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Course Theme

Abstraction is good, but don’t forget reality!
Courses to date emphasize abstraction

• Abstract data types
• Asymptotic analysi s

These abstractions have limits
• Especially in the presence of bugs
• Need to understand unde rlying implementation s

Useful outcomes
• Become more effectiv e programmers

– Able to find and eliminate bugs efficiently
– Able to tune program performance

• Prepare for later “syste ms” classes
– Compilers, Operating Systems, Networks, Computer Architecture
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Great Reality #1

Int’s  are not Integers, Float’s are not Reals

Examples
• Is x2 ≥ 0?

– Float’s: Yes!

– Int’s:
» 65535 * 65535  --> -131071 (On most machines)
» 65535L * 65535 --> 4292836225 (On Alpha)

• Is (x + y) + z  =  x + (y + z)?
– Unsigned & Signed Int’s: Yes!
– Float’s:

»  (1e10 + -1e10) + 3.14 --> 3.14

» 1e10 + (-1e10 + 3.14) --> 0.0
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Computer Arithmetic

Does not generate random values
• Arithmetic operations ha ve important mathema tical properties

Cannot assume “usual” properties
• Due to finiteness of rep resentations
• Integer operations sa tisfy “ring” properties (usually)

– Commutativity, associativity, distributivity
• Floating point operation s satisfy “ordering” properties

– Monotonicity, values of signs

Observation
• Need to understand which abstractions apply in which contexts
• Important issues for c ompiler writers and serious application

programmers
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Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in assembly
• Compilers are much be tter & patient at this than you are

Understanding assembly key to machi ne-level
execution model
• Behavior of programs in p resence of bugs

– High-level language model breaks down

• Tuning program performanc e
– Understanding sources of program inefficiency

• Implementing sys tem software
– Compiler has machine code as target
– Operating systems must manage process state



CS 213 F ‘00 –6–class01a.ppt

Great Reality #3

Memory Matters

Memory is not unbounded
• It must be allocate d and managed
• Many applications are memory dominated

Memory referencing bugs especiall y pernicious
• Effects are distant in both time and space

Memory performance is not uniform
• Cache and virtual me mory effects can grea tly affect program

performance
• Adapting program to charac teristics of memory s ystem can lead to

major speed improve ments
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Memory Referencing Bug Example

main ()
{
  long int a[2];
  double d = 3.14;
  a[2] = 1073741824; /* Out of bounds reference */
  printf("d = %.15g\n", d);
  exit(0);
}

main ()
{
  long int a[2];
  double d = 3.14;
  a[2] = 1073741824; /* Out of bounds reference */
  printf("d = %.15g\n", d);
  exit(0);
}

Alph a MIPS Sun

-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14
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Memory Referencing Errors

C and C++ do not provide any memory protection
• Out of bounds array referenc es
• Invalid pointer valu es
• Abuses of malloc /free

Can lead to nasty bugs
• Whether or not bug has a ny effect depends o n system and comp iler
• Action at a distance

– Corrupted object logically unrelated to one being accessed
– Effect of bug may be first observed long after it is generated

How can I deal with this?
• Program in Java, Lis p, or ML
• Understand what possible interactions may oc cur
• Use or develop tools to detect referencing errors

– E.g., Purify
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Memory Performance Example

Implementations of Matrix Multiplication
• Multiple ways to nest loop s

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

}

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

}

/* jik */

for (j=0; j<n; j++) {

  for (i=0; i<n; i++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum

  }

}

/* jik */

for (j=0; j<n; j++) {

  for (i=0; i<n; i++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum

  }

}
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Blocked matmult perf (Alpha 21164)
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Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!
• Easily see 10:1 performance range depe nding on how code written
• Must optimize at multip le levels: algorithm, data representations,

procedures, and loops

Must understand system to optimize performance
• How programs compiled an d executed
• How to measure program perform ance and identify bo ttlenecks
• How to improve performance without destroying code mo dularity

and generality
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Great Reality #5

Computers do more than execute programs

They need to get data in and out
• I/O system critical to program reliability and performance

They communicate with each other ov er networks
• Many system-level issues arise in pres ence of network

– Concurrent operations by autonomous processes
– Coping with unreliable media

– Cross platform compatibility
– Complex performance issues
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Role within Curriculum

Transition from Abstract to
Concrete!
• From: high-level lang uage

model
• To: underlying implem entation

CS 211
Fundamen tal

Structures

CS 213
Systems

CS 412
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

Machine C ode
Optimizatio n

Data Structu res
Applicatio ns
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 347
Architectu re

ECE 349
Embedded
Systems

Exec. Mod el
Memory Syst em
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Course Perspective

Most Systems Courses are Builder-Centric
• Computer Architecture

– Design pipelined processor in Verilog

• Operating Systems
– Implement large portions of operating system

• Compilers
– Write compiler for simple language

• Networking
– Implement and simulate network protocols
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Course Perspective ( Cont .)

Our Course is Programmer-Centric
• Purpose is to show how by k nowing more about the unde rlying

system, one can be more effective a s a programmer
• Enable you to

– Write programs that are more reliable and efficent
– Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
• Not just a course for ded icated hackers

– We bring out the hidden hacker in everyone

• Cover material in this course that you won’t see elsewhere


