15-213

“The course that gives CMU its Zip!”

Virtual Memory
March 18, 2004

Topics
= Motivations for VM
m Address translation
m Accelerating translation with TLBs

cl ass18. ppt

Modern Motivations for VM

® Memory sharing and control

m Copy on write: share physical memory among multiple
processes until a process tries to write to it. At that point
make a copy. For example, this eliminates the need for
vfork()

m Shared libraries
m Protection (debugging) via Segment-Drivers (Solaris)

@ Sparse address space support (64bit systems)

® Memory as a fast communication device
m Part of memory is shared by multiple processes

® Multiprocessing (beyond the scope of 15 -213)

—3— 15-213, S'04

Page 1

Classic Motivations for Virtual Memory
Use Physical DRAM as a Cache for the Disk

m Address space of a process can exceed physical memo ry size

m Sum of address spaces of multiple processes can exc eed
physical memory

Simplify Memory Management
m Multiple processes resident in main memory.
Each process has its own address space
m Only “active” code and data is actually in memory
Allocate more memory to process as needed.

Provide Protection
m One process can't interfere with another.
Because they operate in different address spaces.
m User process cannot access privileged information

Different sections of address spaces have different permissions.

—2— 15-213, S'04

Why does VM Work?

It IS not used!

—4— 15-213, S'04

Motivation #1: DRAM a “Cache” for Disk

Full address space is quite large:
m32-bit addresses: ~4,000,000 ,000 (4 billion) bytes
m 64-bit addresses: ~16,000,000,000,000,000,000 (16 q uintillion) bytes

Disk storage is ~500X cheaper than DRAM storage
=80 GB of DRAM: ~ $25,000
80 GB of disk: ~ $50

To access large amounts of data in a cost-effective manner,
the bulk of the data must be stored on disk
1GB: ~$300 160 GB: ~$100
4 MB: ~$500 S
ora
15-213, S04

DRAM vs. SRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM

m Access latencies:
® DRAM ~10X slower than SRAM
® Disk ~160,000X slower than DRAM !
m Importance of exploiting spatial locality:
® First byte is ~ 160,000X slower than successive bytes on disk
vs. ~4X improvement for page-mode vs. regular acces ses to DRAM
m Bottom line:
® Design decisions made for DRAM caches driven by eno
of misses

rmous cost

S
oy

15-213, S'04

Page 2

Levels in Memory Hierarchy

cache virtual memory
8B H 32B 4 KB
CPU a Memory @
m
e

Register Cache Memory Disk Memory
Size: 32B 32 KB-4MB 1024 MB 100 GB
Latency: <1lns ~2ns >50ns >8 ms
$/Mbyte: $125/MB $0.20/MB $0.001/MB
Line size: 8(16) B 32(64) B 4(64+) KB

Igrqer, slower, chezﬂ.‘)er

15-213, S'04

Impact of Properties on Design

If DRAM was to be organized similar to an SRAM cach e, how
would we set the following design parameters?
m Line size?
Large, since disk better at transferring large bloc ks
m Associativity?
High, to minimize miss rate
= Write through or write back?
Write back, since can't afford to perform small wri

What would the impact of these choices be on:
m miss rate
Extremely low. << 1%
m hit time
Must match cache/DRAM performance
m miss latency
Very high. ~10ms
m tag storage overhead
Low, relative to block size

tes to disk

15-213, S'04

Locating an Object in a “Cache”

SRAM Cache

m Tag stored with cache line

= Maps from cache block to memory blocks
® From cached to uncached form
e Save a few bits by only storing tag

= No tag for block not in cache

m Hardware retrieves information
@ can quickly match against multiple tags

“Cache”

Object Name

X1 =x

—9— 15-213, S'04

A System with Physical Memory Only

Examples:
Most Cray machines, early PCs, nearly all embedded systems, etc.

Memory

Physical
Addresses

m Addresses generated by the CPU correspond directly
physical memory

to bytes in

11— 15-213, S04

Page 3

Locating an Object in “Cache” (cont.)

DRAM Cache
m Each allocated page of virtual memory has entry in
m Mapping from virtual pages to physical pages
® From uncached form to cached form
m Page table entry even if page not in memory
e Specifies disk address
e Only way to indicate where to find page
m OS retrieves information

page table

Page Table “Cache”

Object Name

— 10— 15-213, S'04

A System with Virtual Memory

Examples:

. Memory
Workstations, servers, modern PCs, etc.

Page Table

Virtual

Addresses Physical

Addresses

Wi

X

m Address Translation: Hardware converts virtual addr esses to
physical addresses via OS-managed lookup table (pag e table)

12— 15-213, S04

Page Faults (like “Cache Misses”)

What if an object is on disk rather than in memory?
m Page table entry indicates virtual address notinm emory

m OS exception handler invoked to move data from disk into
memory
@ current process suspends, others can resume
® OS has full control over placement, etc.

Before fault After fault
Memory
Memory

Page Table

11 Physical
Addresses

Virtual

Page Table
Addresses

Virtual

Addresses Fhysical

Addresses

— 13— 15-213, S'04

Servicing a Page Fault

1) Initiate Block Read

Processor Signals Controller

m Read block of length P [Reg |
starting at disk address X and (3) Read

. Done
store starting at memory
address Y

Read Occurs l
m Direct Memory Access (DMA)

Processor

m Under control of I/O controller (2) DMA
¥ Transfer [
I / O Controller Signals Memory coffiroller
Completion
m Interrupt processor =% oo
m OS resumes suspended —
process

— 14— 15-213, S'04

Motivation #2: Memory Management

Multiple processes can reside in physical memory.

How do we resolve address conflicts?
m what if two processes access something at the same

address?
) memory invisible to
Kernel virtual memory user code
%esp Stack
t
. Memory mapped region
Linux/x86 for shared libraries
process
memory Runtime heap the "brk” ptr
) (via malloc)
Image Uninitialized data (.bss)
Initialized data (.data)
Program text (.text)
forbidden
15— 15-213, S04

Solution: Separate Virt. Addr. Spaces

m Virtual and physical address spaces divided into eq ual-sized
blocks

Blocks are called “pages” (both virtual and physica 1)
m Each process has its own virtual address space

Operating system controls how virtual pages as assi gned to
physical memory

Virtual 0 Address Translation Physical

Address VP1 PP2 Address
VP 2

Space for (SI:?SZ?\/I)
Process 1: :\
(e.g., read/only

) BRI library code)
Virtual 0 |
YRS
VP2

Address
Space for

Process 2: M-1
nal— 1

— PP10

16— 15-213, S04

Contrast: Macintosh Memory Model

MAC OS 1-9

= Does not use traditional virtual memory
P1 Pointer Table Shared Address Space

Prow A
= :

“Handles”

P2 Pointer T

©
Process P
% D
P
=

All program objects accessed through “handles”
m Indirect reference through pointer table
m Objects stored in shared global address space

—17 - 15-213, S'04

Mac vs. VM-Based Memory Mgmt

Allocating, deallocating, and moving memory:
m can be accomplished by both techniques

Block sizes:
» Mac: variable-sized
® may be very small or very large
m VM: fixed-size
® size is equal to one page (4KB on x86 Linux systems)
Allocating contiguous chunks of memory:
m Mac: contiguous allocation is required
= VM: can map contiguous range of virtual addresses t o]
disjoint ranges of physical addresses
Protection
m Mac: “wild write” by one process can corrupt anothe r's data

_19- 15-213, S04

Page 5

B

Process P
“Handles” .é - A
Cc

Process P.
—| D

—

E

Macintosh Memory Management

Allocation / Deallocation
= Similar to free-list management of malloc/free

Compaction

= Can move any object and just update the (unique) po inter in

pointer table

P1 Pointer Table Shared Address Space

— 18 — 15-213, S'04

MAC OS X

“Modern” Operating System
= Virtual memory with protection
» Preemptive multitasking

® Other versions of MAC OS require processes to volun tarily
relinquish control

Based on MACH OS
m Developed at CMU in late 1980's

_20- 15-213, S04

Motivation #3: Protection

Page table entry contains access rights information
mhardware enforces this protection (trap into OS if
Page Tables

violation occurs)

Memory

PP 9
Process i: PP 4

XXXXXXX

PP 6

Process |: PP 9

XXXXXXX

— 21— 15-213, S'04

VM Address Translation: Hit

Hardware
Addr Trans

a Mechanism

e |

virtual address part of the
on-chip
Memory
Management
Unit

physical address

23— 15-213, S04

Page 6

VM Address Translation

Virtual Address Space
= V={0,1,.. N-1}

Physical Address Space
= P={0,1,.. M-1}
m M <N (usually, but >=4 Gbyte on an IA32 possible)

Address Translation
= MAP: V - P U {O}
m For virtual address a:
® MAP(a) = a’ if data at virtual address a at physica | address a’
inP
e MAP(a) = 0O if data at virtual address a not in physical memory
» Either invalid or stored on disk

— 22— 15-213, S'04

VM Address Translation: Miss

page fault

Ll

handler

o| I —

A}-(:lgrrd'\#g:]es ; ’ Main ‘ Secondary ||
a Mechanism “»Memory |«——| memory ||

e | NG N :

OS performs

virtual address part of the physical address this transfer
on-chip i i
Memory (only if miss)
Management
Unit
(MMU)
— 24— 15-213, S'04

VM Address Translation

Parameters
m P = 2P = page size (bytes).
m N = 2" = Virtual address limit
m M = 2™ = Physical address limit
n-1 p p-1 0
l virtual page number [page offset virtual address

@@ Unchanged

m-1 p p-1 0
l physical page number [page offset

physical address

Page offset bits don’'t change as a result of transl ation

— 25— 15-213, S'04

Page Tables

Virtual Page Memory resident
Number page table
|:| (physical page .
valid or disk address) Physical Memory
1 e
1 LN
0 e
1 o
— C—
1 o \
0 *
1 Ca >
0 a | N Disk Storage
1 L SN (swap file or
AN \\ regular file system file)
RN
N N
N
SN
N
N

— 26—

15-213, S'04

Address Translation via Page Table

l page table base register ‘ virtual address

n-1 p p-1 0

VPN acts l virtual page number (VPN)] page offset

as

table inde valid access physical page number (PPN)

R W

if valid=0
then page
not in memory m-1 p p-1

physical page number (PPN)] page offset

physical address

_o7- 15-213, S04

Page Table Operation

Translation
m Separate (set of) page table(s) per process

m VPN forms index into page table (points to a paget able entry)

page table base register virtual address

n-1 p p-1 0
VPN acts ‘ virtual page number (VPN) H page offset ‘
as
table inde; valid access physical page number (PPN)
if valid=0
then page
not in memory m-1 p p-1 0

lphysical page number (PPN) H page offset

physical address

—28-

15-213, S'04

Page Table Operation

Computing Physical Address
m Page Table Entry (PTE) provides information aboutp age
o if (valid bit = 1) then the page is in memory.
Use physical page number (PPN) to construct address
o if (valid bit = 0) then the page is on disk

Page fault
page table base register virtual address
n-1 p p-1 0
VPN acts ‘ virtual page number (VPN) | page offset
as
table inde valid access physical page number (PPN)
if valid=0
then page
not in memory m-1 p p-1 0
physical page number (PPN) | page offset
physical address
— 29 — 15-213, S'04

Integrating VM and Cache
VA PA miss
Trans- Main

cPU lation Cache Memory

1 e]

Most Caches were “Physically Addressed”
m Accessed by physical addresses
m Allows multiple processes to have blocks in cache a
m Allows multiple processes to share pages

m Cache doesn’t need to be concerned with protection issues
® Access rights checked as part of address translatio n

t same time

Perform Address Translation Before Cache Lookup
m But this could involve a memory access itself (of t he PTE)
m Of course, page table entries can also become cache d

_31- 15-213, S04

Page 8

Page Table Operation

Checking Protection
m Access rights field indicate allowable access
® e.g., read-only, read-write, execute-only
o typically support multiple protection modes (e.g., kernel vs. user)
m Protection violation fault if user doesn’t have nec essary

permission
page table base register virtual address
n-1 p p-1i 0

VPN acts ‘ virtual page number (VPN) | page offset
as
table inde valid access physical page number (PPN)

if valid=0

then page

not in memory m-1 p p1

physical page number (PPN) | page offset

physical address

— 30 — 15-213, S'04

Speeding up Translation with a TLB

“Translation Lookaside Buffer” (TLB)
m Small hardware cache in MMU
» Maps virtual page numbers to physical page numbers
m Contains complete page table entries for small numb er of

pages
hit)
VA PA miss
TLB Main
cPU Lookup Cache Memory
— —
miss l I hit
Trans-
lation
[data
32— 15-213, S'04

Address Translation with a TLB

n-1 p p-1 0
virtual page number | page offset | virtual address

valid _tag physical page number
{——L LB
[
[
©
TLB hit* QQ
[physical address]
tag index l byte offset
alid tag data
Cache
[~
cache hit +— data
~33- 15-213, S'04

Simple Memory System Page Table

m Only show first 16 entries (out of 256)

VPN | PPN | Valid | VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B — 0
04 — 0 0C — 0
05 16 1 0D 2D 1
06 - 0 OE 11 1
07 — 0 OF 0D 1
_35- 15-213, S04

Page 9

Simple Memory System Example

Addressing
m 14-bit virtual addresses
m 12-bit physical address
m Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0
N N Y A
VPN VPO
(Virtual Page Offset)

(Virtual Page Number)

PPN PPO
(Physical Page Number) (Physical Page Offset)

— 34 — 15-213, S'04

Simple Memory System TLB

TLB
= 16 entries
m 4-way associative

TLBT < TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO
Set Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0
—36- 15-213, S'04

Simple Memory System Cache

Cache
= 16 lines
m 4-byte line size
= Direct mapped

PPN PPO

ldx Tag | Valid BO B1 B2 B3 ldx Tag | Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 — — - - 9 2D 0 — — - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 — — — — B 0B 0 — — — —
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 — — — — E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 — — — —

|

@

N
|

15-213, S'04

Address Translation Example #2

Virtual Address 0x0B8F

TLBT < TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ofofaJoJsfafaJofJofofaJafa1]

VPN VPO

veN O%2E Tigi_2 BT 0XOB LB Hit? NO page Fault? YESPP N:TBD
Physical Address

Offset__ CI__ CT Hit? Byte:

_39- 15-213, S04

Page 10

Address Translation Example #1

Virtual Address 0x03D4

TLBT < TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ofofoJoJsfaa]sJof1Jo]1]o]0]

VPN VPO

vpN 0X0F i 3 BT 0%03 TIBHit? Y Page Fault?_NOpp NOXOD
Physical Address

cT cl
11 10 9 8 7 6 5 4 3 2 1 0
[0JofaJ1Jof1fo[1Jo[1]0[O0]

PPN PPO
offset_0 ¢ 0x5 cT1 0x0D

Hit? Y Byte: 0x36

— 38 — 15-213, S'04

Address Translation Example #3

Virtual Address 0x0020

TLBT < TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0fofoJoJofofoJo[zfofoJofofo]

VPN VPO

veN X000 migr O BT 9%00 T1B Hit? NO Page Fault? _NOpp NOX28
Physical Address

cT cl

1 10 9 8 7 6 5 4 3 2 1 0

[1[oJz1JofJofJoJa[oJofJofofO]
PPN PPO

Hit? NO

ofset_0 ¢ 0x8 cT 0x28 Byte: VIEM

— 40 — 15-213, S'04

Multi-Level Page Tables

) Level 2
Given: Tables
m 4KB (21?) page size —

m 32-bit address space

m 4-byte PTE Level 1

Problem: Table

m Would need a 4 MB page table!
® 220*4 hytes

Common solution
m multi-level page tables

m e.g., 2-level table (P6)
o Level 1 table: 1024 entries, each of
which points to a Level 2 page table.
® Level 2 table: 1024 entries, each of
which points to a page
—41- 15-213, S'04

Page 11

Main Themes

Programmer’s View
= Large “flat” address space
® Can allocate large blocks of contiguous addresses
m Processor “owns” machine
® Has private address space
e Unaffected by behavior of other processes

System View
m User virtual address space created by mapping to se t of
pages
@ Need not be contiguous
® Allocated dynamically
® Enforce protection during address translation
= OS manages many processes simultaneously
e Continually switching among processes
® Especially when one must wait for resource
» E.g., disk I/O to handle page fault

—42- 15-213, S'04

