
Introduction to
Computer Systems

Topics:
• Theme
• Five great realities of computer systems
• How this fits within CS curriculum

CS 213 F’00class01a.ppt

15-213
“The Class That Gives CMU Its Zip!”

Randal E. Bryant
August 29, 2000

CS 213 F ‘00 –2–class01a.ppt

Course Theme

Abstraction is good, but don’t forget reality!
Courses to date emphasize abstraction

• Abstract data types
• Asymptotic analysi s

These abstractions have limits
• Especially in the presence of bugs
• Need to understand unde rlying implementation s

Useful outcomes
• Become more effectiv e programmers

– Able to find and eliminate bugs efficiently
– Able to tune program performance

• Prepare for later “syste ms” classes
– Compilers, Operating Systems, Networks, Computer Architecture

CS 213 F ‘00 –3–class01a.ppt

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples
• Is x2 ≥ 0?

– Float’s: Yes!

– Int’s:
» 65535 * 65535 --> -131071 (On most machines)
» 65535L * 65535 --> 4292836225 (On Alpha)

• Is (x + y) + z = x + (y + z)?
– Unsigned & Signed Int’s: Yes!
– Float’s:

» (1e10 + -1e10) + 3.14 --> 3.14

» 1e10 + (-1e10 + 3.14) --> 0.0

CS 213 F ‘00 –4–class01a.ppt

Computer Arithmetic

Does not generate random values
• Arithmetic operations ha ve important mathema tical properties

Cannot assume “usual” properties
• Due to finiteness of rep resentations
• Integer operations sa tisfy “ring” properties (usually)

– Commutativity, associativity, distributivity
• Floating point operation s satisfy “ordering” properties

– Monotonicity, values of signs

Observation
• Need to understand which abstractions apply in which contexts
• Important issues for c ompiler writers and serious application

programmers

CS 213 F ‘00 –5–class01a.ppt

Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in assembly
• Compilers are much be tter & patient at this than you are

Understanding assembly key to machi ne-level
execution model
• Behavior of programs in p resence of bugs

– High-level language model breaks down

• Tuning program performanc e
– Understanding sources of program inefficiency

• Implementing sys tem software
– Compiler has machine code as target
– Operating systems must manage process state

CS 213 F ‘00 –6–class01a.ppt

Great Reality #3

Memory Matters

Memory is not unbounded
• It must be allocate d and managed
• Many applications are memory dominated

Memory referencing bugs especiall y pernicious
• Effects are distant in both time and space

Memory performance is not uniform
• Cache and virtual me mory effects can grea tly affect program

performance
• Adapting program to charac teristics of memory s ystem can lead to

major speed improve ments

CS 213 F ‘00 –7–class01a.ppt

Memory Referencing Bug Example

main ()
{
 long int a[2];
 double d = 3.14;
 a[2] = 1073741824; /* Out of bounds reference */
 printf("d = %.15g\n", d);
 exit(0);
}

main ()
{
 long int a[2];
 double d = 3.14;
 a[2] = 1073741824; /* Out of bounds reference */
 printf("d = %.15g\n", d);
 exit(0);
}

Alph a MIPS Sun

-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14

CS 213 F ‘00 –8–class01a.ppt

Memory Referencing Errors

C and C++ do not provide any memory protection
• Out of bounds array referenc es
• Invalid pointer valu es
• Abuses of malloc /free

Can lead to nasty bugs
• Whether or not bug has a ny effect depends o n system and comp iler
• Action at a distance

– Corrupted object logically unrelated to one being accessed
– Effect of bug may be first observed long after it is generated

How can I deal with this?
• Program in Java, Lis p, or ML
• Understand what possible interactions may oc cur
• Use or develop tools to detect referencing errors

– E.g., Purify

CS 213 F ‘00 –9–class01a.ppt

Memory Performance Example

Implementations of Matrix Multiplication
• Multiple ways to nest loop s

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

/* jik */

for (j=0; j<n; j++) {

 for (i=0; i<n; i++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum

 }

}

/* jik */

for (j=0; j<n; j++) {

 for (i=0; i<n; i++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum

 }

}

CS 213 F ‘00 –10–class01a.ppt

0

2 0

4 0

6 0

8 0

100

120

140

160

matrix siz e (n)

ijk

ikj

jik

jki

kij

kji

Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

CS 213 F ‘00 –11–class01a.ppt

Blocked matmult perf (Alpha 21164)

0

2 0

4 0

6 0

8 0

100

120

140

160

5 0 7 5 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix si ze (n)

bijk
bikj

ijk

ikj

CS 213 F ‘00 –12–class01a.ppt

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!
• Easily see 10:1 performance range depe nding on how code written
• Must optimize at multip le levels: algorithm, data representations,

procedures, and loops

Must understand system to optimize performance
• How programs compiled an d executed
• How to measure program perform ance and identify bo ttlenecks
• How to improve performance without destroying code mo dularity

and generality

CS 213 F ‘00 –13–class01a.ppt

Great Reality #5

Computers do more than execute programs

They need to get data in and out
• I/O system critical to program reliability and performance

They communicate with each other ov er networks
• Many system-level issues arise in pres ence of network

– Concurrent operations by autonomous processes
– Coping with unreliable media

– Cross platform compatibility
– Complex performance issues

CS 213 F ‘00 –14–class01a.ppt

Role within Curriculum

Transition from Abstract to
Concrete!
• From: high-level lang uage

model
• To: underlying implem entation

CS 211
Fundamen tal

Structures

CS 213
Systems

CS 412
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

Machine C ode
Optimizatio n

Data Structu res
Applicatio ns
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 347
Architectu re

ECE 349
Embedded
Systems

Exec. Mod el
Memory Syst em

CS 213 F ‘00 –15–class01a.ppt

Course Perspective

Most Systems Courses are Builder-Centric
• Computer Architecture

– Design pipelined processor in Verilog

• Operating Systems
– Implement large portions of operating system

• Compilers
– Write compiler for simple language

• Networking
– Implement and simulate network protocols

CS 213 F ‘00 –16–class01a.ppt

Course Perspective (Cont .)

Our Course is Programmer-Centric
• Purpose is to show how by k nowing more about the unde rlying

system, one can be more effective a s a programmer
• Enable you to

– Write programs that are more reliable and efficent
– Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
• Not just a course for ded icated hackers

– We bring out the hidden hacker in everyone

• Cover material in this course that you won’t see elsewhere

