
Bits and Bytes
Aug. 31, 2000

Topics
• Why bits?
• Representing information as bits

– Binary/Hexadecimal
– Byte representations

» numbers
» characters and strings
» Instructions

• Bit-level manipulatio ns
– Boolean algebra
– Expressing in C

CS 213 F’00class02.ppt

15-213
“The Class That Gives CMU Its Zip!”

CS 213 F’00– 2 –class02.ppt

Why Don’t Computers Use Base 10?
Base 10 Number Representation

• That’s why fingers are k nown as “digits”
• Natural representation for fin ancial transactions

– Floating point number c annot exactly repres ent $1.20
• Even carries through in scientific notation

– 1.5213 X 104

Implementing Electronically
• Hard to store

– ENIAC (First electronic compu ter) used 10 vacuum tubes / digit
• Hard to transmit

– Need high precision to encode 10 signal levels on single wire
• Messy to implement d igital logic functions

– Addition, multiplication , etc.

CS 213 F’00– 3 –class02.ppt

Binary Representations
Base 2 Number Representation

• Represent 15213 10 as 111011011011012

• Represent 1.20 10 as 1.0011001100110011[0011]…2

• Represent 1.5213 X 104 as 1.11011011011012 X 213

Electronic Implementation
• Easy to store with bistable elements
• Reliably transmitted o n noisy and inaccu rate wires

• Straightforward implementation of arithmetic functions

0.0V

0.5V

2.8V

3.3V

0 1 0

CS 213 F’00– 4 –class02.ppt

Byte-Oriented Memory Organization
Programs Refer to Virtual Addresses

• Conceptually very la rge array of bytes
• Actually implemente d with hierarchy of different m emory types

– SRAM, DRAM, disk
– Only allocate for regions actually used by program

• In Unix and Windows NT, a ddress space private to particular
“process”
– Program being execute d
– Program can clobber its own data, but not that of othe rs

Compiler + Run-Time System Control Allocation
• Where different program obj ects should be stored
• Multiple mechanisms : static, stack, and heap
• In any case, al l allocation within singl e virtual address spa ce

CS 213 F’00– 5 –class02.ppt

Encoding Byte Values
Byte = 8 bits

• Binary 000000002 to 111111112

• Decimal: 010 to 25510

• Hexadecimal 0016 to FF16

– Base 16 number repres entation
– Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
– Write FA1D37B 16 in C as 0xFA1D37B

» Or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

CS 213 F’00– 6 –class02.ppt

Machine Words
Machine Has “Word Size”

• Nominal size of inte ger-valued data
– Including addresse s

• Most current machines a re 32 bits (4 bytes)
– Limits addresses to 4GB
– Becoming too small for memory-intensive a pplications

• High-end systems a re 64 bits (8 bytes)
– Potentially address ≈ 1.8 X 1019 bytes

• Machines support multipl e data formats
– Fractions or multiples of word size
– Always integral number of bytes

CS 213 F’00– 7 –class02.ppt

Word-Oriented Memory Organization

Addresses Specify Byte
Locations
• Address of first byte in word
• Addresses of succe ssive words

differ by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit
Words

Bytes Addr.

0012

0013

0014

0015

64-bit
Words

Addr
=

0000

Addr
=

0008

Addr
=

0000

Addr
=

0004

Addr
=

0008

Addr
=

0012

CS 213 F’00– 8 –class02.ppt

Data Representations
Sizes of C Objects (in Bytes)

C Data Type Compaq Alpha Typical 32-bit Intel IA32
int 4 4 4
long int 8 4 4
char 1 1 1
short 2 2 2
float 4 4 4
double 8 8 8
long double 8 8 10/12
char * 8 4 4

» Or any other pointer

CS 213 F’00– 9 –class02.ppt

Byte Ordering
Issue

• How should bytes within mul ti-byte word be ordered in me mory

Conventions
• Alphas, PC’s are “Little Endian ” machines

– Least significant b yte has lowest address
• Sun’s, Mac’s are “Big Endian ” machines

– Least significant b yte has highest add ress

Example
• Variable x has 4-byte represen tation 0x01234567
• Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

CS 213 F’00– 10 –class02.ppt

Examining Data Representations
Code to Print Byte Representation of Data

• Casting pointer to unsigned char * creates byte
array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
 int i;
 for (i = 0; i < len; i++)
 printf("0x%p\t0x%.2x\n",
 start+i, start[i]);
 printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

CS 213 F’00– 11 –class02.ppt

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result:

int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00

CS 213 F’00– 12 –class02.ppt

Representing Integers
int A = 15213;

int B = -15213;

long int C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1 101

Hex: 3 B 6 D

6D

3B

00

00

Alpha A

3B

6D

00

00

Sun A

93

C4

FF

FF

Alpha B

C4

93

FF

FF

Sun B

00

00

00

00

6D

3B

00

00

Alpha C

3B

6D

00

00

Sun C

Two’s complement representation
(Covered next lecture)

CS 213 F’00– 13 –class02.ppt

Representing Pointers
int B = -15213;

int *P = &B;

Alpha Address

Hex: 1 F F F F F C A 0

Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000

01

00

00

00

A0

FC

FF

FF

Alpha P

FB

2C

EF

FF

Sun P

Sun Address

Hex: E F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & mac hines assign differe nt locations to objects

CS 213 F’00– 14 –class02.ppt

Representing Floats

Float F = 15213.0;

IEEE Single Precision Flo ating Point Representation

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

Not same as intege r representation, but cons istent across machi nes

00

B4

6D

46

Alpha F

B4

00

46

6D

Sun F

CS 213 F’00– 15 –class02.ppt

char S[6] = "15213";

Representing Strings
Strings in C

• Represented by array o f characters
• Each character enco ded in ASCII format

– Standard 7-bit encoding of character set
– Other encodings exist, but uncommon
– Character “0” has code 0x30

» Digit i has code 0x30+i
• String should be null-term inated

– Final character = 0

Compatibility
• Byte ordering not an iss ue

– Data are single byte quantities
• Text files generall y platform independent

– Except for different conv entions of line
termination character!

Alpha S Sun S

32

31

31

35

33

00

32

31

31

35

33

00

CS 213 F’00– 16 –class02.ppt

Machine-Level Code Representation
Encode Program as Sequence of I nstructions

• Each simple operati on
– Arithmetic operation
– Read or write memory
– Conditional branch

• Instructions encoded as bytes
– Alpha’s, Sun’s, Mac’s u se 4 byte instructions

» Reduced Instruction Set Computer (RISC)
– PC’s use variable le ngth instructions

» Complex Instruction Set Computer (CISC)
• Different instruction types and encodings for diffe rent machines

– Most code not binary com patible

Programs are Byte Sequences Too!

CS 213 F’00– 17 –class02.ppt

Representing Instructions

int sum(int x, int y)

{

 return x+y;

}

Different machines us e totally different instruc tions and encodings

00

00

30

42

Alpha sum

01

80

FA

6B

E0

08

81

C3

Sun sum

90

02

00

09

• For this example, Alp ha & Sun
use two 4-byte instructio ns
– Use differing numbers of

instructions in other ca ses
• PC uses 7 instructions with

lengths 1, 2, and 3 bytes
– Same for NT and for Linux
– NT / Linux not binary

compatible

E5

8B

55

89

PC sum

45

0C

03

45

08

89

EC

5D

C3

CS 213 F’00– 18 –class02.ppt

Boolean Algebra
Developed by George Boole in 19th Century

• Algebraic representation of logic
– Encode “True” as 1 and “False” as 0

And
• A&B = 1 when both A=1 and B=1

& 0 1
0 0 0
1 0 1

~
0 1
1 0

Not
• ~A = 1 when A=0

Or
• A|B = 1 when either A=1 or B=1

| 0 1
0 0 1
1 1 1

^ 0 1
0 0 1
1 1 0

Exclusive-Or (Xor)
• A^B = 1 when either A=1 or B=1 ,

but not both

CS 213 F’00– 19 –class02.ppt

A

~A

~B

B

Connection when
 A&~B | ~A&B
 = A^B

Application of Boolean Algebra
Applied to Digital Systems by Claude Shannon

• 1937 MIT Master’s Thesi s
• Reason about networks of relay switches

– Encode closed switch as 1, open switch as 0

CS 213 F’00– 20 –class02.ppt

Properties of & and | Operations
Integer Arithmetic

• 〈Z, +, *, –, 0, 1〉 forms a “ring”

• Addition is “sum” operation
• Multiplication is “produc t” operation
• – is additive inv erse
• 0 is identity for sum
• 1 is identity for produc t

Boolean Algebra
• 〈{0,1}, |, &, ~, 0, 1〉 forms a “Boolean algebra”

• Or is “sum” operation
• And is “product” ope ration
• ~ is “compleme nt” operation (not additi ve inverse)
• 0 is identity for sum
• 1 is identity for produc t

CS 213 F’00– 21 –class02.ppt

Properties of Rings & Boolean Algebras
Boolean Algebra Integer Ring

• Commutativity
A | B = B | A A + B = B + A
A & B = B & A A * B = B * A

• Associativity
(A | B) | C = A | (B | C) (A + B) + C = A + (B + C)
(A & B) & C = A & (B & C) (A * B) * C = A * (B * C)

• Product distributes over s um
A & (B | C) = (A & B) | (A & C) A * (B + C) = A * B + B * C

• Sum and product identiti es
A | 0 = A A + 0 = A
A & 1 = A A * 1 = A

• Zero is product annihil ator
A & 0 = 0 A * 0 = 0

• Cancellation of nega tion
~ (~ A) = A – (– A) = A

CS 213 F’00– 22 –class02.ppt

Ring ≠ Boolean Algebra
Boolean Algebra Integer Ring
• Boolean: Sum distributes ove r product

A | (B & C) = (A | B) & (A | C) A + (B * C) ≠ (A + B) * (B + C)
• Boolean: Idempotency

A | A = A A + A ≠ A
– “A is true” or “A is true ” = “A is true”

A & A = A A * A ≠ A
• Boolean: Absorption

A | (A & B) = A A + (A * B) ≠ A
– “A is true” or “A is true and B is true” = “A i s true”

A & (A | B) = A A * (A + B) ≠ A
• Boolean: Laws of Complements

A | ~A = 1 A + –A ≠ 1
– “A is true” or “A is fa lse”

• Ring: Every element ha s additive inverse
A | ~A ≠ 0 A + –A = 0

CS 213 F’00– 23 –class02.ppt

Properties of & and ^
Boolean Ring

• 〈{0,1}, ^, &, Ι, 0, 1〉
• Identical to integers mod 2
• Ι is identity operatio n: Ι (A) = A

A ^ A = 0

Property Boolean Ring
• Commutative sum A ^ B = B ^ A
• Commutative product A & B = B & A
• Associative sum (A ^ B) ^ C = A ^ (B ^ C)
• Associative product (A & B) & C = A & (B & C)
• Prod. over sum A & (B ^ C) = (A & B) ^ (B & C)
• 0 is sum identity A ^ 0 = A
• 1 is prod. identity A & 1 = A
• 0 is product annihila tor A & 0 = 0
• Additive inverse A ^ A = 0

CS 213 F’00– 24 –class02.ppt

Relations Between Operations
DeMorgan’s Laws

• Express & in terms of |, and vice-versa
A & B = ~(~A | ~B)

» A and B are true if and onl y if neither A nor B is false
A | B = ~(~A & ~B)

» A or B are true if and only i f A and B are not both false

Exclusive-Or using Inclus ive Or
A ^ B = (~A & B) | (A & ~B)

» Exactly one of A and B is true
A ^ B = (A | B) & ~(A & B)

» Either A is true, or B is true, b ut not both

CS 213 F’00– 25 –class02.ppt

General Boolean Algebras
Operate on Bit Vectors

• Operations applied bitwise

Representation of Sets
• Width w bit vector represents s ubsets of {0, …, w–1}
• aj = 1 if j ∈ A

–01101001 { 0, 3, 5, 6 }
–01010101 { 0, 2, 4, 6 }

• & Intersection 01000001 { 0, 6 }
• | Union 01111101 { 0, 2, 3, 4, 5, 6 }
• ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
• ~ Complement 10101010 { 1, 3, 5, 7 }

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010

CS 213 F’00– 26 –class02.ppt

Bit-Level Operations in C
Operations &, |, ~, ^ Availa ble in C

• Apply to any “integra l” data type
–long, int, short, char

• View arguments as bit v ectors
• Arguments applied bit-wise

Examples (Char data type)
• ~0x41 --> 0xBE

~010000012 --> 101111102
• ~0x00 --> 0xFF

~000000002 --> 111111112

• 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012
• 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

CS 213 F’00– 27 –class02.ppt

Contrast: Logic Operations in C
Contrast to Logical Operators

• &&, ||, !
– View 0 as “False”
– Anything nonzero as “ True”
– Always return 0 or 1

Examples (char data type)
• !0x41 --> 0x00

• !0x00 --> 0x01

• !!0x41 --> 0x01

• 0x69 && 0x55 --> 0x01

• 0x69 || 0x55 --> 0x01

CS 213 F’00– 28 –class02.ppt

Shift Operations
Left Shift: x << y

• Shift bit-vector x left y positions
– Throw away extra bits on le ft
– Fill with 0’s on right

Right Shift: x >> y
• Shift bit-vector x right y positions

– Throw away extra bits on righ t
• Logical shift

– Fill with 0’s on left
• Arithmetic shift

– Replicate most sign ificant bit on
right

– Useful with two’s compleme nt
integer representation

01100010Argument x

00010 000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010 000<< 3

00101000Log. >> 2

11101000Arith. >> 2

CS 213 F’00– 29 –class02.ppt

Cool Stuff with Xor

void funny(int *x, int *y)

{

 *x = *x ^ *y; /* #1 */

 *y = *x ^ *y; /* #2 */

 *x = *x ^ *y; /* #3 */

}

Step *x *y

Begin A B
1 A^B B
2 A^B (A^B)^B = A^(B^B) =

A^0 = A
3 (A^B)^A = (B^A)^A =

B^(A^A) = B^0 = B
A

End B A

• Bitwise Xor is form of
addition

• With extra property that
every value is i ts own
additive inverse
 A ^ A = 0

