes!
—Float’s:
» (1lel0 + -1e10) + 3.14 --> 3.14
» 1lel0 + (-1e10 + 3.14) --> 0.0

cl assOla. ppt 3 CS 213 F ‘00

Computer Arithmetic

Does not generate random values
» Arithmetic operations ha ve important mathema tical properties

Cannot assume “usual” properties
* Due to finiteness of rep resentations
* Integer operations sa tisfy “ring” properties (usually)
— Commutativity, associativity, distributivity
* Floating point operation s satisfy “ordering” properties
— Monotonicity, values of signs

Observation
* Need to understand which abstractions apply in which contexts

« Important issues for c ompiler writers and serious application
programmers

cl assOla. ppt 4 CS 213 F ‘00

Great Reality #2

You’'ve got to know assembly

Chances are, you’ll never write program in assembly
« Compilers are much be tter & patient at this than you are

Understanding assembly key to machi ne-level
execution model

« Behavior of programs in p resence of bugs
—High-level language model breaks down

e Tuning program performanc e
—Understanding sources of program inefficiency

* Implementing sys tem software
— Compiler has machine code as target
— Operating systems must manage process state

cl assOla. ppt _5_ CS 213 F ‘00

Great Reality #3

Memory Matters

Memory is not unbounded
It must be allocate d and managed
« Many applications are memory dominated

Memory referencing bugs especiall vy pernicious
« Effects are distant in both time and space

Memory performance is not uniform

e Cache and virtual me mory effects can grea tly affect program
performance

« Adapting program to charac teristics of memory s ystem can lead to
major speed improve ments

cl assOla. ppt 6 CS 213 F ‘00

Memory Referencing Bug Example

main ()

{

|l ong int al?2];

double d = 3. 14;

a[2] = 1073741824; /* Qut of bounds reference */
printf("d = % 15g\n", d);

exit(0);

Alpha MIPS Sun
-g 5.30498947741318e-315 3.1399998664856 3.14
-0 3.14 3.14 3.14

cl assOla. ppt _7_ CS 213 F ‘00

Memory Referencing Errors

C and C++ do not provide any memory protection
e Out of bounds array referenc es
 Invalid pointer valu es
« Abuses of malloc /free

Can lead to nasty bugs
 Whether or not bug has a ny effect depends o n system and comp iler
e Action at a distance
— Corrupted object logically unrelated to one being accessed
— Effect of bug may be first observed long after it is generated

How can | deal with this?
 Program in Java, Lis p, or ML
« Understand what possible interactions may oc cur

« Use or develop tools to detect referencing errors
—E.qg., Purify

cl assOla. ppt _8 CS 213 F ‘00

Memory Performance Example

Implementations of Matrix Multiplication

« Multiple ways to nestloop s

[* i)k */
for (1=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0. 0;
for (k=0; k<n; k++)

sum+= a[i][k] * b[K]I[j];

cli][i] = sum
}

}

cl assOla. ppt

T ik */

for (j=0; j<n; j++) {

for (1=0; i<n; i++) {
sum = 0. 0;
for (k=0; k<n; k++)
sum += a[i][k] * b[Kk][]];
c[i][j] = sum

—9— CS 213 F ‘00

Matmult Performance (Alpha 21164)

Too big for L1 Cache Too big for L2 Cache

mflops (d.p.)

—o— ijK
ikj
jik
jki

—%— Kij

—0— Kji

g e A4 _FQ:- ‘:.ff.: H_I} {; ,ﬁ*‘b D x ":'aif" ,1-;‘&':' ﬁﬂb rﬂ'.:- 45,'::- hff.:- ‘:Fﬁ-

matrix size (n)

cl assOla. ppt 10— CS 213 F ‘00

Blocked matmult perf (Alpha 21164)

mflops (d.p.)

160

140_ ..

80-'\/1 e e e e e e e e e e e e
604 O\ e s s e e s s
404

20+

0 T T T T T T T T T T T T T T T T T
50 75 100125 150175200 225250275300 325350375400 425450475500

matrix si ze (n)

—o— hijK
bikj
ijk
ikj

cl assOla. ppt 11— CS 213 F ‘00

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!
« Easily see 10:1 performance range depe nding on how code written

* Must optimize at multip le levels: algorithm, data representations,
procedures, and loops

Must understand system to optimize performance
 How programs compiled an d executed
 How to measure program perform ance and identify bo ttlenecks

 How to improve performance without destroying code mo dularity
and generality

cl assOla. ppt _1o_ CS 213 F ‘00

Great Reality #5

Computers do more than execute programs

They need to get data in and out
» 1/O system critical to program reliability and performance

They communicate with each other ov er networks
« Many system-level issues arise in pres ence of network
— Concurrent operations by autonomous processes
— Coping with unreliable media
— Cross platform compatibility
— Complex performance issues

cl assOla. ppt 13- CS 213 F ‘00

Role within Curriculum

A A
Network Processes Machine C ode
Protocols Mem. Mgmt Optimizatio n
\ ‘ / Exec. Mod el
CS 212 Memory Syst em
Execution Scstgr}]?; —
Models ys
Data Structu res Transition from Abstract to
Applicatio ns |
Programming Concrete!
| « From: high-level lang uage
CS 211 model
Fundamen tal . : ; i
Structures To: underlying implem entation

cl assOla. ppt 14— CS 213 F ‘00

Course Perspective

Most Systems Courses are Builder-Centric
o Computer Architecture
—Design pipelined processor in Verilog
* Operating Systems
— Implement large portions of operating system
« Compilers
—Write compiler for simple language
« Networking
— Implement and simulate network protocols

cl assOla. ppt _15-

CS 213 F ‘00

Course Perspective (Cont.)

Our Course is Programmer-Centric

* Purpose is to show how by k nowing more about the unde rlying
system, one can be more effective a s a programmer

« Enable you to
—Write programs that are more reliable and efficent
— Incorporate features that require hooks into OS
» E.g., concurrency, signal handlers
* Not just a course for ded icated hackers
—We bring out the hidden hacker in everyone
« Cover material in this course that you won't see elsewhere

cl assOla. ppt 16— CS 213 F ‘00

