15-213

"The course that gives CMU its Zjp!”

Code Optimization:
Machine Independent Optimizations
Feb 12, 200

Topics

= Machine-Independent Optimizations
= Machine-Dependent Opts

= Understanding Processor Operation
= Branches and Branch Prediction

= Tuning

class10.ppt

Optimizing Compilers

Provide efficient mapping of program to machine
= register allocation

= code selection and ordering

= eliminating minor inefficiencies

Don't (usually) improve asymptotic efficiency
= up to programmer to select best overall algorithm

= big-O savings are (often) more important than constant
factors
e but constant factors also matter

Have difficulty overcoming “optimization blockers"

= potential memory aliasing
= potential procedure side-effects

-3- 15-213, S04

Page 1

Great Reality #4

There's more to performance than asymptotic
complexity

Constant factors matter too!

= Easily see 10:1 performance range depending on how code
is written

= Must optimize at multiple levels:
e algorithm, data representations, procedures, and loops

Must understand system to optimize performance

= How programs are compiled and executed
= How to measure program performance and identify
bottlenecks

= How to improve performance without destroying code
modularity and generality

15-213, S04

Limitations of Optimizing Compilers

Operate under fundamental constraint

= Must not cause any change in program behavior under any
possible condition

=« Often prevents it from makina opbtimizations when would
The Bottom Line:
2r
When in doubt, do nothing les
i.e., The compiler must be conservative. jest

Most analysis is performed only within procedures
= whole-program analysis is too expensive in most cases

Most analysis is based only on static information
= compiler has difficulty anticipating run-time inputs

-4 - 15-213, S04

Machine-Independent Optimizations

= Optimizations that should be done regardless of
processor / compiler

Code Motion

= Reduce frequency with which computation performed
o If it will always produce same result
o Especially moving code out of loop

for (i=0;i<n;i++) {
for (i=0;i<n;i++) int ni =n*;
for (= 0;j <n; j++) for (j=0;j < n; j++)
an*i +j] = b[j]; a[ni +j] = bl
}

15-213, 504

Strength Reduction®

= Replace costly operation with simpler one
= Shift, add instead of multiply or divide
16*x - X << 4
o Utility machine dependent
o Depends on cost of multiply or divide instruction
e On Pentium II or IIT, integer multiply only requires 4 CPU cycles

= Recognize sequence of products (induction var analysis)

int ni =0;

for (i=0;i < n; i++)
for (j=0;j<n;j++)

for (i=0;i<n;i++){
for (j=0;j<n;j++)

a[n*i + j] = b[j]; a[ni +j]=bf;
ni +=n;
}
_,. TAs a result of Induction Variable Elimination 15-213, 504

Page 2

Compiler-Generated Code Motion

= Most compilers do a good job with array code + simple

loop structures T (=0 1<m O
Code Generated by GCC int ni = n%;
int *p = a+ni;
for (i=0;i<n;it+) for (= 0;j < n; j++)
for (j=0;j < n;j++) *p++ = blj];
aln*i +j] = b]; 3
imull %ebx,%eax #i*n
movl 8(%ebp),%edi #a
leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4)
Inner Loop
.L40:
movl 12(%ebp),%edi #b
movl (%edi,%ecx,4),%eax # b+ (scaled by 4)
movl %eax,(%edx) # *p = b[j]
addl $4,%edx # p++ (scaled by 4)
incl %ecx #j++
jl .L40 # loop if j<n
6

Make Use of Registers

= Reading and writing registers much faster than
reading/writing memory

Limitation
= Limited number of registers

= Compiler cannot always determine whether variable
can be held in register

= Possibility of Aliasing
= See example later

15-213, S04

Machine-Independent Opts. (Cont.)

Share Common Subexpressions’
= Reuse portions of expressions

= Compilers often not very sophisticated in exploiting
arithmetic properties

/* Sum neighbors of i,j */

up = val[(i-1)*n +j];

down = val[(i+1)*n + j];

left = valli*n +j-1];

right = valli*n + j+1];

sum = up + down + left + right;

int inj =i*n +j;

up = valfinj - nJ;

down = valfinj + nJ;

left = vallinj - 1];

right = valfinj + 1J;

sum = up + down + left + right;

3 multiplies: i*n, (i-1)*n, (i+1)*n 1 multiply: i*n

tAKA: Common Subexpression Elimination (CSE)

-9- 15-213, 504

Measuring Performance

For many programs, cycles per element (CPE)
= Especially true of programs that work on lists/vectors
= Total time = fixed overhead + CPE * length-of-list

void vsumZ1(int n) void vsum2(int n)

{ {

int i; int i;

for (i = 0; i<n; i++)
c[i] = afi] + b[i];

for (i = 0; i<n; i+=2)
c[i] = afi] + b[i];
c[i+1] = a[i+1] + b[i+1];

+ vsum2 only works on even n.

+ vsum2 is an example of loop unrolling.

J11- 15-213, S04

Page 3

Measuring Performance: Time Scales

Absolute Time

= Typically use nanoseconds
¢ 109 seconds

= Time scale of computer instructions

Clock Cycles
= Most computers controlled by high frequency clock
sighal
= Typical Range
¢ 100 MHz
» 108 cycles per second
» Clock period = 10ns

e 2 GHz
» 2 X 10° cycles per second
» Clock period = 0.5ns

= Fish machines: 550 MHz (1.8 ns clock period)

C10- 15-213, 504

Cycles Per Element

= Convenient way to express performance of a program
that operates on vectors or lists

=length = n
« T = CPE*n + Overhead
1000
900
800 1 vsuml
700 | Slope = 4.0 /
600
" 4
9 45188 i vsumz2
S Slope = 3.5
& 300 / . _
200
100
0 . . .
0 50 100 150 200
i — Number Of Elements 15-213, 504

Vector ADT

length 012 length-1
data f—— [[[+ -]
Procedures

vec_ptr new_vec(int len)
o Create vector of specified length
int get_vec_element(vec_ptr v, int index, int *dest)
o Retrieve vector element, store at *dest
e Return O if out of bounds, 1 if successful
int *get_vec_start(vec_ptr v)
e Return pointer to start of vector data
int vec_length(v)(vec_ptr v)
e Return length of vector
= Similar to array implementations in Pascal, ML, Java
Lt E.g., always do bounds checking

15-213, 504

Optimization Example

void combinel(vec_ptr v, int *dest)
{ . .
int i;
*dest =0;
for (i = 0; i < vec_length(v); i++) {
int val;
get_vec_element(v, i, &val);
*dest +=val;
}
Procedure I

= Compute sum of all elements of integer vector
= Store result at destination location
= Vector data structure and operations defined via
abstract data type
Pentium II/IIT Perf: Clock Cycles / Element
.= 42.06 (Compiled -g) 31.25 (Compiled -02) s 504

Page 4

Optimization Example

void combinel(vec_ptr v, int *dest)
{ . .
int i
*dest =0;
for (i=0; i < vec_length(v); i++) {
int val;
get_vec_element(v, i, &val);
*dest +=val;
}
}
Procedure

= Compute sum of all elements of vector
« Store result at destination location

C14- 15-213, 504

Understanding Loop

void combinel-goto(vec_ptr v, int *dest)

{

int i=0;
int val;
*dest =0;
if (i >= vec_length(v))
goto done;
loop:
get_vec_element(v, i, &val);
*dest +=val;
i++;
if (i< vec_l engt h(v))
goto loop
done:

}

Inefficiency
= Procedure vec_length
= Even though result always the same

1 iteration

called every iteration

- 16 - 15-213, S04

Move vec_length Call Out of Loop

void combine2(vec_ptr v, int *dest)
{ . .
int i
int length = vec_length v);
*dest =0;
for(i=0;i< length ;i++) {
int val;
get_vec_element(v, i, &val);
*dest +=val;
}
}
Optimization

= Move call to vec_length out of inner loop
o Value does not change from one iteration to next
e Code motion

= CPE: 20.66 (Compiled -02)

e vec_length requires only constant time, but significant overhead

_17- 15-213, 504

Lower Case Conversion Performance

= Time quadruples when double string length
= Quadratic performance of lower

1000

“ 100 ~

el 10

<

o 1

) 0.1+

S .

S 0.01 -

% 0.001 ~

0.0001 -

O N 4 X 4 = X 4 = 4 X
n — — N < [ee] © N < [oe] (o]

String Length

15-213, S04

Page 5

Code Motion Example #2

Procedure to Convert String to Lower Case

void lower(char *s)
{
int i;
for (i = 0; i < strlen(s); i++)
if (s[i] >="A' && s[i] <='Z')
s[i] -= (A"- 'a);

= Extracted from 213 lab submissions, Fall, 1998

15-213, S04

Convert Loop To Goto Form

void lower(char *s)

{

int i=0;
if (i >= strlen(s))
goto done;
loop:
if (s[i] >="A" && s[i] <= 'Z')
sfi] -= (A"- "a);
i++;
if (i< strlen (s))
goto loop;
done:

}

=« strlen executed every iteration
= strlen linear in length of string
e Must scan string until finds ' \0 '
= Overall performance is quadratic
20-

15-213, S04

Improving Performance Lower Case Conversion Performance
= Time doubles when double string length

void lower(char *s)
{
int i; = Linear performance of lower2
int len =strlen (s);
for(i=0;i< len ; i++)
if (s[i] >="A" && s[i] <='Z')
s[i]-= (A"~ "a); M lower] M lower2

= Move call to strlen outside of loop

= Since result does not change from one iteration to
another

= Form of code motion

CPU Seconds

String Length

15-213, S04

15-213, 504

Optimization Blocker: Procedure Calls Optimization Blocker: Procedure Calls
Why doesn't the compiler move vec_len or

Why doesn't the compiler move vec_len or
strlen out of the inner loop? strlen out of the inner loop?
= Procedure may have side effects

Why doesn't compiler look at code for vec_len or :
strlen 2 e Can alter global state each time called
= Function may return diff value for same arguments

o Depends on other parts of global state
e Procedure lower could interact with strlen

= GCC has an extension for this:
e int square (int) __attribute__ ((const))

e Check out info.
Why doesn't compiler look at code for vec_len
strlen ?

or

15-213, S04

15-213, S04

Page 6

Optimization Blocker: Procedure Calls

Why doesn't the compiler move vec_len or
strlen out of the inner loop?
= Procedure may have side effects
= Function may return diff value for same arguments

Why doesn't compiler look at code for vec_len or
strlen ?

= Linker may overload with different version
o Unless declared static

= Interprocedural opt isn't used extensively due to cost
Warning:

= Compiler treats procedure call as a black box

= Weak optimizations in and around them

_25- 15-213, 504

Anything else?

Reduction in Strength

void combine3(vec_ptr v, int *dest)

{

int i
int length = vec_length(v);
int *data = get_vec_start(v)
*dest =0;
for (i = 0; i < length; i++) {
*dest += datali];

}

. Aside: Rational for Classes
Optimization
= Avoid procedure call to retrieve each vector element
¢ Get pointer fo start of array before loop
o Within loop just do pointer reference
¢ Not as clean in terms of data abstraction
= CPE: 6.00 (Compiled -02)
e Procedure calls are expensive!
¢ Bounds checking is expensive

_o7- 15-213, S04

Page 7

What next?

void combine2(vec_ptr v, int *dest)

{

int i;

int length = vec_length(v);

*dest =0;

for (i = 0; i < length; i++) {
int val,
get_vec_element(v, i, &val);
*dest +=val;

}

}

26 15-213, 504

Eliminate Unneeded Memory Refs

void combine4(vec_ptr v, int *dest)

{

int i

int length = vec_length(v);

int *data = get_vec_start(v);

int sum=0 ;

for (i = 0; i < length; i++)
sum + = datali];

*dest =sum

}

Optimization
= Don't need to store in destination until end
= Local variable sum held in register
= Avoids 1 memory read, 1 memory write per cycle
= CPE: 2.00 (Compiled -02)

e Memory references are expensive!

28 - 15-213, S04

Detecting Unneeded Memory Refs.

Combine3 Combine4

.L18: L24:
movl (%ecx,%edx,4),%eax

addl %eax,(%edi)

addl (%eax,%edx,4),%ecx

incl %edx incl %edx
cmpl %esi,%edx cmpl %esi,%edx
jl .L18 il .L24
Performance
= Combine3

o5 instructions in 6 clock cycles

e addl must read and write memory
= Combine4

¢4 instructions in 2 clock cycles

_29- 15-213, 504

Machine-Independent Opt. Summary

Code Motion/Loop Invariant Code Motion
= Compilers good if for simple loop/array structures
= Bad in presence of procedure calls and memory aliasing

Strength Reduction/Induction Var Elimination

= Shift, add instead of multiply or divide
o compilers are (generally) good at this
e Exact trade-offs machine-dependent

= Keep data in registers rather than memory
o compilers are not good at this, since concerned with aliasing

Share Common Subexpressions/CSE
= compilers have limited algebraic reasoning capabilities

_31- 15-213, S04

Page 8

Optimization Blocker: Memory Aliasing
Aliasing
= Two different memory references specify one location

Example
= Vi [3, 2, 17]
= combine3(v, get_vec_start(v)+2) -
= combine4(v, get_vec_start(v)+2) -

Observations

= Can easily happen in C
e Since allowed to do address arithmetic
e Direct access to storage structures

= Get in habit of introducing local variables
o Accumulating within loops

. Your way of telling compiler not to check for aliasing ... <0,

Previous Best Combining Code

void combine4(vec_ptr v, int *dest)

{

int i

int length = vec_length(v);

int *data = get_vec_start(v);

int sum =0;

for (i = 0; i < length; i++)
sum += datali];

*dest =sum;

Task
= Compute sum of all elements in vector
= Vector represented by C-style abstract data type
= Achieved CPE of 2.00

e Cycles per element

_32- 15-213, S04

General Forms of Combining

void abstract_combine4(vec_ptr v, data_t *dest)

{

int i;
int length = vec_length(v);
data_t *data = get_vec_start(v);
data_tt=IDENT;
for (i = 0; i < length; i++)

t =t OP datali];
*dest =t;

}

Data Types

= Use different
declarations for data_t

Operations

= Use different definitions
of OPand IDENT

= int «a+ /0
= float a* /1
" double 15-213, S04

Pointer Code

void combine4p(vec_ptr v, int *dest)

{

int length = vec_length(v);
int *data = get_vec_start(v);
int *dend = data+length;
int sum =0;
while (data < dend) {

sum += *data;

data++;

}

*dest =sum;

Optimization
= Use pointers rather than array references
= CPE: 3.00 (Compiled -02)
e Oops! We're not making progress here!

Warning. Some compilers do better job optimizing
array code

-35- 15-213, S04

Page 9

Machine Independent Opt. Results

Optimizations
= Reduce function calls and memory references within loop

Method Integer Floating Poin
+ * + *
Abstract -g 42.06 41.86 41.44 160.00
Abstract -O2 31.25 33.25 31.25 143.00
Move vec_length 20.66 21.25 21.15 135.00
data access 6.00 9.00 8.00 117.00
Accum. in temp 2.00 4.00 3.00 5.00
_/

Performance Anomaly
= Computing FP product of all elements exceptionally slow.
= Very large speedup when accumulate in temporary

= Caused by quirk of IA32 floating point
o Memory uses 64-bit format, register use 80
W Benchmark data caused overflow of 64 bits, but not 80

15-213, S04

Pointer vs. Array Code Inner Loops

Array Code
.L24: # Loop:
addl (Yeax,%edx,4),%ecx # sum += datali]
incl %edx #it+
cmpl %esi,%edx # i:length
jl .L24 #if < goto Loop

Pointer Code
.L30: # Loop:
addl (%eax),%ecx # sum += *data
addl $4,%eax # data ++
cmpl %edx,%eax # data:dend
jb .L30 # if < goto Loop

Performance
= Array Code: 4 instructions in 2 clock cycles
= Pointer Code: Almost same 4 instructions in 3 clock cycles

- 36 - 15-213, S04

Modern CPU Design

Instruction Control

Fetch

Control

Instruction
Decode

Operations

Instruction
Instrs. Cache

Register Prediction
Update QK2

Execution

r T T T
General Functional
Integer Units
v v v y y v
Operation Results adar| | Adar]
Data Data.
Data
Cache

15-213, 504

Instruction Control

Instruction Control
Address
Fetch

REENEDT Control

Instrs.
Register Instruction Cadie
B Decode

Unit Instruction

v
Grabs Instruction Bytes From Memory

Operations

= Based on current PC + predicted targets for predicted branches

» Hardware dynamically guesses whether branches taken/not taken and

(possibly) branch target

Translates Instructions Into Operations
= Primitive steps required to perform instruction
= Typical instruction requires 1-3 operations

Converts Register References Into Tags

= Abstract identifier linking destination of one operation with sources of later

operations

-39-

15-213, S04

Page 10

CPU Capabilities of Pentium IIT

Multiple Instructions Can Execute in Parallel

» 1 load

= 1store

= 2 integer (one may be branch)
= 1 FP Addition

= 1 FP Multiplication or Division

Some Instructions Take > 1 Cycle, but Can be Pipelined

= Instruction Latency Cycles/Issue
= Load / Store 3 1
= Integer Multiply 4 1
= Integer Divide 36 36
= Double/Single FP Multiply 5 2
= Double/Single FP Add 3 1
= Double/Single FP Divide 38 38
38 - 15-213, S04
Translation Example
Version of Combine4
= Integer data, multiply operation
L24: # Loop:
imull (Y%eax,%edx,4),%ecx # t *= datali]
incl %edx #i++
cmpl %esi,%edx # i:length
jl .L24 #if < goto Loop
Translation of First Iteration
.L24:
imull (%eax,%edx,4),%ecx load (%eax,%edx.0,4) > tl
imull t.1, %ecx.0 = %ecx.1
incl %edx incl %edx.0 =2 %edx.1
cmpl %esi,%edx cmpl %esi, %edx.1 = cc.l
jl .L24 jl-taken cc.1

~40-

15-213, S'04

Translation Example #1

> tl

|| imull (%eax,%edx,4),%ecx ||
=2 %ecx.1

load (%eax,%edx.0,4)
imull t.1, %ecx.0

= Split into two operations
e load reads from memory fo generate temporary result t.1
o Multiply operation just operates on registers
= Operands
o Registers %eax does hot change in loop. Values will be
retrieved from register file during decoding

o Register %ecx changes on every iteration. Uniquely identify
different versions as %ecx.0 , %ecx.1 , %ecx.2 , ...

» Register renaming
» Values passed directly from producer to consumers

_a1- 15-213, 504

Translation Example #3

|| cmpl %esi,%edx || || cmpl %esi, %edx.1 = cc.l

= Condition codes are treated similar to registers

= Assign tag to define connection between producer and
consumer

-43- 15-213, S04

Page 11

Translation Example #2

| incl %edx | [incl %edx.0

= %edx.1 ||

= Register %edx changes on each iteration. Rename as
%edx.0 , %edx.1 , %edx.2 , ..

_az- 15-213, 504

Translation Example #4

|l L24 | |i-akencc1

= Instruction control unit determines destination of jump
= Predicts whether will be taken and target
= Starts fetching instruction at predicted destination

= Execution unit simply checks whether or not prediction
was OK

= If not, it signals instruction control
o Instruction control then “invalidates” any operations generated
from misfetched instructions
e Begins fetching and decoding instructions at correct target

- 44 - 15-213, S04

Visualizing Operations

Y%edx.0

load (Yoeax,%edx,4) > tl
Yoedx.1 imull t.1, %ecx.0 2> %ecx.1
load incl %edx.0 = %edx.1
cmpl %esi, %edx.1 = cc.l
%ec% jl-taken cc.1
t.1
Time Operations
imull = Vertical position denotes time at which
executed
o e Cannot begin operation until operands
- : -
o available

= Height denotes latency

Operands

= Arcs shown only for operands that are
passed within execution unit

_45- 15-213, 504

3 Iterations of Combining Product
Unlimited Resource

Analysis
a Compl) (nc_Jess w ASSUMe operation
a] can start as soon as
operands available

= Operations for
multiple iterations
overlap in time

3
g |
3|

Iteration 1

© ©® N o o ~gW N B

=
o

Performance
= Limiting factor
becomes latency of
infeger multiplier
= Gives CPE of 4.0

15-213, S04

i
=y

Iteration 2

-
1Y)

-
%)

=
a

=
@

Iteration 3
_47-

Page 12

Visualizing Operations (cont.)

load (%eax,%edx,4) 2> tl

%edx.0 iaddl t.1, %ecx.0 =2 %ecx.1

— incl %edx.0 = %edx.1
cmpl %esi, %edx.1 = cc.l
jl-taken cc.1
Y%ecx.0
Time

Yhecx1 Operations

= Same as before, except that
add has latency of 1

46 - 15-213, 504

4 Tterations of Combining Sum

Iteration 2

N N N

Iteration 3

Iteration 4

Unlimited Resource Analysis

Performance
= Can begin a new iteration on each clock cycle
= Should give CPE of 1.0
= Would require executing 4 integer operations in parallel

- 48 - 15-213, S04

Combining Sum: Resource Constraints

%edx.3

9

10

Shecxd
lteration 4 __|

11

12

13

14

Iteration 6 |

= Only have two integer functional units

= Some operations delayed even though
operands available

= Set priority based on program order —

Iteration 8

96edx.8
>

Performance
= Sustain CPE of 2.0

-49 - 15-213, 504

Visualizing Unrolled Loop

%edx.0

= Loads can pipeline,
since don't have
dependencies

= Only one set of 100p secxoc
control operations

ﬁﬂ. Yedx.1

Time
load (%eax,%edx.0,4) > tla Yecx.le
jiaddl t.la, %ecx.0c = %ecx.la
load 4(%eax,%edx.0,4) = t.ilb
jiaddl t.1b, %ecx.la = %ecx.1b
load 8(%eax,%edx.0,4) = tlic
iaddl t.1c, %ecx.1b = %ecx.1c
iaddl $3,%edx.0 = %edx.1
cmpl %esi, %edx.1 = ccl
jl-taken cc.1
-51- 15-213, S04

Page 13

Loop Unrolling

void combine5(vec_ptr v, int *dest)
{

int length = vec_length(v);

int limit = length-2;

int *data = get_vec_start(v);

int sum =0;

int i;

/* Combine 3 elements at a time */

for (i=0; i < limit; i+=3) {

sum += datali] + data[i+2]
+ datali+1];

Optimization

= Combine multiple
iterations into single
loop body

= Amortizes loop
overhead across
multiple iterations

= Finish extras at end

= Measured CPE = 1.33

/* Finish any remaining elements */
for (; i < length; i++) {

sum += datali];
}

*dest =sum;

_50- 15-213, 504

Executing with Loop Unrolling

%edx.2

13 Iteration 3

= Predicted Performance

o Can complete iteration in 3 cycles
e Should give CPE of 1.0

= Measured Performance
o CPE of 1.33
¢ One iteration every 4 cycles

-52 - 15-213, S04

Iteration 4

Effect of Unrolling

Unrolling Degree 1 2 3 4 8 16
Integer | Sum 200 | 150 | 133 1.50 125 | 1.06
Integer | Product 4.00
FP Sum 3.00
FP Product 5.00

= Only helps integer sum for our examples
e Other cases constrained by functional unit latencies

= Effect is nonlinear with degree of unrolling
o Many subtle effects determine exact scheduling of operations

_53- 15-213, 504

Parallel Loop Unrolling

void combine6(vec_ptr v, int *dest)

{ Code Version

int length = vec_length(v); - Im-eger pr‘oduc‘r
int limit = length-1;

int *data = get_vec_start(v); o . .
int x0=1; Optimization
o4 =1 = Accumulate in two

int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

different products
e Can be performed

X0 *= datali]; simultaneously
1 *= data[i+1]; .
} : atai+1] « Combine at end
/* Finish any remaining elements */
for (; i < length: i++) { Performance
x0 *= datali]; « CPE=20

*dest = x0 *x1; = 2X performance

- 55 - 15-213, S04

Page 14

Serial Computation

Computation

(e = xoy
x1) * x2) * x3) * x4) *
x5) * X6) * X7) * x8) *
x9) * x10) * x11

Performance

=« N*D cycles

)

= N elements, D cycles/operation

15-213, S04

Dual Product Computation

Computation
((((((1 * x0) * x2) * x4) * x6) *
x8) * x10) *
((((((L * x1) * x3) * xB) * x7) *
x9) * x11)

Performance

= N elements, D cycles/operation
= (N/2+1)*D cycles

= ~2X performance improvement

15-213, S04

Requirements for Parallel Computation

Mathematical

=Combining operation must be associative &
commutative
¢ OK for integer multiplication
eNot strictly true for floating point
» OK for most applications

Hardware
=Pipelined functional units

= Ability to dynamically extract parallelism from
code

_57- 15-213, 504

Executing with Parallel Loop

%edx.0

1

2
3 %ecx.0 | fﬁeax 3

4 9ebx.0 |

© © N o «

Iteration 1
10 Cycle

11

=Predicted Performance -
o Can keep 4-cycle multiplier
busy performing two
simultaneous multiplications

e Gives CPE of 2.0 >
Iteration 3

-59 - 15-213, S04

Iteration 2

Page 15

Visualizing Parallel Loop

Yedx.0

= Two multiplies within
loop no longer have
data dependency

= Allows them to

Yoedx.1

Yoecx.0

%ebx.0

. . t.1b
pipeline
imull Time
imull
load (%eax,%edx.0,4) S tla Beoel
imull t.1a, %ecx.0 = %ecx.1 ——/ o%ebxl
load 4(%eax,%edx.0,4) = tilb
imull t.1b, %ebx.0 =2 %ebx.1
iaddl $2,%edx.0 = %edx.1
cmpl %esi, %edx.1 = cc.l
jl-taken cc.1
_58 - 15-213, S04

Optimization Results for Combining

Method Integer Floating Poin
+ * + *

Abstract -g 42.06 41.86 41.44 160.00
Abstract -O2 31.25 33.25 31.25 143.00
Move vec_length 20.66 21.25 21.15 135.00
data access 6.00 9.00 8.00 117.00
Accum. in temp 2.00 4.00 3.00 5.00
Pointer 3.00 4.00 3.00 5.00
Unroll 4 1.50 4.00 3.00 5.00
Unroll 16 1.06 4.00 3.00 5.00
2X2 1.50 2.00 2.00 2.50
4X4 1.50 2.00 1.50 2.50
8 X4 1.25 1.25 1.50 2.00
Theoretical Opt. 1.00 1.00 1.00 2.00
Worst : Best 39.7 335 27.6 80.0
- 60 - 15-213, S'04

Parallel Unrolling: Method #2

void combine6aa(vec_ptr v, int *dest)

(Code Version

int length = vec_length(v); - Im-eger. pr‘oduc’r
int limit = length-1;

int *data = get_vec_start(v); mi H
it xm Optimization
int i = Multiply pairs of

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
X *= (data[i] * data[i+1]);

elements together
= And then update

}

[* Finish any remaining elements */ pr‘odUCT
for (; i < length; i++) { = "Tree height
} x *= datal[i]; reduction”
*dest =Xx;
} Performance
= CPE=25
Ca 15-213, 504

Understanding
Parallelism

/* Combine 2 elements at a time */
for (i=0; i < limit; i+=2) {
x = (x * datali]) * data[i+1];
}
«CPE = 4.00

= All multiplies perfomed in sequence

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
X = x * (data[i] * data[i+1]);
}
« CPE = 250

= Multiplies overlap

-63- 15-213, S04

Page 16

Method #2 Computation

Computation
(@ * (x0 *x1)) * (x2 * x3)) *
(X4 * X5)) * (X6 * X7)) * (x8 *
x9)) * (x10 * x11))

Performance

= N elements, D cycles/operation

= Should be (N/2+1)*D cycles
¢ CPE=2.0

= Measured CPE worse

Unrolling CPE CPE
o Xyt (measured) |(theoretical)
2 2.50 2.00
3 167 133
4 150 1.00
6 178 1.00

15-213, S04

Limitations of Parallel Execution

Need Lots of Registers
= To hold sums/products

= Only 6 usable integer registers
o Also needed for pointers, loop conditions

= 8 FP registers

= When not enough registers, must spill temporaries

onto stack
o Wipes out any performance gains

= Not helped by renaming

e Cannot reference more operands than instruction set allows

o Major drawback of IA32 instruction set

15-213, S04

Register Spilling Example

Example

= 8 X 8 integer product

=« 7 local variables share 1

register

= Notice: locals are stored

oh the stack
= E.g., at -8(%ebp)

- 65-

.L165:

imull (%eax),%ecx

nmovl -4(%bp), Y%edi
imull 4(%eax),%edi
movl %edi, - 4(Yebp)
novl -8(%bp), Y%edi
imull 8(%eax),%edi
movl %edi, - 8(¥%ebp)
novl -12(%bp), %edi
imull 12(%eax),%edi
movl %edi, - 12(%ebp)
novl -16(%bp), %edi
imull 16(%eax),%edi
nmovl %di, - 16(%ebp)

addl $32,%eax

addl $8,%edx
cmpl -32(%ebp),%edx
jl .L165

15-213, 504

Results for Alpha Processor

Method Integer Floating Point

+ * + *
Abstract -g 40.14 47.14 52.07 53.71
Abstract -02 25.08 36.05 37.37 32.02
Move vec_length 19.19 32.18 28.73 32.73
data access 6.26 12.52 13.26 13.01
Accum. in temp 1.76 9.01 8.08 8.01
Unroll 4 1.51 9.01 6.32 6.32
Unroll 16 1.25 9.01 6.33 6.22
4X2 1.19 4.69 4.44 4.45
8X4 1.15 4.12 2.34 2.01
8X8 1.11 4.24 2.36 2.08
Worst : Best 36.2 11.4 22.3 26.7

= Overall trends very similar to those for Pentium IIT.
= Even though very different architecture and

compiler

~67 -

15-213, S04

Page 17

Summary: Results for Pentium IIT

Method Integer Floating Point
+ * + *
Abstract -g 42.06 41.86 41.44 160.00
Abstract -O2 31.25 33.25 31.25 143.00
Move vec_length 20.66 21.25 21.15 135.00
data access 6.00 9.00 8.00 117.00
Accum. in temp 2.00 4.00 3.00 5.00
Unroll 4 1.50 4.00 3.00 5.00
Unroll 16 1.06 4.00 3.00 5.00
4X2 1.50 2.00 1.50 2.50
8X4 1.25 1.25 1.50 2.00
8X8 1.88 1.88 1.75 2.00
Worst : Best 39.7 335 27.6 80.0
= Biggest gain doing basic optimizations
= But, last little bit helps
Z66 15-213, 504
Results for Pentium 4
Method Integer Floating Point
+ * + *
Abstract -g 35.25 35.34 35.85 38.00
Abstract -02 26.52 30.26 31.55 32.00
Move vec_length 18.00 25.71 23.36 24.25
data access 3.39 31.56 27.50 28.35
Accum. in temp 2.00 14.00 5.00 7.00
Unroll 4 1.01 14.00 5.00 7.00
Unroll 16 1.00 14.00 5.00 7.00
4X2 1.02 7.00 2.63 3.50
8 X4 1.01 3.98 1.82 2.00
8X8 1.63 4.50 2.42 2.31
Worst : Best 35.2 8.9 19.7 19.0

= Higher latencies (int * = 14, fp + = 5.0, fp * = 7.0)
e Clock runs at 2.0 GHz
e Not an improvement over 1.0 GHz P3 for integer *

= Avoids FP multiplication anomaly

15-213, S04

What About Branches?

Challenge

= Instruction Control Unit must work well ahead of Exec. Unit
o To generate enough operations to keep EU busy

80489f3: movl $0x1,%ecx .
80489f8: xorl %edx,%edx Executing
80489fa: cmpl %esi,%edx .
80489fc: jnl 8048a25 Fetching &
80489fe: movl %esi,%esi Decoding
8048a00: imull (%eax,%edx,4),%ecx

= When encounters conditional branch, cannot reliably determine

where to continue fetching

~69-

15-213, 504

Branch Prediction

Idea

= Guess which way branch will go

= Begin executing instructions at predicted position
e But don't actually modify register or memory data

80489f3: movl $0x1,%ecx

80489f8: xorl Y%edx,%edx

80489fa: cmpl %esi,%edx Predict Taken

80489fc: jnl 8048a25 —ﬁ
8048a25: cmpl %edi,%edx —
8048a27: || 8048a20
8048a29: movl 0xc(%ebp),%eax
8048a2c: leal Oxffffffe8(%ebp),%esp
8048a2f: movl %ecx,(%eax)

Execute

~71-

15-213, S04

Page 18

Branch Outcomes

= When encounter conditional branch, cannot determine where to
continue fetching
o Branch Taken: Transfer control to branch target
o Branch Not-Taken: Continue with next instruction in sequence

= Cannot resolve until outcome determined by branch/integer unit

-70-

80489f3: movl $0x1,%ecx

80489f8: xorl Y%edx,%edx

80489fa: cmpl %esi,%edx Branch Not-Taken

80489fc: jnl 8048a25

80489fe: movl Y%esi,%esi

8048a00: imull (%eax,%edx,4),%ecx > Branch Taken
8048a25: cmpl %edi,%edx L
8048a27: |l 8048a20
8048a29: movl 0xc(%ebp),%eax
8048a2c: leal Oxffffffe8(%ebp),%esp
8048a2f: movl %ecx,(%eax)

15-213, S04

Branch Prediction Through Loop

80488b1: movl (Yecx,%edx,4),%eax

. 0 0, i
ggjgggg; ie::i?l %/oeze:(x,(mem)) Assume vector length = 100
80488b7: cmpl %esi,%edx i =98
80488h9: |l 80488b1 \> Predict Taken (OK)
80488b1: movl (%ecx,%edx,4),%eax 4
80488b4: addl %eax,(%edi)
80488b6: incl %edx L
80488b7: cmpl %esi,%edx i=99
8048809 |l 80488b1 ————— Predict Taken T
80488b1: movl (Yecx, Yedx, 4) Y%eax (Oops) Executed
80488b4: addl %eax,(%edi) —
8048806: incl %edx Read
80488b7: cmpl %esi,%edx i =100 invalid
80488b9: |l 80488b1 —_ location

Fetched

80488b1: movl (Yecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl Yedx
80488b7: cmpl %esi,%edx i=101
80488h9: |l 80488b1

15-213, S04

Branch Misprediction Invalidation

80488b1: movl (Yecx,%edx,4),%eax
80488b4: addl %eax,(%edi)

80488b6: incl %edx S
80488b7: cmpl %esi,%edx i=98
80488b9: |l 80488b1 —_

Assume vector length = 100

80488b1: movl (%ecx,%edx,4),%eax “
80488b4: addl %eax,(%edi)
80488b6: incl %edx

> Predict Taken (OK)

7 Predict Taken (Oops)

80488b7: cmpl %esi,%edx =99
80488b9: |l 80488b1 —_—
Qr\/lﬁslh/l: addl %ea. 'IO ;Hi)
Mﬂ: ek 9, Y=l

5048807 R =100

PY-UP-r-TN . Ac4RQed
BO48809: T BO4880T

Invalidate

. i=101

>

-73-

15-213, 504

Branch Misprediction Recovery

80488b1: movl (Yecx,%edx,4),%eax
80488b4: addl %eax,(%edi)

80488b6: incl %edx -
80488b7: cmpl %esi,%edx i=98
80488h9: |l 80488b1 —_

Assume vector length = 100

[~ Predict Taken (OK)

80488b1: movl (%ecx,%edx,4),%eax
80488b4: addl %eax,(%edi)
80488b6: incl %edx

80488b7: cmpl %esi,%edx i=99
80488b9: |l 80488b1 _— -
80488bb: leal Oxffffffe8(%ebp),%esp 7 Definitely not taken

80488be: popl %ebx
80488bf: popl %esi
80488c0: popl %edi

Performance Cost
= Misprediction on Pentium III wastes ~14 clock cycles
= That's a lot of time on a high performance processor

- 74 - 15-213, S04

Avoiding Branches

On Modern Processor, Branches Very Expensive

= Unless prediction can be reliable

= When possible, best to avoid altogether

Example
= Compute maximum of two values
e 14 cycles when prediction correct
e 29 cycles when incorrect

int max(int x, int y)

{ jge L1l
return (X <y)?y:x;

[LiLAl3

movl 12(%ebp),%edx # Gety
movl 8(%ebp),%eax # rval=x
cmpl %edx,%eax # rvally

skip when >=

movl %edx,%eax # rval=y

~75-

15-213, S04

Avoiding Branches with Bit Tricks

= In style of Lab #1
= Use masking rather than conditionals
int bmax(int x, int y)

{

int mask = -(x>y);
return (mask & x) | (~mask & y);

}

= Compiler still uses conditional
e 16 cycles when predict correctly
e 32 cycles when mispredict

xorl %edx,%edx #mask =0
movl 8(%ebp),%eax

movl 12(%ebp),%ecx

cmpl %ecx,%eax

jle L13 # skip if x<=y
movl $-1,%edx #mask = -1
L13:

- 76 - 15-213, S04

Avoiding Branches with Bit Tricks

= Force compiler to generate desired code

int bvmax(int x, int y)

movl 8(%ebp),%ecx # Get x

{ movl 12(%ebp),%edx # Gety
volatile int t = (x>y); cmpl %edx,%ecx #xy
int mask = -t; setg %al # (x>y)
return (mask & x) | movzbl %al,%eax # Zero extend
(~mask & y); movl %eax,-4(%ebp) # Save as't
} movl -4(%ebp),%eax # Retrieve t

-77-

« volatle declaration forces value to be written to memory
o Compiler must therefore generate code to compute t
e Simplest way is setg/movzbl combination
= Not very elegant!
e A hack to get control over compiler
= 22 clock cycles on all data
o Better than misprediction

15-213, 504

Conditional Move

» Added with P6 microarchitecture (PentiumPro onward)
= CmMovXXI| %edx, %eax
o If condition XX holds, copy %edx to %eax

o Doesn't involve any branching
o Handled as operation within Execution Unit

movl 8(%ebp),%edx # Get x
movl 12(%ebp),%eax # rval=y
cmpl %edx, Y%eax # rval:x
cmovll %edx,%eax # If <, rval=x

= Current version of GCC won't use this instruction
o Thinks it's compiling for a 386

= Performance
o 14 cycles on all data

15-213, S04

Machine-Dependent Opt. Summary

Pointer Code
= Look carefully at generated code to see whether helpful

Loop Unrolling
= Some compilers do this automatically
= Generally not as clever as what can achieve by hand

Exposing Instruction-Level Parallelism

= Very machine dependent

Warning:

= Benefits depend heavily on particular machine

= Best if performed by compiler
e But GCC on TA32/Linux is not very good

= Do only for performance-critical parts of code

-79- 15-213, S04

Important Tools

Measurement

= Accurately compute time taken by code
e Most modern machines have built in cycle counters
e Using them to get reliable measurements is tricky
= Profile procedure calling frequencies
e Unix tool gprof

Observation

= Generating assembly code
e Lets you see what optimizations compiler can make
e Understand capabilities/limitations of particular compiler

15-213, S04

Code Profiling Example

Task
= Count word frequencies in text document
= Produce words sorted from most to least frequent

Steps Shakespeare's
= Convert strings to lowercase Most freq words
= Apply hash function 29,801 | the
«Read words and insert into hash table ~ |27:529 |and

o Mostly list operations 21029 |T

e Maintain counter for each unique word 20957 |to

= Sort results 18514 |of
15370 |a

Data Set 14010 | you
= Collected works of Shakespeare 12936 |my
= 946,596 total words, 26,596 unique 11722 |in

_=Initial implementation: 9.2 seconds 11519 | that

Profiling Results

% cumulative self self total
time seconds seconds calls ms/call ms/call name
86.60 8.21 8.21 1 8210.00 8210.00 sort_words

580 8.76 0.55 946596 0.00 0.00 low erl
475 9.21 0.45 946596 0.00 0.00 fin d_ele_rec
127 9.33 0.12 946596 0.00 0.00 h_a dd

Call Statistics
=« Number of calls and cumulative time for each function

Performance Limiter
= Using inefficient sorting algorithm
= Single call uses 87% of CPU time

_83- 15-213, S04

Page 21

Code Profiling

Add information gathering fo executable
= Computes (approximate) time spent in each function

= Time computation method
o Periodically (~ every 10ms) interrupt program
o Determine what function is currently executing
o Increment its timer by interval (e.g., 10ms)

= Also collect number of times each function is called

Using
gcc —0O2 —pg prog.c —o0 prog
.Iprog
o Executes in normal fashion, but also generates file gmon.out
gprof prog

e Generates profile information based on gmon.out
_g2- 15-213, S04

Code Optimizations

10
9

ﬁ W Rest
" 3) O Hash
-g 6| O Lower
S 54— W List
LT/ B S I Sort
2 3
S}

What should we do?

Initial

- 84 - 15-213, S'04

Code Optimizations

10
9
; H Rest

87 OHash

7 i S

6| O Lower
M List
@ Sort

CPU Seconds
(8]
\

l S
0 i What next?

Initial Quicksort It

= First step: Use more efficient sorting function
= Library function gsort

g5 - 15-213, 504

Further Optimizations

\%] 2 H Rest
'S O Hash .
8 15 O Lower
Vg B List
% - -
O Sort
2 0.5 . E:
(S} 0 T T
Initial Quicksort Iter First Iter Last Big Table Better Linear
Hash Lower

=« Iter first: Use iterative func to insert elmts into linked list
= Tter last: Tterative func, places new entry at end of list

= Big table: Increase number of hash buckets

= Better hash: Use more sophisticated hash function

=Linear lower: Move strlen out of loop

15-213, S04

Profiling Observations

Benefits
= Helps identify performance bottlenecks

= Especially useful when have complex system with many
components

Limitations
= Only shows performance for data fested

= E.g., linear lower did not show big gain, since words are

short
e Quadratic inefficiency could remain lurking in code

= Timing mechanism fairly crude
e Only works for programs that run for > 3 seconds

_g7- 15-213, S04

How Much Effort Should we Expend?

Amdahl's Law:

Overall performance improvement is a combination
= How much we sped up a piece of the system
= How important that piece is!

Example, s%:é)ose Chose to optimize "rest” & you succeed!
It goes to ZERO seconds!

15-213, S'04

How Much Effort Should we Expend?

Amdahl's Law:

Overall performance improvement is a combination
= How much we sped up a piece of the system
= How important that piece is!

Example, suzpéaose Chose to optimize "rest” & you succeed!
Tt goes to ZERO seconds!

Amdahl's Law
= Total time = (1-a)T +aT
= Component optimizing takes aT time.
= Improvement is factor of k, then:
* Trew = Tal(1-0) + a/K]

new

= Speedup = T)4/ T, = 1/ [(1-0) + a/K]

= Maximum Achievable Speedup (k = w) = 1/(1-0)

g9 - 15-213, 504

A Stack Based Optimization

_fib: .align 4
pushl %ebp L3
movl %esp,%ebp movl $1,%eax
subl $16,%esp L5:
pushl %esi leal -24(%ebp),%esp
pushl %ebx popl %ebx
movl 8(%ebp),%ebx popl %esi
cmpl $1,%ebx movl %ebp,%esp
jle L3 popl %ebp
addl $-12,%esp ret
leal -1(%ebx),%eax
pushl %eax
call _fib

movl %eax,%esi int fib(int n)
addl $-12,%esp
leal -2(%ebx),%eax
pushl %eax

call _fib

addl %esi,%eax
jmp L5

.align 4

if (n<=1) return 1;
return fib(n-1)+fib(n-2);

-91- 15-213, S04

Page 23

Role of Programmer

How should I write my programs, given that I have a good,
optimizing compiler?

Don't: Smash Code into Oblivion

= Hard fo read, maintain, & assure correctness

Do:
= Select best algorithm
=« Write code that's readable & maintainable

o Procedures, recursion, without built-in constant limits
o Even though these factors can slow down code

= Eliminate optimization blockers
o Allows compiler to do its job

= Focus on Inner Loops (AKA: Profile first!)
¢ Do detailed optimizations where code will be executed repeatedly
o Will get most performance gain here

_90- 15-213, 504

