

15-213, S'04

Traditional Bus Structure Connecting CPU and Memory

A bus is a collection of parallel wires that carry address, data, and control signals.

Buses are typically shared by multiple devices.

Disk Geometry

Disks consist of platters, each with two surfaces.

Each surface consists of concentric rings called tracks.

Each track consists of sectors separated by gaps.

Logical Disk Blocks
 Modern disks present a simpler abstract view of the complex sector geometry:

 The set of available sectors is modeled as a sequence of besized logical blocks (0, 1, 2, ...)

 Mapping between logical blocks and actual (physical) sectors

 Maintained by hardware/firmware device called disk controller.
 Converts requests for logical blocks into (surface,track,sector) triples.

 Allows controller to set aside spare cylinders for each zone.

 Accounts for the difference in "formatted capacity" and "maximum capacity".

15-213, S'04

	metric	1980	1985	1990	1995	2000	2000:1980
SRAM	\$/MB	19,200	2,900	320	256	100	190
	access (ns)	300	150	35	15	2	100
DRAM	metric	1980	1985	1990	1995	2000	2000:1980
	\$/MB	8,000	880	100	30	1	8,000
	access (ns)	375	200	100	70	60	6
	typical size(MB)	0.064	0.256	4	16	64	1,000
	metric	1980	1985	1990	1995	2000	2000:1980
Disk	\$/MB	500	100	8	0.30	0.05	10,000
	access (ms)	87	75	28	10	8	11
	typical size(MB)	1	10	160	1,000	9,000	9,000

PU Clock Rates						
	1980	1985	1990	1995 Bont	2000	2000:1980
clock rate(MHz)	1	200	20	150	750	750
cycle time(ns)	1,000	166	50	6	1.6	750

General Caching Concepts Types of cache misses: Cold (compulsory) miss Cold misses occur because the cache is empty.

- Conflict miss
 - Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of the block positions at level k.
 - E.g. Block i at level k+1 must be placed in block (i mod 4) at level k+1.
 - Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the same level k block.
 - E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss

• Occurs when the set of active cache blocks (working set) is larger than the cache.

- 43 -

15-213, S'04

Examples of Caching in the Hierarchy

Cache Type	What is Cached?	Where is it Cached?	Latency (cycles)	Managed By
Registers	4-byte words	CPU core	0	Compiler
TLB	Address translations	On-Chip TLB	0	Hardware
L1 cache	64-bytes block	On-Chip L1	1	Hardware
L2 cache	64-bytes block	Off-Chip L2	10	Hardware
Virtual Memory	4-KB page	Main memory	100	Hardware+ OS
Buffer cache	Parts of files	Main memory	100	OS
Network buffer cache	Parts of files	Local disk	10,000,000	AFS/NFS client
Browser cache	Web pages	Local disk	10,000,000	Web browser
Web cache	Web pages	Remote server disks	1,000,000,000	Web proxy server
- 44 -				15-213, S'04

Summary

- The memory hierarchy is fundamental consequence of maintaining the *random access memory* abstraction and practical limits on cost and power consumption.
- Caching works!
- Programming for good *temporal* and *spatial* locality is critical for high performance.
- Trend: the speed gap between CPU, memory and mass storage continues to widen, thus leading towards deeper hierarchies.
 - Consequence: maintaining locality becomes even more important.

15-213, S'04