15-451 Algorithms, Fall 2003

Homework # 3 due: Tuesday October 7, 2003

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each sheet. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

Problems:

(35 pts) 1. Hashing. As discussed in class, the notion of universal hashing gives us guarantees
that hold for arbitrary (i.e., worst-case) sets S, in expectation over our choice of hash
function. In this problem, you will work out what some of these guarantees are.

(a) Describe an explicit universal hash function family from U = {0, 1,2,3,4,5,6,7}
to {0,1}. Hint: you can do this with a set of 4 functions.

(b) Let H be a universal family of hash functions from some universe U into a table
of size m. Let S C U be some set we wish to hash. Prove that if we choose h from
H at random, the expected number of pairs (z,y) in S that collide is O(|S|?/m).

(c) Prove that for some constant ¢, with probability at least 3/4, no bin gets more
than 1+c¢|S|/v/m elements. (So, if |S| = m, you are showing that with probability
3/4 no bin gets more than 1+ ¢\/m elements.) Hint: use part (b).

To solve this question, you should use “Markov’s inequality”. Markov’s inequality
is a fancy name for a pretty obvious fact: if you have a non-negative random
variable X with expectation E[X], then for any £ > 0, Pr(X > FE[X]) < 1/k.
For instance, the chance that X is more that 100 times its expectation is at
most 1/100. You can see that this has to be true just from the definition of
“expectation”.

(30 pts) 2. Treaps and amortized analysis. Suppose you have an array of n keys that is already
sorted, and you want to convert it into a treap (e.g., so that you can later do additional
inserts). Here is a procedure for converting the array into a treap in linear time, no
matter what the priorities are — we won’t be relying on the priorities being chosen
randomly here. The procedure walks down the array, inserting the elements one at a
time in a special way. Your job is to show that the amortized cost per insert for this
procedure is O(1).

First of all, in addition to keeping a pointer to the root node, we will also keep a pointer
to the rightmost node of the treap. (The rightmost node is the one with the largest
key so far). Also, every node will have a parent pointer in addition to left-child and
right-child pointers.

Algorithm. Let A be the input array, where the ith key and priority appear in A[i].key
and Ali].prio respectively, and the keys are in sorted order. We will insert the
elements one by one, into an initially empty treap 7'.

We insert element ¢ into the treap 7" made of elements 1--- (i — 1) as follows:

(a) if Ali].prio is less than the priority of the root of T, then ¢ becomes the new
root and 7" is made into its left child;

(b) if Ali].prio is greater than the priority of the rightmost node in the treap,
then element ¢ is made into the right child of this node;

(c) if Alroot].prio < Ali|.prio < A[right].prio, then element i is temporarily
made the right child of the rightmost node, and the heap property of the
treap is then restored by successive rotations of the newly inserted node.
(Note: Al[right] is really the same thing as A[i — 1] since the keys are in
sorted order.)

Cases (a) and (b) above are clearly constant-time. The problem is that case (c)
could involve a lot of rotations. You job is to show that nonetheless, the amortized
time per operation is O(1).

(35 pts) 3. BSTs and dynamic programming.

Consider a binary search tree storing a set of keys 7 < 29 < 23 < ... < x,,. Let’s
define the cost of handling a request for some key to be the number of comparisions
made in searching for it (one plus the distance of the node from the root of the tree).
For example, if the root is requested, the cost is 1.

Given a particular sequence of requests, one can calculate the cost that would be
incurred on that sequence by different possible binary search trees. The tree that
attains the minimum cost is called the optimal binary search tree for that sequence.

(a) For a fixed tree, the cost of a given sequence of requests clearly only depends on
the number of times each key is requested, not on their order. Suppose that n = 4
and that z; is accessed once, x5 is accessed 9 times, x3 is accessed 5 times, and x4
is accessed 6 times. Find an optimal binary tree for this set of requests. (There
is more than one possible answer.)

(b) In general, suppose the optimal binary search tree has z; at the root, with L as its
left subtree and R as its right subtree. Prove that L must be an optimal binary
search tree for elements x4, ..., z;_1 and R must be an optimal binary search tree
for elements x;11, ..., T,.

(c) Give a general algorithm for constructing the optimal binary tree given a sequence
of counts ¢i, ¢a, . . ., ¢, (¢; is the number of times x; is accessed). The running time
of your algorithm should be O(n?). Hint: use dynamic programming.

Note #1: the notion of an optimal binary search tree is a lot like the notion of a
Huffman tree, except that we also require the keys to be in search-tree order. This
requirement is the reason that the greedy Huffman-tree algorithm doesn’t work for
finding optimal BSTs.

Note #2: it’s actually possible to improve the running time to O(n?) by a simple
modification to this dynamic-programming solution. But proving correctness for this
faster version is a real pain.

