
Page 1

Time Measurement
Feb 17, 2004

TopicsTopics
� Time scales

� Interval counting

� Cycle counters

� K-best measurement scheme

class11.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, s’04

Computer Time Scales

Two Fundamental Time ScalesTwo Fundamental Time Scales
� Processor: ~10 –9 sec.

� External events: ~10 –2 sec.
�Keyboard input
�Disk seek
�Screen refresh

ImplicationImplication
� Can execute many

instructions while waiting
for external event to occur

� Can alternate among
processes without anyone
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh

Keystroke

Microscopic Macroscopic

– 3 – 15-213, s’04

Measurement Challenge

How Much Time Does Program X Require?How Much Time Does Program X Require?
� CPU time

� How many total seconds are used when executing X?
� Measure used for most applications
� Small dependence on other system activities

� Actual (“Wall”) Time
� How many seconds elapse between the start and the

completion of X?
� Depends on system load, I/O times, etc.

Confounding FactorsConfounding Factors
� How does time get measured?
� Many processes share computing resources

� Transient effects when switching from one process t o another
� Suddenly, the effects of alternating among processe s become

noticeable

– 4 – 15-213, s’04

“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time .

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other user’s time (time executing instructions in
different user’s process)

cumulative user time

Page 2

– 5 – 15-213, s’04

Activity Periods: Light Load

� Most of the time spent
executing one process

� Periodic interrupts every
10ms
� Interval timer
� Keep system from

executing one process to
exclusion of others

� Other interrupts
� Due to I/O activity

� Inactivity periods
� System time spent

processing interrupts
� ~250,000 clock cycles

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 6 – 15-213, s’04

Activity Periods: Heavy Load

� Sharing processor with one other active process

� From perspective of this process, system appears to be
“inactive” for ~50% of the time
� Other process is executing

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 7 – 15-213, s’04

Interval Counting

OS Measures Runtimes Using Interval TimerOS Measures Runtimes Using Interval Timer
� Maintain 2 counts per process

� User time
� System time

� Each time get timer interrupt, increment counter fo r
executing process
� User time if running in user mode
� System time if running in kernel mode

– 8 – 15-213, s’04

Interval Counting Example

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100110120 130 140150160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100110120 130 140150160

A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100110120 130 140150160

A

Page 3

– 9 – 15-213, s’04

Unix time Command

� 0.82 seconds user time
� 82 timer intervals

� 0.30 seconds system time
� 30 timer intervals

� 1.32 seconds wall time

� 84.8% of total was used running these processes
� (.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g -march=i486 -c clock.c
gcc -O2 -Wall -g -march=i486 -c options.c
gcc -O2 -Wall -g -march=i486 -c load.c
gcc -O2 -Wall -g -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0 w

– 10 – 15-213, s’04

Accuracy of Interval Counting

Worst Case AnalysisWorst Case Analysis
� Timer Interval = δδδδ
� Single process segment measurement can be off by ±δ±δ±δ±δ
� No bound on error for multiple segments

� Could consistently underestimate, or consistently o verestimate

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms

• Min Actual = 60 + εεεε

• Max Actual = 80 – εεεε

– 11 – 15-213, s’04

Accuracy of Interval Couting (cont.)

Average Case AnalysisAverage Case Analysis
� Over/underestimates tend to balance out

� As long as total run time is sufficiently large
� Min run time ~1 second
� 100 timer intervals

� Consistently miss 4% overhead due to timer interrup ts

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms

• Min Actual = 60 + εεεε

• Max Actual = 80 – εεεε

– 12 – 15-213, s’04

Cycle Counters

� Most modern systems have built in registers that
are incremented every clock cycle
� Very fine grained
� Maintained as part of process state

» In Linux, counts elapsed global time

� Special assembly code instruction to access

� On (recent model) Intel machines:
� 64 bit counter.
� RDTSC instruction sets %edx to high order 32-bits, %eax

to low order 32-bits

Page 4

– 13 – 15-213, s’04

Cycle Counter Period

Wrap Around Times for 550 MHz machineWrap Around Times for 550 MHz machine
� Low order 32 bits wrap around every 2 32 / (550 * 106) =

7.8 seconds

� High order 64 bits wrap around every 2 64 / (550 * 106) =
33539534679 seconds
� 1065 years

For 2 GHz machineFor 2 GHz machine
� Low order 32-bits every 2.1 seconds

� High order 64 bits every 293 years

– 14 – 15-213, s’04

Measuring with Cycle Counter
IdeaIdea

� Get current value of cycle counter
� store as pair of unsigned’s cyc_hi and cyc_lo

� Compute something

� Get new value of cycle counter

� Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{

/* Get current value of cycle counter */
access_counter(&cyc_hi, &cyc_lo);

}

– 15 – 15-213, s’04

Accessing the Cycle Cntr.
� GCC allows inline assembly code with mechanism for

matching registers with program variables

� Code only works on x86 machine compiling with GCC

� Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{

/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 16 – 15-213, s’04

Closer Look at Extended ASM

Instruction StringInstruction String
� Series of assembly commands

� Separated by “ ; ” or “ \n ”
� Use “ %%” where normally would use “ %”

asm(“ Instruction String"
: Output List
: Input List
: Clobbers List);

}

void access_counter
(unsigned *hi, unsigned *lo)

{
/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

Page 5

– 17 – 15-213, s’04

Closer Look at Extended ASM

Output ListOutput List
� Expressions indicating destinations for values %0, %1, …, %j

� Enclosed in parentheses
� Must be lvalue

» Value that can appear on LHS of assignment

� Tag "=r" indicates that symbolic value (%0, etc.), should be
replaced by register

asm(“ Instruction String"
: Output List
: Input List
: Clobbers List);

}

void access_counter
(unsigned *hi, unsigned *lo)

{
/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 18 – 15-213, s’04

Closer Look at Extended ASM

Input ListInput List
� Series of expressions indicating sources for values %j+1, %j+2,

…
� Enclosed in parentheses
� Any expression returning value

� Tag "r" indicates that symbolic value (%0, etc.) will come from
register

asm(“ Instruction String"
: Output List
: Input List
: Clobbers List);

}

void access_counter
(unsigned *hi, unsigned *lo)

{
/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 19 – 15-213, s’04

Closer Look at Extended ASM

Clobbers ListClobbers List
� List of register names that get altered by assembly instruction

� Compiler will make sure doesn’t store something in one of these
registers that must be preserved across asm

� Value set before & used after

asm(“ Instruction String"
: Output List
: Input List
: Clobbers List);

}

void access_counter
(unsigned *hi, unsigned *lo)

{
/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 20 – 15-213, s’04

Accessing the Cycle Cntr. (cont.)

Emitted Assembly CodeEmitted Assembly Code

� Used %ecx for *hi (replacing %0)

� Used %ebx for *lo (replacing %1)

� Does not use %eax or %edx for value that must be carried
across inserted assembly code

movl 8(%ebp),%esi # hi
movl 12(%ebp),%edi # lo

#APP
rdtsc; movl %edx,%ecx; movl %eax,%ebx

#NO_APP
movl %ecx,(%esi) # Store high bits at *hi
movl %ebx,(%edi) # Store low bits at *lo

Page 6

– 21 – 15-213, s’04

Completing Measurement

� Get new value of cycle counter

� Perform double precision subtraction to get elapsed cycles
� Express as double to avoid overflow problems

double get_counter()
{

unsigned ncyc_hi, ncyc_lo
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

}

– 22 – 15-213, s’04

Timing With Cycle Counter

Determine Clock Rate of ProcessorDetermine Clock Rate of Processor
� Count number of cycles required for some fixed numb er of

seconds

Time Function PTime Function P
� First attempt: Simply count cycles for one executio n of P

double tsecs;
start_counter();
P();
tsecs = get_counter() / (MHZ * 1e6);

double MHZ;
int sleep_time = 10;
start_counter();
sleep(sleep_time);
MHZ = get_counter()/(sleep_time * 1e6);

– 23 – 15-213, s’04

Measurement Pitfalls

OverheadOverhead
� Calling get_counter() incurs small amount of overhead

� Want to measure long enough code sequence to
compensate

Unexpected Cache EffectsUnexpected Cache Effects
� artificial hits or misses

� e.g., these measurements were taken with the Alpha cycle
counter:
foo1(array1, array2, array3); /* 68,829 cycles */

foo2(array1, array2, array3); /* 23,337 cycles */

vs.
foo2(array1, array2, array3); /* 70,513 cycles */

foo1(array1, array2, array3); /* 23,203 cycles */

– 24 – 15-213, s’04

Dealing with Overhead & Cache
Effects

int cnt = 1;
double cmeas = 0;
double cycles;
do {

int c = cnt;
P(); /* Warm up cache */
get_counter();
while (c-- > 0)
P();
cmeas = get_counter();
cycles = cmeas / cnt;
cnt += cnt;

} while (cmeas < CMIN); /* Make sure have enough */
return cycles / (1e6 * MHZ);

� Always execute function once to “warm up” cache

� Keep doubling number of times execute P() until rea ch some
threshold
� Used CMIN = 50000

Page 7

– 25 – 15-213, s’04

Multitasking Effects

Cycle Counter Measures Elapsed TimeCycle Counter Measures Elapsed Time
� Keeps accumulating during periods of inactivity

� System activity
� Running other processes

Key ObservationKey Observation
� Cycle counter never underestimates program run time

� Possibly overestimates by large amount

KK--Best Measurement SchemeBest Measurement Scheme
� Perform up to N (e.g., 20) measurements of function

� See if fastest K (e.g., 3) within some relative fac tor εεεε (e.g., 0.001)

K

– 26 – 15-213, s’04

K-Best
Validation

Very good accuracy for < 8msVery good accuracy for < 8ms
� Within one timer interval

� Even when heavily loaded

Less accurate of > 10msLess accurate of > 10ms
� Light load: ~4% error

� Interval clock interrupt
handling

� Heavy load: Very high error

Intel Pentium III, Linux

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d:
E

xp
ec

te
d

E
rr

or

Load 1

Load 2

Load 11

K = 3, εεεε = 0.001

– 27 – 15-213, s’04

Compensate
For Timer
Overhead

Subtract Timer OverheadSubtract Timer Overhead
� Estimate overhead of single

interrupt by measuring periods
of inactivity

� Call interval timer to determine
number of interrupts that have
occurred

Better Accuracy for > 10msBetter Accuracy for > 10ms
� Light load: 0.2% error

� Heavy load: Still very high
error

K = 3, εεεε = 0.001

Intel Pentium III, Linux
Compensate for Timer Interrupt Handling

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d:
E

xp
ec

te
d

E
rr

or

Load 1

Load 2

Load 11

– 28 – 15-213, s’04

K-Best
on NT

Acceptable accuracy for < 50msAcceptable accuracy for < 50ms
� Scheduler allows process to

run multiple intervals

Less accurate of > 10msLess accurate of > 10ms
� Light load: 2% error

� Heavy load: Generally very
high error

K = 3, εεεε = 0.001

Pentium II, Windows-NT

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
ea

su
re

d:
E

xp
ec

te
d

E
rr

or

Load 1

Load 2

Load 11

Page 8

– 29 – 15-213, s’04

Time of Day Clock
� Unix gettimeofday() function

� Return elapsed time since reference time (Jan 1, 19 70)

� Implementation
� Uses interval counting on some machines

» Coarse grained
� Uses cycle counter on others

» Fine grained, but significant overhead and only 1
microsecond resolution

#include <sys/time.h>
#include <unistd.h>

struct timeval tstart, tfinish;
double tsecs;
gettimeofday(&tstart, NULL);
P();
gettimeofday(&tfinish, NULL);
tsecs = (tfinish.tv_sec - tstart.tv_sec) +

1e6 * (tfinish.tv_usec - tstart.tv_usec);
– 30 – 15-213, s’04

K-Best Using gettimeofday

LinuxLinux
� As good as using cycle

counter

� For times > 10 microseconds

WindowsWindows
� Implemented by interval

counting

� Too coarse-grained

Using gettimeofday

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
ea

su
re

d:
E

xp
ec

te
d

E
rr

or

Win-NT

Linux

Linux-comp

– 31 – 15-213, s’04

Measurement Summary

Timing is highly case and system dependentTiming is highly case and system dependent
� What is overall duration being measured?

� > 1 second: interval counting is OK
� << 1 second: must use cycle counters

� On what hardware / OS / OS version?
� Accessing counters

» How gettimeofday is implemented
� Timer interrupt overhead
� Scheduling policy

Devising a Measurement MethodDevising a Measurement Method
� Long durations: use Unix timing functions

� Short durations
� If possible, use gettimeofday

� Otherwise must work with cycle counters
� K-best scheme most successful

