15-451
 $\mathfrak{A l g o r i t h m s}$

Theory of $\mathfrak{N}(P$. Completeness

Randal E. Bryant
April 11, 2001

Topics:

- Turing Macfines
- Cook's Theorem
- Implications

Turing Macfine

Formal Model of Computer

- Very primitive, but computationally complete

Tape

Turing Macfine Components

Tape

- Conceptually infinite number of "squares" in botf directions
- Eack square holds one "symbol"
- From a finite alpfabet
- Initially holds input + copies of blank symbol ' \mathcal{B} '

Tape $\mathcal{H e a d}$

- On each step
- Read current symbol
- Write ne w symbol
- Move Left or Right one position

Components (Cont.)

Controller

- Has state between 0 and m-1
- Initial state $=0$
- Accepting state $=m-1$
- Performs steps
- Read symbol
- Write ne w symbol
- Move head left or right

Program

- Set of allowed controller actions
- Current State, Read Symbol $\rightarrow \mathcal{N} e w S$ Sate, \mathcal{W} rite Symbol, $\mathcal{L} \mid \mathcal{R}$

Turing Machine Program Example

Language Recognition

- Determine whether input is string of form $0^{n} 1^{n}$

Input Examples

- Should reach state m-1

- Should never reacf state m-1

Algorithm

- Ke ep erasing 0 on left and 1 on rigft
- Terminate and accept when fave blank tape

Program

States

- 0 Initial
- 1 Check Left
- 2 Scan Right
- 3 Check Right
- 4 Scan Left
- 5 Accept

-'means no possible action from this point
$\mathcal{D e}$ terministic $\mathcal{T M}: \mathcal{A}$ most one possible action at any point

\mathcal{N} on $\operatorname{Deterministic~} \mathcal{T} u r i n g ~ M a c \not \approx i n e ~$

Language Recognition

- Determine whether input is string of form $x x$
- For some string $\chi \in\{0,1\}^{*}$

Input Examples

- Should reach state m-1

- Should never reach state m-1

\mathcal{N} ondeterministic $\mathcal{A l g o r i t f m}$

- Record leftmost symbol and set to \mathcal{B}

- Scan right, stopping at arbitrary position with matcfing symbol, and mark it with 2

- Scan left to end, and run program to recognize $x 2^{+} \chi$

\mathcal{N} ondeterministic $\mathcal{A l g o r i t f m}$

- Migft make bad guess

- Program will never reach accepting state

Rule

- String accepted as long as reach accepting state for some sequence of steps

\mathcal{N} ondeterministic Program

States

- 0 Initial
- 1 Record
- 2 Look for 0
- 3 Look for 1
- 4 Scan Left
- 5+Rest of program

Read Symbol

\mathcal{N} Nondeterministic $\mathcal{T M}: \geq 2$ possible actions from single point

Turing Machine Complexity

Machine \mathcal{M} Recognizes Input String x

- Initialize tape to x
- Consider all possible execution sequences
- Accept in time t if can reach accepting state in t steps $-t(\chi):$ Length of shortest accepting sequence for input χ
Language of Mackine $\mathcal{L}(\mathcal{M})$
- Set of all strings that macfine accepts
- x $\notin \mathcal{L}$ when no execution sequence reaches accepting state
- Might fit de ad end
- Migft run forever

Time Complexity

- $\mathcal{T}_{\mathcal{M}}(n)=\operatorname{Max}\{t(x)|x \in \mathcal{L}| x \mid=n\}$
- Where $|x|$ is length of string x

P and $\mathcal{N} P$

Language \mathcal{L} is in P

- There is some deterministic $\mathcal{T M} \mathcal{M}$
$-\mathcal{L}(\mathcal{M})=\mathcal{L}$
$-\mathcal{T}_{\mathcal{M}}(n)=p(n)$ for some polynomial function p
Language \mathcal{L} is in $\mathcal{N}(P$
- There is some nondeterministic $\mathcal{T M} \mathcal{M}$
$-\mathcal{L}(\mathcal{M})=\mathcal{L}$
$-\mathcal{T}_{\mathcal{M}^{\prime}}(n)=p(n)$ for some polynomial function p
- Any problem that can be solved by intelligent guessing

Example: Boole an Satisfiability

Problem

- Variables: $\quad x_{1}, \ldots, x_{k}$
- Literal: either x_{i} or $\neg \chi_{i}$
- Clause: Set of literals
- Formula: Set of clauses
- Example: $\left\{x_{3}, \neg x_{3}\right\} \quad\left\{x_{1}, x_{2}\right\}\left\{\neg x_{2}, x_{3}\right\}\left\{x_{1}, \neg x_{3}\right\}$
- Denotes Boole an formula $x_{3} \vee \neg x_{3} \wedge x_{1} \vee x_{2} \wedge \neg x_{2} \vee x_{3} \wedge x_{1} \vee \neg x_{3}$

Encoding Boole an Formula

Represent eacf clause as string of $2 \mathcal{K} 0$'s and 1 's

- 1 bit for each possible literal
- First 6it: variable, Second 6it: Negation of variable
- $\left\{x_{3}, \neg x_{3}\right\}: 000011 \quad\left\{x_{1}, x_{2}\right\}: 101000$
- $\left\{\neg x_{2}, x_{3}\right\}: 000110 \quad\left\{x_{1}, \neg x_{3}\right\}: 100001$

Represent formula as clause strings separated by'\$'
-000011\$101000\$000110\$100001

$\mathcal{S A T}$ is $\mathcal{N} P$

Claim

- There is a $\mathfrak{N D} \mathcal{D} \mathscr{M} \mathfrak{M}$ such that $\mathcal{L}(\mathcal{M})=$ encodings of all satisfiable Boole an formulas

$\mathfrak{A l g o r i t h m}$

- Pfase 1: Determine K and generate some string $\{01,10\}$
- Append to end of formula
- This will be a guess at satisfying assignment
-E.g., $000011 \$ 101000 \$ 000110 \$ 100001 \$ 100110$
- Phase 2: Checkeach clause for matching 1
-E.g., $0000 \underline{11} \$ 101000 \$ 000110 \$ 100001 \$ 100110$

$\mathcal{S A T}$ is $\mathfrak{N} \operatorname{P-complete}$

Cook's Theorem

- Cangenerate Boolean formula that checks whether $\mathcal{N D} \mathcal{D T M}$ accepts string in polynomial time
Translation Procedure
- Given
$-\mathcal{N D} \mathcal{D} \mathcal{M}$
- Polynomial function p
- Input string x

- Generate formula \mathcal{F}
$-\mathcal{F}$ is satisfiable iff \mathcal{M} accepts χ in time $p(|\chi|)$
- Size of \mathcal{F} is polynomial in $|x|$
- Procedure generates \mathcal{F} in (deterministic) time polynomial in $|x|$

Construction

Parameters

- $|x|=n$
- m states
- v tape symbols (including $\mathcal{B})$

Formula Variables

- $Q[i, k] \quad O=i=p(n), O=K=m-1$
- \mathfrak{A} t time i, \mathcal{M} is in state K
- $\mathcal{H}[i, j]$

$$
0=i=p(n),-p(n)=j=p(n)
$$

$-\mathcal{A}$ time i, tape head is over square j

- $\mathcal{S}[i, j, k] \quad 0=i=p(n),-p(n)=j=p(n), 1=k=v$
- At time i, tape square j folds symbolk

Key Observation

- For bounded computation, can only visit bounded number of squares

Clause Groups

- Formula clauses divided into "clause groups"

Uniqueness

- At each time i, \mathcal{M} is in exactly one state
- At eacf time i, tape fead over exactly one square
- At each time i, each square j contains exactly one symbol

Initialization

- At time 0, tape encodes input x, head in position 0 , controller in state 0

Accepting

- At some time i, state $=m-1$

Legal Computation

- Tape/Head/Controller configuration at each time $i+1$ follows from that at time i according to some legal action

Implications of Cook's Theorem

Suppose There Were an Efficient $\mathcal{A l g o r i t h}$ for Boole an Satisfiability

- Then could take any problem in $\mathcal{N}(P$, convert it to $\mathcal{B o o l e}$ an formula and solve it quickly!
- Many "fiard" problems would suddenly be easy
$\mathcal{B i g}$ Question $\mathcal{P}=$? $\mathcal{N}(P$
- Formulated in 1971
- Still not solved
- Most believe not

Complements of Problems

Language Complement

- Define $\sim \mathcal{L}=\{x \mid x \notin \mathcal{L}\}$
- E.g., $\sim \mathcal{S} \mathcal{A} \mathcal{T}$
- Malformed formulas (easy to detect)
- Unsatisfiable formulas

PClosed Under Complementation

- If \mathcal{L} is in \mathcal{P}, then so is $\sim \mathcal{L}$
- Run $\mathcal{T M}$ for \mathcal{L} on input χ for $p(|\chi|)$ steps
» Has unique computation sequence
- If haven't reached accepting state by then, then $\chi \notin \mathcal{L}$

$\mathcal{N} \mathbb{P}$ vs. co- $\mathcal{N} P(c o n t$.

Is $\mathcal{N}(P=\operatorname{co}-\mathcal{N}(P$?

- Having $\mathfrak{N D T M}$ for $\sim \mathcal{L}$ doesn't felp for recognizing \mathcal{L}
- Would have to checkall computation sequences of length $=p(|x|)$.
- Could fiave exponentially many sequences

Proper Terminology

- Generally want algorithm that can terminate with "yes"or "no" answer to decision problem
- If underlying problem (or its complement) is $\mathcal{N}(P$, then full decision problem is " \mathcal{N} P- Hard"

Sfowing Problems \mathcal{N} P-Complete

To show Problem X is $\mathcal{N}(P$-complete

1. Show X is in $\mathcal{N} P$

- Can be solved by "guess and check"
- Generally easy part

2. Show known \mathcal{N} (P-complete problem \mathcal{Y} can be reduced to X

- Devise translation procedure
- Given arbitrary instance y of Y, can generate problem x in X such that $y \in L_{y}$ iff $x \in \mathcal{L}_{x}$
- \mathcal{L}_{χ} : set of all strings χ for which decision problem answer is "yes"
- Size of x must be polynomial in y, and must be generated by (deterministic) polynomial algorithm.

