
Exceptional Control Flow
Oct 24, 2000

Topics
• Exceptions
• Process context switch es
• Signals
• Non-local jumps

class17. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’00– 2 –class17. ppt

Control flow

<startup>
inst 1
inst 2
inst 3

…
inst n

<shutdown>

From startup to shutdown, a CPU simply reads and
executes (interprets) a sequence of instructio ns, one
at a time.

This sequence is the system’ s physical control flow (or
flow of control).

Physical control flow

Time

CS 213 F’00– 3 –class17. ppt

Altering the control flow
So far in class, we’v e discussed two mechanisms for

changing the control flow:
• jumps and branches
• call and return using the stack disciplin e.
• both react to changes in program state.

These are insufficient for a use ful system
• difficult for the CPU to react to changes in system state.

– data arrives from a disk or a network adapter.
– instruction divides by zero

– user hitting ctl-c at the keyboard
– system timer expires

Real systems need mechanisms for “exceptional
control flow”

CS 213 F’00– 4 –class17. ppt

Exceptional control flow

Mechanisms for exceptional control flow exists at all
levels of a computer system.

Low level mechanism:
• exceptions

– change in control flow in response to a system event (i.e., change in
system state)

• implemented as a combination of both ha rdware and OS software

Higher level mechanisms:
• process context switc h
• signals
• nonlocal jumps (setjmp /longjmp)
• implemented by e ither:

– OS software (context switch and signals).
– C language runtime library: nonlocal jumps.

CS 213 F’00– 5 –class17. ppt

System context for exceptions

Local/IO BusLocal/IO Bus

MemoryMemory Network
adapter

Network
adapter

IDE disk
controller

IDE disk
controller

Video
adapter

Video
adapter

DisplayDisplay NetworkNetwork

ProcessorProcessor Interrupt
controller

Interrupt
controller

SCSI
controller

SCSI
controller

SCSI busSCSI bus

Serial port
controller

Serial port
controller

Parallel port
controller

Parallel port
controller

Keyboard
controller

Keyboard
controller

KeyboardKeyboard MouseMouse PrinterPrinterModemModem

disk

disk cdrom

CS 213 F’00– 6 –class17. ppt

Exceptions

An exception is a transfer of control to the OS in response
to some event (i.e. change in processor state)

User Process OS

exception
exception processing
by exception handler

exception
return (optional)

event current
next

CS 213 F’00– 7 –class17. ppt

Interrupt vectors

1. Each type of ev ent has
a unique exceptio n number k

2. Jump table (inte rrupt vector)
entry k points to a fun ction
(exception handler).

3. Handler k is cal led each time
exception k occu rs.

interrupt
vector

0
1
2 ...

n-1

code for
exception handler 0

code for
exception handler 0

code for
exception handler 1

code for
exception handler 1

code for
exception handler 2

code for
exception handler 2

code for
exception handler n-1

code for
exception handler n-1

...

Exception
numbers

CS 213 F’00– 8 –class17. ppt

Asynchronous exceptions (interrupts)
Caused by events (changes in state) e xternal to the

processor
• Indicated by settin g the processor’s interrupt pin
• handler returns to “nex t” instruction.

Examples:
• I/O interrupts

– hitting ctl-c at the keyboard
– arrival of a packet from a network

– arrival of a data sector from a disk
• Hard reset interrupt

– hitting the reset button

• Soft reset interrupt
– hitting ctl-alt-delete on a PC

CS 213 F’00– 9 –class17. ppt

Synchronous exceptions
Caused by events (changes in state) that oc cur as a

result of executing an instruction:
• Traps

– intentional
– returns control to “next” instruction

– Examples: system calls, breakpoint traps
• Faults

– unintentional but possibly recoverable

– either re-executes faulting (“current”) instruction or aborts.
– Examples: page faults (recoverable), protection faults (unrecoverable).

• Aborts
– unintentional and unrecoverable
– aborts current program
– Examples: parity error, machine check.

CS 213 F’00– 10 –class17. ppt

Processes
Def: A process is an instance of a running prog ram.

• One of the most profound id eas in computer sci ence.

Process provides each program w ith two key
abstractions:
• Logical control flow

– gives each program the illusion that it has exclusive use of the CPU.
• Private address spa ce

– gives each program the illusion that has exclusive use of main memory.

CS 213 F’00– 11 –class17. ppt

Logical control flows

Time

Process A Process B Process C

Each process has its own logical control flow

CS 213 F’00– 12 –class17. ppt

Concurrent processes
Two processes run concurrently (are concurrent) if

their flows overlap in time.
Otherwise, they are sequential.

Examples:
• Concurrent: A & B, A&C
• Sequential: B & C

Time

Process A Process B Process C

CS 213 F’00– 13 –class17. ppt

User view of concurrent processes
Control flows for concurrent processes are ph ysically

disjoint in time.
However, we can think of concurre nt processes are

running in parallel with ea ch other.

Time

Process A Process B Process C

CS 213 F’00– 14 –class17. ppt

Context switching
Processes are managed by a shared chunk of OS code

called the kernel
• Important: the kernel is not a separate proce ss, but rather runs as

part of some user proce ss

Control flow passes from one process to a nother via a
context switch.

Process A
code

Process B
code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

CS 213 F’00– 15 –class17. ppt

Private address spaces
Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused
0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

CS 213 F’00– 16 –class17. ppt

fork : Creating new processes

int fork(void)
• creates a new proces s (child process) that is identical to the c alling

process (parent proces s)
• returns 0 to the child p rocess
• returns child’s pid to the parent process

if (fork() == 0) {
 printf (“hello from child \n”);
}
else {
 printf (“hello from paren t\n”);
}

Fork is interesting
(and often confusing)
because it is ca lled
once but returns twice

CS 213 F’00– 17 –class17. ppt

exit : Destroying processes

void exit(int status)
• exits a process
• atexit () registers functions to be executed upon ex it

void cleanup(void) {
 printf (“cleaning up\n”);
}

main() {
 atexit (cleanup);
 if (fork() == 0) {
 printf (“hello from ch ild\n”);
 }
 else {
 printf (“hello from pa rent\n”);
 }
 exit();
}

CS 213 F’00– 18 –class17. ppt

wait : Synchronizing with children
int wait(int *child_status)

• suspends current proce ss until one of its c hildren terminates
• return value = the pid of the child process that terminated
• if child_status != NULL , then the object it points to will be set to

a status indicating why the child process terminated

main() {
 int child_status;

 if (fork() == 0) {
 printf (“hello from ch ild\n”);
 }
 else {
 printf (“hello from pa rent\n”);
 wait(&child_stat us);
 printf (“child has ter minated\n”);
 }
 exit();
}

CS 213 F’00– 19 –class17. ppt

exec : Running new programs
int execl(char *path, char *arg0, char *arg1, …, 0)

• loads and runs exe cutable at path with args arg0 , arg1 , …
– path is the complete path of an executable
– arg0 becomes the name of the process

» typically arg0 is either identical to path , or else it contains only the
executable filename from path

– “real” arguments to the executable start with arg1 , etc.

– list of args is terminated by a (char *)0 argument

• returns -1 if error, otherwise doe sn’t return!

main() {
 if (fork() == 0) {
 execl (“/usr/bin/ cp”,“ cp”,“ foo”,“bar”,0);
 }
 wait(NULL);
 printf (“copy completed\n ”);
 exit();
}

CS 213 F’00– 20 –class17. ppt

Linux process hierarchy

shell

childchildchild

grandchildgrandchild

init [1]

[0]

Daemon
e.g. snmp

CS 213 F’00– 21 –class17. ppt

Linux Startup : Step 1

init [1]

[0] process 0: handcrafted kernel process

process 1: user mode process
fork() and exec(/ sbin /init)

1. Pushing reset button loads the PC with the address of a small
 bootstrap program.
2. Bootstrap program loads the boot block (disk block 0).
3. Boot block program lo ads kernel (e.g., / vmunix)
4. Boot block program pa sses control to kerne l.
5. Kernel handcrafts the data structures for proces s 0.

CS 213 F’00– 22 –class17. ppt

Linux Startup: Step 2

init [1]

[0]

forks a getty (get tty or get terminal)
for the console

gettyDaemons
e.g. ftpd , httpd

/etc/ inittab init forks new processes as per
the /etc/ inittab file

CS 213 F’00– 23 –class17. ppt

Linux Startup : Step 3

init [1]

[0]

getty execs a login programlogin

CS 213 F’00– 24 –class17. ppt

Linux Startup : Step 4

init [1]

[0]

login gets user’s login and password
if OK, it execs a shell
if not OK, it execs another getty

tcsh

CS 213 F’00– 25 –class17. ppt

Example: Loading and running
programs from a shell

/* read command line until EOF */
while (read(stdin , buffer, numchars)) {
 <parse command line>
 if (<command line contains ‘ &’>)
 background_process = TRUE;
 else background_process = FALSE ;

 /* for commands not in the shel l command language */
 if (fork() == 0) {
 execl (cmd , cmd, 0)
 }
 if (!background_process)
 retpid = wait(&status);
}

CS 213 F’00– 26 –class17. ppt

Example: Concurrent network server

void main() {
 master_ sockfd = sl_passivesock (port); /* create master socket */
 while (TRUE) {
 worker_ sockfd = sl_acceptsock (master_ sockfd); /* await request */
 switch (fork()) {
 case 0: /* child closes its master and manipulates worker */
 close(master_ sockfd);
 /* code to read and write to/from wo rker socket goes here */
 exit(0);

 default: /* parent closes its copy of worker an d repeats */
 close(worker_ sockfd);

 case -1: /* error */
 fprintf ("fork error\n");
 exit(0);
 }
 }
}

CS 213 F’00– 27 –class17. ppt

Signals

Signals
• signals are software e vents generated by OS a nd processes

– an OS abstraction for exceptions and interrupts

• signals are sent from the kernel or process es to other processes .
• different signals are identified by small integer ID’s

– e.g., SIGINT: sent to foreground process when user hits ctl-c

– e.g., SIGALRM: sent to process when a software timer goes off
• the only information i n a signal is its ID a nd the fact that it arrive d.

• Signal handlers
• programs can install signal handlers for diffe rent types of signals

– handlers are asynchronously invoked when their signals arrive.

• See handout for more details.

CS 213 F’00– 28 –class17. ppt

A program that reacts to
externally generated events (ctrl-c)
#include < stdlib .h>
#include < stdio .h>
#include <signal.h>

static void handler(int sig) {
 printf (”You think hitting ctrl-c will stop the bomb?\n");
 sleep(2);
 printf ("Well...");
 fflush (stdout);
 sleep(1);
 printf ("OK\n");
 exit(0);
}

main() {
 signal(SIGINT, handler); /* inst alls ctl-c handler */
 while(1) {
 }
}

CS 213 F’00– 29 –class17. ppt

A program that reacts to
internally generated events

#include < stdio .h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {
 printf ("BEEP\n");
 fflush (stdout);

 if (++beeps < 5)
 alarm(1);
 else {
 printf ("BOOM!\n");
 exit(0);
 }
}

main() {
 signal(SIGALRM, handler);
 alarm(1); /* send SIGALRM in
 1 second */

 while (1) {
 /* handler returns here */
 }
}

bass> a.out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>

CS 213 F’00– 30 –class17. ppt

Nonlocal jumps: setjmp ()/longjmp ()

Powerful (but dangerous) user-level mecha nism for
transferring control to an arbitrary location.
• controlled to way to break the procedure stack discipline
• useful for error recovery

int setjmp (jmp_ buf j)
• must be called be fore longjmp
• identifies a return site for a subsequent longjmp .

setjmp implementation:
• remember where you are by storing the current regis ter context,

stack pointer, and PC value in jmp_ buf.
• return 0

CS 213 F’00– 31 –class17. ppt

setjmp/longjmp (cont)

void longjmp (jmp _buf j, int i)
• meaning:

– return from the setjmp remembered by jump buffer j again...

– …this time returning i
• called after setjmp
• a function that neve r returns!

longjmp Implementation:
• restore register context from jump buffer j
• set %eax (the return value) to i
• jump to the location indicated by the PC store d in jump buf j.

CS 213 F’00– 32 –class17. ppt

setjmp/longjmp example

#include < setjmp .h>
jmp_buf buf ;

main() {
 if (setjmp(buf) != 0) {
 printf (“back in main due to an error\n ”);
 else
 printf(“first time through\n”);
 p1(); /* p1 calls p2, which cal ls p3 */
}
...
p3() {
 <error checking code>
 if (error)
 longjmp (buf , 1)
}

CS 213 F’00– 33 –class17. ppt

Putting it all together: A program
that restarts itself when ctrl-c’d

#include < stdio .h>
#include <signal.h>
#include < setjmp .h>

sigjmp _buf buf;

void handler(int sig) {
 siglongjmp (buf , 1);
}

main() {
 signal(SIGINT, handler);

 if (! sigsetjmp (buf, 1))
 printf ("starting\n");
 else
 printf ("restarting\n");

while(1) {
 sleep(1);
 printf ("processing...\n");
 }
}

bass> a.out
starting
processing...
processing...
restarting
processing...
processing...
processing...
restarting
processing...
restarting
processing...
processing...

Ctrl-c

Ctrl-c

Ctrl-c

