15-451 *Algorithms*

Theory of NP-Completeness

Randal E. Bryant April 11, 2001

Topics:

- Turing Machines
- Cook's Theorem
- Implications

Turing Machine

Formal Model of Computer

• Very primitive, but computationally complete

Turing Machine Components

Таре

- Conceptually infinite number of "squares" in both directions
- Each square holds one "symbol"
 - From a finite alphabet
- Initially holds input + copies of blank symbol 'B'

Tape Head

- On each step
 - Read current symbol
 - Write new symbol
 - Move Left or Right one position

Components (Cont.)

Controller

- Has state between 0 and m-1
 - Initial state = 0
 - Accepting state = m-1
- Performs steps
 - Read symbol
 - Write new symbol
 - Move head left or right

Program

- Set of allowed controller actions
- Current State, Read Symbol ® New State, Write Symbol, L|R

Turing Machine Program Example

Language Recognition

• Determine whether input is string of form $O^n 1^n$

Input Examples

Should reach state m-1

Should never reach state m-1

Algorithm

- Keep erasing 0 on left and 1 on right
- Terminate and accept when have blank tape

Program

States

- 0 Initial
- 1 Check Left
- 2 Scan Right
- 3 Check Right
- 4 Scan Left
- 5 Accept

		В	0	1
Current State	0	1,B,R	_	_
	1	5,B,R	2,B,R	-
	2	3,B,L	2,0,R	2,1,R
	3	_	-	4,B,L
	4	1,B,R	4,0,L	4,1,L
	5	_	_	_

Read Symbol

'- ' means no possible action from this point

Deterministic TM: At most one possible action at any point

Non Deterministic Turing Machine

Language Recognition

- Determine whether input is string of form xx
- For some string x $\boldsymbol{\widehat{I}}$ {0,1}*

Input Examples

Should reach state m-1

Should never reach state m-1

Nondeterministic Algorithm

• Record leftmost symbol and set to B

• Scan right, stopping at arbitrary position with matching symbol, and mark it with 2

• Scan left to end, and run program to recognize $x2^+x$

Nondeterministic Algorithm

• Might make bad guess

• Program will never reach accepting state

Rule

 String accepted as long as reach accepting state for some sequence of steps

Nondeterministic Program

States

- 0 Initial
- 1 Record
- 2 Look for 0
- 3 Look for 1
- 4 Scan Left
- 5+ Rest of program

	Read Symbol				
	В	0	1		
0	1,B,R	_	-		
1	accept,B,R	2,B,R	3,B,R		
2	_	2,0,R 4,2,L	2,1,R		
3	_	3,0,R	3,1,R 4,2,L		
4	5,B,R	4,0,L	4,1,L		

Nondeterministic TM: ³ 2 possible actions from single point

Current State

Turing Machine Complexity

Machine M Recognizes Input String x

- Initialize tape to x
- Consider all possible execution sequences
- Accept in time t if can reach accepting state in t steps
 t(x): Length of shortest accepting sequence for input x

Language of Machine L(M)

- Set of all strings that machine accepts
- x $\ddot{\mathbf{I}}$ L when no execution sequence reaches accepting state
 - Might hit dead end
 - Might run forever

Time Complexity

- $T_M(n) = Max \{ t(x) | x \hat{I} L |x| = n \}$
 - Where $\left| x \right|$ is length of string x

P and NP

Language L is in P

• There is some *deterministic* TM M

-L(M) = L

 $-T_M(n) = p(n)$ for some polynomial function p

Language L is in NP

• There is some *nondeterministic* TM M

-L(M) = L

- $-T_M(n) = p(n)$ for some polynomial function p
- Any problem that can be solved by intelligent guessing

Example: Boolean Satisfiability

Problem

- Variables: x_1, \ldots, x_k
- Literal: either x_i or $\emptyset x_i$
- Clause: Set of literals
- Formula: Set of clauses
- Example: $\{x_3, \emptyset x_3\} \{x_1, x_2\} \{ \emptyset x_2, x_3\} \{ x_1, \emptyset x_3\}$
 - Denotes Boolean formula $x_3 \lor \neg x_3 \land x_1 \lor x_2 \land \neg x_2 \lor x_3 \land x_1 \lor \neg x_3$

Encoding Boolean Formula

Represent each clause as string of 2k 0's and 1's

- 1 bit for each possible literal
- First bit: variable, Second bit: Negation of variable
- $\{x_3, \emptyset x_3\}$: 000011 $\{x_1, x_2\}$: 101000
- $\{ \mathbf{\emptyset} \mathbf{x}_2, \mathbf{x}_3 \}$: 000110 $\{ \mathbf{x}_1, \mathbf{\emptyset} \mathbf{x}_3 \}$: 100001

Represent formula as clause strings separated by '\$'

• 000011\$101000\$000110\$100001

SAT is NP

Claim

 There is a NDTM M such that L(M) = encodings of all satisfiable Boolean formulas

Algorithm

- Phase 1: Determine k and generate some string {01,10}
 - Append to end of formula
 - This will be a guess at satisfying assignment
 - E.g., 000011\$101000\$000110\$100001*\$100110*
- Phase 2: Check each clause for matching 1
 - $\ E.g., \ 0000\underline{1}1\$\underline{1}01000\$0001\underline{1}0\$\underline{1}00001\$100110$

SAT is NP-complete

Cook's Theorem

• Can generate Boolean formula that checks whether NDTM accepts string in polynomial time

Translation Procedure

- Given
 - NDTM M
 - Polynomial function p
 - I nput string x
- Generate formula F
 - F is satisfiable iff M accepts x in time p(|x|)
- Size of F is polynomial in |x|
- Procedure generates F in (deterministic) time polynomial in $\left| x \right|$

Construction

Parameters

- |x| = n
- m states
- v tape symbols (including B)

Formula Variables

- Q[i,k] 0 = i = p(n), 0 = k = m-1 - At time i, M is in state k
- H[i,j] 0 = i = p(n), -p(n) = j = p(n)
 At time i, tape head is over square j
- S[i,j,k] 0 = i = p(n), -p(n) = j = p(n), 1 = k = v

– At time i, tape square j holds symbol k

Key Observation

For bounded computation, can only visit bounded number of squares

Clause Groups

• Formula clauses divided into "clause groups"

Uniqueness

- At each time i, M is in exactly one state
- At each time i, tape head over exactly one square
- At each time i, each square j contains exactly one symbol

Initialization

- At time 0, tape encodes input x, head in position 0, controller in state 0

Accepting

• At some time i, state = m-1

Legal Computation

• Tape/Head/Controller configuration at each time i+1 follows from that at time i according to some legal action

Implications of Cook's Theorem

Suppose There Were an Efficient Algorithm for Boolean Satisfiability

- Then could take any problem in NP, convert it to Boolean formula and solve it quickly!
- Many "hard" problems would suddenly be easy

Big Question P =? NP

- Formulated in 1971
- Still not solved
- Most believe not

Complements of Problems

Language Complement

- Define ~L = { x | x Ï L}
- E.g., ~SAT
 - Malformed formulas (easy to detect)
 - Unsatisfiable formulas

P Closed Under Complementation

- If L is in P, then so is \sim L
 - Run TM for L on input x for p(|x|) steps
 - » Has unique computation sequence
 - If haven't reached accepting state by then, then $x \notin L$

NP vs. co-NP (cont.)

Is NP = co-NP?

- Having NDTM for ~L doesn't help for recognizing L
 - Would have to check all computation sequences of length = p(|x|).
 - Could have exponentially many sequences

Proper Terminology

- Generally want algorithm that can terminate with "yes" or "no" answer to decision problem
- If underlying problem (or its complement) is NP, then full decision problem is "NP-Hard"

Showing Problems NP-Complete

To show Problem X is NP-complete

- 1. Show X is in NP
 - Can be solved by "guess and check"
 - Generally easy part
- 2. Show known NP-complete problem Y can be reduced to X
 - Devise translation procedure
 - Given arbitrary instance y of Y, can generate problem x in X such that y $\bm{\hat{I}}~L_{\gamma}$ iff x $\bm{\hat{I}}~L_{X}$

– L_x: set of all strings x for which decision problem answer is "yes"

• Size of x must be polynomial in y, and must be generated by (deterministic) polynomial algorithm.